Files
wasmtime/crates/runtime/src/memfd.rs
2022-01-31 16:40:14 -08:00

512 lines
20 KiB
Rust

//! memfd support: creation of backing images for modules, and logic
//! to support mapping these backing images into memory.
use crate::InstantiationError;
use anyhow::Result;
use libc::c_void;
use memfd::{Memfd, MemfdOptions};
use rustix::fd::AsRawFd;
use rustix::fs::FileExt;
use std::convert::TryFrom;
use std::sync::Arc;
use wasmtime_environ::{
DefinedMemoryIndex, MemoryInitialization, MemoryInitializer, MemoryPlan, Module, PrimaryMap,
};
/// MemFDs containing backing images for certain memories in a module.
///
/// This is meant to be built once, when a module is first
/// loaded/constructed, and then used many times for instantiation.
pub struct ModuleMemFds {
memories: PrimaryMap<DefinedMemoryIndex, Option<Arc<MemoryMemFd>>>,
}
const MAX_MEMFD_IMAGE_SIZE: u64 = 1024 * 1024 * 1024; // limit to 1GiB.
impl ModuleMemFds {
pub(crate) fn get_memory_image(
&self,
defined_index: DefinedMemoryIndex,
) -> Option<&Arc<MemoryMemFd>> {
self.memories[defined_index].as_ref()
}
}
/// One backing image for one memory.
#[derive(Debug)]
pub struct MemoryMemFd {
/// The actual memfd image: an anonymous file in memory which we
/// use as the backing content for a copy-on-write (CoW) mapping
/// in the memory region.
pub fd: Memfd,
/// Length of image. Note that initial memory size may be larger;
/// leading and trailing zeroes are truncated (handled by
/// anonymous backing memfd).
pub len: usize,
/// Image starts this many bytes into heap space. Note that the
/// memfd's offsets are always equal to the heap offsets, so we
/// map at an offset into the fd as well. (This simplifies
/// construction.)
pub offset: usize,
}
fn unsupported_initializer(segment: &MemoryInitializer, plan: &MemoryPlan) -> bool {
// If the segment has a base that is dynamically determined
// (by a global value, which may be a function of an imported
// module, for example), then we cannot build a single static
// image that is used for every instantiation. So we skip this
// memory entirely.
let end = match segment.end() {
None => {
return true;
}
Some(end) => end,
};
// Cannot be out-of-bounds. If there is a *possibility* it may
// be, then we just fall back on ordinary initialization.
if plan.initializer_possibly_out_of_bounds(segment) {
return true;
}
// Must fit in our max size.
if end > MAX_MEMFD_IMAGE_SIZE {
return true;
}
false
}
impl ModuleMemFds {
/// Create a new `ModuleMemFds` for the given module. This can be
/// passed in as part of a `InstanceAllocationRequest` to speed up
/// instantiation and execution by using memfd-backed memories.
pub fn new(module: &Module, wasm_data: &[u8]) -> Result<Option<Arc<ModuleMemFds>>> {
let page_size = region::page::size() as u64;
let num_defined_memories = module.memory_plans.len() - module.num_imported_memories;
// Allocate a memfd file initially for every memory. We'll
// release those and set `excluded_memories` for those that we
// determine during initializer processing we cannot support a
// static image (e.g. due to dynamically-located segments).
let mut memfds: PrimaryMap<DefinedMemoryIndex, Option<Memfd>> = PrimaryMap::default();
let mut sizes: PrimaryMap<DefinedMemoryIndex, u64> = PrimaryMap::default();
let mut excluded_memories: PrimaryMap<DefinedMemoryIndex, bool> = PrimaryMap::new();
for _ in 0..num_defined_memories {
memfds.push(None);
sizes.push(0);
excluded_memories.push(false);
}
fn create_memfd() -> Result<Memfd> {
// Create the memfd. It needs a name, but the
// documentation for `memfd_create()` says that names can
// be duplicated with no issues.
MemfdOptions::new()
.allow_sealing(true)
.create("wasm-memory-image")
.map_err(|e| e.into())
}
let round_up_page = |len: u64| (len + page_size - 1) & !(page_size - 1);
match &module.memory_initialization {
&MemoryInitialization::Segmented(ref segments) => {
for (i, segment) in segments.iter().enumerate() {
let defined_memory = match module.defined_memory_index(segment.memory_index) {
Some(defined_memory) => defined_memory,
None => continue,
};
if excluded_memories[defined_memory] {
continue;
}
if unsupported_initializer(segment, &module.memory_plans[segment.memory_index])
{
memfds[defined_memory] = None;
excluded_memories[defined_memory] = true;
continue;
}
if memfds[defined_memory].is_none() {
memfds[defined_memory] = Some(create_memfd()?);
}
let memfd = memfds[defined_memory].as_mut().unwrap();
let end = round_up_page(segment.end().expect("must have statically-known end"));
if end > sizes[defined_memory] {
sizes[defined_memory] = end;
memfd.as_file().set_len(end)?;
}
let base = segments[i].offset;
let data = &wasm_data[segment.data.start as usize..segment.data.end as usize];
memfd.as_file().write_at(data, base)?;
}
}
&MemoryInitialization::Paged { ref map, .. } => {
for (defined_memory, pages) in map {
let top = pages
.iter()
.map(|(base, range)| *base + range.len() as u64)
.max()
.unwrap_or(0);
let memfd = create_memfd()?;
memfd.as_file().set_len(top)?;
for (base, range) in pages {
let data = &wasm_data[range.start as usize..range.end as usize];
memfd.as_file().write_at(data, *base)?;
}
memfds[defined_memory] = Some(memfd);
sizes[defined_memory] = top;
}
}
}
// Now finalize each memory.
let mut memories: PrimaryMap<DefinedMemoryIndex, Option<Arc<MemoryMemFd>>> =
PrimaryMap::default();
for (defined_memory, maybe_memfd) in memfds {
let memfd = match maybe_memfd {
Some(memfd) => memfd,
None => {
memories.push(None);
continue;
}
};
let size = sizes[defined_memory];
// Find leading and trailing zero data so that the mmap
// can precisely map only the nonzero data; anon-mmap zero
// memory is faster for anything that doesn't actually
// have content.
let mut page_data = vec![0; page_size as usize];
let mut page_is_nonzero = |page| {
let offset = page_size * page;
memfd.as_file().read_at(&mut page_data[..], offset).unwrap();
page_data.iter().any(|byte| *byte != 0)
};
let n_pages = size / page_size;
let mut offset = 0;
for page in 0..n_pages {
if page_is_nonzero(page) {
break;
}
offset += page_size;
}
let len = if offset == size {
0
} else {
let mut len = 0;
for page in (0..n_pages).rev() {
if page_is_nonzero(page) {
len = (page + 1) * page_size - offset;
break;
}
}
len
};
// Seal the memfd's data and length.
//
// This is a defense-in-depth security mitigation. The
// memfd will serve as the starting point for the heap of
// every instance of this module. If anything were to
// write to this, it could affect every execution. The
// memfd object itself is owned by the machinery here and
// not exposed elsewhere, but it is still an ambient open
// file descriptor at the syscall level, so some other
// vulnerability that allowed writes to arbitrary fds
// could modify it. Or we could have some issue with the
// way that we map it into each instance. To be
// extra-super-sure that it never changes, and because
// this costs very little, we use the kernel's "seal" API
// to make the memfd image permanently read-only.
memfd.add_seal(memfd::FileSeal::SealGrow)?;
memfd.add_seal(memfd::FileSeal::SealShrink)?;
memfd.add_seal(memfd::FileSeal::SealWrite)?;
memfd.add_seal(memfd::FileSeal::SealSeal)?;
memories.push(Some(Arc::new(MemoryMemFd {
fd: memfd,
offset: usize::try_from(offset).unwrap(),
len: usize::try_from(len).unwrap(),
})));
}
Ok(Some(Arc::new(ModuleMemFds { memories })))
}
}
/// A single slot handled by the memfd instance-heap mechanism.
///
/// The mmap scheme is:
///
/// base ==> (points here)
/// - (image.offset bytes) anonymous zero memory, pre-image
/// - (image.len bytes) CoW mapping of memfd heap image
/// - (up to static_size) anonymous zero memory, post-image
///
/// The ordering of mmaps to set this up is:
///
/// - once, when pooling allocator is created:
/// - one large mmap to create 8GiB * instances * memories slots
///
/// - per instantiation of new image in a slot:
/// - mmap of anonymous zero memory, from 0 to max heap size
/// (static_size)
/// - mmap of CoW'd memfd image, from `image.offset` to
/// `image.offset + image.len`. This overwrites part of the
/// anonymous zero memory, potentially splitting it into a pre-
/// and post-region.
/// - mprotect(PROT_NONE) on the part of the heap beyond the initial
/// heap size; we re-mprotect it with R+W bits when the heap is
/// grown.
#[derive(Debug)]
pub struct MemFdSlot {
/// The base of the actual heap memory. Bytes at this address are
/// what is seen by the Wasm guest code.
base: usize,
/// The maximum static memory size, plus post-guard.
static_size: usize,
/// The memfd image that backs this memory. May be `None`, in
/// which case the memory is all zeroes.
pub(crate) image: Option<Arc<MemoryMemFd>>,
/// The initial heap size.
initial_size: usize,
/// The current heap size. All memory above `base + cur_size`
/// should be PROT_NONE (mapped inaccessible).
cur_size: usize,
/// Whether this slot may have "dirty" pages (pages written by an
/// instantiation). Set by `instantiate()` and cleared by
/// `clear_and_remain_ready()`, and used in assertions to ensure
/// those methods are called properly.
dirty: bool,
/// Whether this MemFdSlot is responsible for mapping anonymous
/// memory (to hold the reservation while overwriting mappings
/// specific to this slot) in place when it is dropped. Default
/// on, unless the caller knows what they are doing.
clear_on_drop: bool,
}
impl MemFdSlot {
pub(crate) fn create(base_addr: *mut c_void, static_size: usize) -> Self {
let base = base_addr as usize;
MemFdSlot {
base,
static_size,
initial_size: 0,
cur_size: 0,
image: None,
dirty: false,
clear_on_drop: true,
}
}
/// Inform the MemFdSlot that it should *not* clear the underlying
/// address space when dropped. This should be used only when the
/// caller will clear or reuse the address space in some other
/// way.
pub(crate) unsafe fn no_clear_on_drop(&mut self) {
self.clear_on_drop = false;
}
pub(crate) fn set_heap_limit(&mut self, size_bytes: usize) -> Result<()> {
assert!(size_bytes > self.cur_size);
// mprotect the relevant region.
let start = self.base + self.cur_size;
let len = size_bytes - self.cur_size;
unsafe {
rustix::io::mprotect(
start as *mut _,
len,
rustix::io::MprotectFlags::READ | rustix::io::MprotectFlags::WRITE,
)?;
}
Ok(())
}
pub(crate) fn instantiate(
&mut self,
initial_size_bytes: usize,
maybe_image: Option<&Arc<MemoryMemFd>>,
) -> Result<(), InstantiationError> {
assert!(!self.dirty);
// Fast-path: previously instantiated with the same image, or
// no image but the same initial size, so the mappings are
// already correct; there is no need to mmap anything. Given
// that we asserted not-dirty above, any dirty pages will have
// already been thrown away by madvise() during the previous
// termination. The `clear_and_remain_ready()` path also
// mprotects memory above the initial heap size back to
// PROT_NONE, so we don't need to do that here.
if (self.image.is_none()
&& maybe_image.is_none()
&& self.initial_size == initial_size_bytes)
|| (self.image.is_some()
&& maybe_image.is_some()
&& self.image.as_ref().unwrap().fd.as_file().as_raw_fd()
== maybe_image.as_ref().unwrap().fd.as_file().as_raw_fd())
{
self.dirty = true;
return Ok(());
}
// Otherwise, we need to redo (i) the anonymous-mmap backing
// for the whole slot, (ii) the initial-heap-image mapping if
// present, and (iii) the mprotect(PROT_NONE) above the
// initial heap size.
// Security/audit note: we map all of these MAP_PRIVATE, so
// all instance data is local to the mapping, not propagated
// to the backing fd. We throw away this CoW overlay with
// madvise() below, from base up to static_size (which is the
// whole slot) when terminating the instance.
// Anonymous mapping behind the initial heap size: this gives
// zeroes for any "holes" in the initial heap image. Anonymous
// mmap memory is faster to fault in than a CoW of a file,
// even a file with zero holes, because the kernel's CoW path
// unconditionally copies *something* (even if just a page of
// zeroes). Anonymous zero pages are fast: the kernel
// pre-zeroes them, and even if it runs out of those, a memset
// is half as expensive as a memcpy (only writes, no reads).
self.map_anon_memory(rustix::io::ProtFlags::READ | rustix::io::ProtFlags::WRITE)
.map_err(|e| InstantiationError::Resource(e.into()))?;
// The initial memory image, if given. If not, we just get a
// memory filled with zeroes.
if let Some(image) = maybe_image {
if image.len > 0 {
let image = image.clone();
unsafe {
let ptr = rustix::io::mmap(
(self.base + image.offset) as *mut c_void,
image.len,
rustix::io::ProtFlags::READ | rustix::io::ProtFlags::WRITE,
rustix::io::MapFlags::PRIVATE | rustix::io::MapFlags::FIXED,
image.fd.as_file(),
image.offset as u64,
)
.map_err(|e| InstantiationError::Resource(e.into()))?;
assert_eq!(ptr as usize, self.base + image.offset);
}
self.image = Some(image);
}
}
// mprotect above `initial_size_bytes`.
self.initial_size = initial_size_bytes;
self.protect_past_initial_size()
.map_err(|e| InstantiationError::Resource(e.into()))?;
self.dirty = true;
Ok(())
}
pub(crate) fn clear_and_remain_ready(&mut self) -> Result<()> {
assert!(self.dirty);
// madvise the image range. This will throw away dirty pages,
// which are CoW-private pages on top of the initial heap
// image memfd.
unsafe {
rustix::io::madvise(
self.base as *mut c_void,
self.static_size,
rustix::io::Advice::LinuxDontNeed,
)?;
}
// mprotect the region beyond the initial heap size back to PROT_NONE.
self.protect_past_initial_size()?;
self.dirty = false;
Ok(())
}
fn protect_past_initial_size(&self) -> Result<()> {
let mprotect_start = self.base + self.initial_size;
let mprotect_len = self.static_size - self.initial_size;
if mprotect_len > 0 {
unsafe {
rustix::io::mprotect(
mprotect_start as *mut _,
mprotect_len,
rustix::io::MprotectFlags::empty(),
)?;
}
}
Ok(())
}
pub(crate) fn has_image(&self) -> bool {
self.image.is_some()
}
pub(crate) fn is_dirty(&self) -> bool {
self.dirty
}
/// Map anonymous zeroed memory across the whole slot, with the
/// given protections. Used both during instantiate and during
/// drop.
fn map_anon_memory(&self, prot: rustix::io::ProtFlags) -> Result<()> {
unsafe {
let ptr = rustix::io::mmap_anonymous(
self.base as *mut c_void,
self.static_size,
prot,
rustix::io::MapFlags::PRIVATE | rustix::io::MapFlags::FIXED,
)?;
assert_eq!(ptr as usize, self.base);
}
Ok(())
}
}
impl Drop for MemFdSlot {
fn drop(&mut self) {
// The MemFdSlot may be dropped if there is an error during
// instantiation: for example, if a memory-growth limiter
// disallows a guest from having a memory of a certain size,
// after we've already initialized the MemFdSlot.
//
// We need to return this region of the large pool mmap to a
// safe state (with no module-specific mappings). The
// MemFdSlot will not be returned to the MemoryPool, so a new
// MemFdSlot will be created and overwrite the mappings anyway
// on the slot's next use; but for safety and to avoid
// resource leaks it's better not to have stale mappings to a
// possibly-otherwise-dead module's image.
//
// To "wipe the slate clean", let's do a mmap of anonymous
// memory over the whole region, with PROT_NONE. Note that we
// *can't* simply munmap, because that leaves a hole in the
// middle of the pooling allocator's big memory area that some
// other random mmap may swoop in and take, to be trampled
// over by the next MemFdSlot later.
//
// Since we're in drop(), we can't sanely return an error if
// this mmap fails. Let's ignore the failure if so; the next
// MemFdSlot to be created for this slot will try to overwrite
// the existing stale mappings, and return a failure properly
// if we still cannot map new memory.
//
// The exception to all of this is if the `unmap_on_drop` flag
// (which is set by default) is false. If so, the owner of
// this MemFdSlot has indicated that it will clean up in some
// other way.
if self.clear_on_drop {
let _ = self.map_anon_memory(rustix::io::ProtFlags::empty());
}
}
}