Files
wasmtime/crates/jit/src/instantiate.rs
Alex Crichton 9ac7d01288 Implement the module linking alias section (#2451)
This commit is intended to do almost everything necessary for processing
the alias section of module linking. Most of this is internal
refactoring, the highlights being:

* Type contents are now stored separately from a `wasmtime_env::Module`.
  Given that modules can freely alias types and have them used all over
  the place, it seemed best to have one canonical location to type
  storage which everywhere else points to (with indices). A new
  `TypeTables` structure is produced during compilation which is shared
  amongst all member modules in a wasm blob.

* Instantiation is heavily refactored to account for module linking. The
  main gotcha here is that imports are now listed as "initializers". We
  have a sort of pseudo-bytecode-interpreter which interprets the
  initialization of a module. This is more complicated than just
  matching imports at this point because in the module linking proposal
  the module, alias, import, and instance sections may all be
  interleaved. This means that imports aren't guaranteed to show up at
  the beginning of the address space for modules/instances.

Otherwise most of the changes here largely fell out from these two
design points. Aliases are recorded as initializers in this scheme.
Copying around type information and/or just knowing type information
during compilation is also pretty easy since everything is just a
pointer into a `TypeTables` and we don't have to actually copy any types
themselves. Lots of various refactorings were necessary to accomodate
these changes.

Tests are hoped to cover a breadth of functionality here, but not
necessarily a depth. There's still one more piece of the module linking
proposal missing which is exporting instances/modules, which will come
in a future PR.

It's also worth nothing that there's one large TODO which isn't
implemented in this change that I plan on opening an issue for.
With module linking when a set of modules comes back from compilation
each modules has all the trampolines for the entire set of modules. This
is quite a lot of duplicate trampolines across module-linking modules.
We'll want to refactor this at some point to instead have only one set
of trampolines per set of module linking modules and have them shared
from there. I figured it was best to separate out this change, however,
since it's purely related to resource usage, and doesn't impact
non-module-linking modules at all.

cc #2094
2020-12-02 17:24:06 -06:00

588 lines
20 KiB
Rust

//! Define the `instantiate` function, which takes a byte array containing an
//! encoded wasm module and returns a live wasm instance. Also, define
//! `CompiledModule` to allow compiling and instantiating to be done as separate
//! steps.
use crate::code_memory::CodeMemory;
use crate::compiler::{Compilation, Compiler};
use crate::link::link_module;
use crate::object::ObjectUnwindInfo;
use object::File as ObjectFile;
#[cfg(feature = "parallel-compilation")]
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
use std::any::Any;
use std::ops::Range;
use std::sync::Arc;
use thiserror::Error;
use wasmtime_debug::create_gdbjit_image;
use wasmtime_environ::entity::PrimaryMap;
use wasmtime_environ::isa::TargetIsa;
use wasmtime_environ::wasm::{
DefinedFuncIndex, InstanceTypeIndex, ModuleTypeIndex, SignatureIndex, WasmFuncType,
};
use wasmtime_environ::{
CompileError, DataInitializer, DataInitializerLocation, DebugInfoData, FunctionAddressMap,
InstanceSignature, Module, ModuleEnvironment, ModuleSignature, ModuleTranslation,
StackMapInformation, TrapInformation,
};
use wasmtime_profiling::ProfilingAgent;
use wasmtime_runtime::{
GdbJitImageRegistration, Imports, InstanceHandle, InstantiationError, RuntimeMemoryCreator,
StackMapRegistry, VMExternRefActivationsTable, VMFunctionBody, VMInterrupts,
VMSharedSignatureIndex, VMTrampoline,
};
/// An error condition while setting up a wasm instance, be it validation,
/// compilation, or instantiation.
#[derive(Error, Debug)]
pub enum SetupError {
/// The module did not pass validation.
#[error("Validation error: {0}")]
Validate(String),
/// A wasm translation error occured.
#[error("WebAssembly failed to compile")]
Compile(#[from] CompileError),
/// Some runtime resource was unavailable or insufficient, or the start function
/// trapped.
#[error("Instantiation failed during setup")]
Instantiate(#[from] InstantiationError),
/// Debug information generation error occured.
#[error("Debug information error")]
DebugInfo(#[from] anyhow::Error),
}
/// Contains all compilation artifacts.
#[derive(Serialize, Deserialize)]
pub struct CompilationArtifacts {
/// Module metadata.
module: Module,
/// ELF image with functions code.
obj: Box<[u8]>,
/// Unwind information for function code.
unwind_info: Box<[ObjectUnwindInfo]>,
/// Data initiailizers.
data_initializers: Box<[OwnedDataInitializer]>,
/// Descriptions of compiled functions
funcs: PrimaryMap<DefinedFuncIndex, FunctionInfo>,
/// Whether or not native debug information is available in `obj`
native_debug_info_present: bool,
/// Whether or not the original wasm module contained debug information that
/// we skipped and did not parse.
has_unparsed_debuginfo: bool,
/// Debug information found in the wasm file, used for symbolicating
/// backtraces.
debug_info: Option<DebugInfo>,
}
#[derive(Serialize, Deserialize)]
struct DebugInfo {
data: Box<[u8]>,
code_section_offset: u64,
debug_abbrev: Range<usize>,
debug_addr: Range<usize>,
debug_info: Range<usize>,
debug_line: Range<usize>,
debug_line_str: Range<usize>,
debug_ranges: Range<usize>,
debug_rnglists: Range<usize>,
debug_str: Range<usize>,
debug_str_offsets: Range<usize>,
}
impl CompilationArtifacts {
/// Creates a `CompilationArtifacts` for a singular translated wasm module.
pub fn build(
compiler: &Compiler,
data: &[u8],
) -> Result<(Vec<CompilationArtifacts>, TypeTables), SetupError> {
let (translations, types) = ModuleEnvironment::new(
compiler.frontend_config(),
compiler.tunables(),
compiler.features(),
)
.translate(data)
.map_err(|error| SetupError::Compile(CompileError::Wasm(error)))?;
let list = maybe_parallel!(translations.(into_iter | into_par_iter))
.map(|mut translation| {
let Compilation {
obj,
unwind_info,
funcs,
} = compiler.compile(&mut translation, &types)?;
let ModuleTranslation {
module,
data_initializers,
debuginfo,
has_unparsed_debuginfo,
..
} = translation;
let data_initializers = data_initializers
.into_iter()
.map(OwnedDataInitializer::new)
.collect::<Vec<_>>()
.into_boxed_slice();
let obj = obj.write().map_err(|_| {
SetupError::Instantiate(InstantiationError::Resource(
"failed to create image memory".to_string(),
))
})?;
Ok(CompilationArtifacts {
module,
obj: obj.into_boxed_slice(),
unwind_info: unwind_info.into_boxed_slice(),
data_initializers,
funcs: funcs
.into_iter()
.map(|(_, func)| FunctionInfo {
stack_maps: func.stack_maps,
traps: func.traps,
address_map: func.address_map,
})
.collect(),
native_debug_info_present: compiler.tunables().generate_native_debuginfo,
debug_info: if compiler.tunables().parse_wasm_debuginfo {
Some(debuginfo.into())
} else {
None
},
has_unparsed_debuginfo,
})
})
.collect::<Result<Vec<_>, SetupError>>()?;
Ok((
list,
TypeTables {
wasm_signatures: types.wasm_signatures,
module_signatures: types.module_signatures,
instance_signatures: types.instance_signatures,
},
))
}
}
struct FinishedFunctions(PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>);
unsafe impl Send for FinishedFunctions {}
unsafe impl Sync for FinishedFunctions {}
#[derive(Serialize, Deserialize, Clone)]
struct FunctionInfo {
traps: Vec<TrapInformation>,
address_map: FunctionAddressMap,
stack_maps: Vec<StackMapInformation>,
}
/// This is intended to mirror the type tables in `wasmtime_environ`, except that
/// it doesn't store the native signatures which are no longer needed past compilation.
#[derive(Serialize, Deserialize)]
#[allow(missing_docs)]
pub struct TypeTables {
pub wasm_signatures: PrimaryMap<SignatureIndex, WasmFuncType>,
pub module_signatures: PrimaryMap<ModuleTypeIndex, ModuleSignature>,
pub instance_signatures: PrimaryMap<InstanceTypeIndex, InstanceSignature>,
}
/// Container for data needed for an Instance function to exist.
pub struct ModuleCode {
code_memory: CodeMemory,
#[allow(dead_code)]
dbg_jit_registration: Option<GdbJitImageRegistration>,
}
/// A compiled wasm module, ready to be instantiated.
pub struct CompiledModule {
artifacts: CompilationArtifacts,
module: Arc<Module>,
code: Arc<ModuleCode>,
finished_functions: FinishedFunctions,
trampolines: PrimaryMap<SignatureIndex, VMTrampoline>,
}
impl CompiledModule {
/// Creates a list of compiled modules from the given list of compilation
/// artifacts.
pub fn from_artifacts_list(
artifacts: Vec<CompilationArtifacts>,
isa: &dyn TargetIsa,
profiler: &dyn ProfilingAgent,
) -> Result<Vec<Self>, SetupError> {
maybe_parallel!(artifacts.(into_iter | into_par_iter))
.map(|a| CompiledModule::from_artifacts(a, isa, profiler))
.collect()
}
/// Creates `CompiledModule` directly from `CompilationArtifacts`.
pub fn from_artifacts(
artifacts: CompilationArtifacts,
isa: &dyn TargetIsa,
profiler: &dyn ProfilingAgent,
) -> Result<Self, SetupError> {
// Allocate all of the compiled functions into executable memory,
// copying over their contents.
let (code_memory, code_range, finished_functions, trampolines) = build_code_memory(
isa,
&artifacts.obj,
&artifacts.module,
&artifacts.unwind_info,
)
.map_err(|message| {
SetupError::Instantiate(InstantiationError::Resource(format!(
"failed to build code memory for functions: {}",
message
)))
})?;
// Register GDB JIT images; initialize profiler and load the wasm module.
let dbg_jit_registration = if artifacts.native_debug_info_present {
let bytes = create_dbg_image(
artifacts.obj.to_vec(),
code_range,
&artifacts.module,
&finished_functions,
)?;
profiler.module_load(&artifacts.module, &finished_functions, Some(&bytes));
let reg = GdbJitImageRegistration::register(bytes);
Some(reg)
} else {
profiler.module_load(&artifacts.module, &finished_functions, None);
None
};
let finished_functions = FinishedFunctions(finished_functions);
Ok(Self {
module: Arc::new(artifacts.module.clone()),
artifacts,
code: Arc::new(ModuleCode {
code_memory,
dbg_jit_registration,
}),
finished_functions,
trampolines,
})
}
/// Crate an `Instance` from this `CompiledModule`.
///
/// Note that if only one instance of this module is needed, it may be more
/// efficient to call the top-level `instantiate`, since that avoids copying
/// the data initializers.
///
/// # Unsafety
///
/// See `InstanceHandle::new`
pub unsafe fn instantiate(
&self,
imports: Imports<'_>,
lookup_shared_signature: &dyn Fn(SignatureIndex) -> VMSharedSignatureIndex,
mem_creator: Option<&dyn RuntimeMemoryCreator>,
interrupts: *const VMInterrupts,
host_state: Box<dyn Any>,
externref_activations_table: *mut VMExternRefActivationsTable,
stack_map_registry: *mut StackMapRegistry,
) -> Result<InstanceHandle, InstantiationError> {
InstanceHandle::new(
self.module.clone(),
&self.finished_functions.0,
imports,
mem_creator,
lookup_shared_signature,
host_state,
interrupts,
externref_activations_table,
stack_map_registry,
)
}
/// Extracts `CompilationArtifacts` from the compiled module.
pub fn compilation_artifacts(&self) -> &CompilationArtifacts {
&self.artifacts
}
/// Returns data initializers to pass to `InstanceHandle::initialize`
pub fn data_initializers(&self) -> Vec<DataInitializer<'_>> {
self.artifacts
.data_initializers
.iter()
.map(|init| DataInitializer {
location: init.location.clone(),
data: &*init.data,
})
.collect()
}
/// Return a reference-counting pointer to a module.
pub fn module(&self) -> &Arc<Module> {
&self.module
}
/// Return a reference to a mutable module (if possible).
pub fn module_mut(&mut self) -> Option<&mut Module> {
Arc::get_mut(&mut self.module)
}
/// Returns the map of all finished JIT functions compiled for this module
pub fn finished_functions(&self) -> &PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]> {
&self.finished_functions.0
}
/// Returns the per-signature trampolines for this module.
pub fn trampolines(&self) -> &PrimaryMap<SignatureIndex, VMTrampoline> {
&self.trampolines
}
/// Returns the stack map information for all functions defined in this
/// module.
///
/// The iterator returned iterates over the span of the compiled function in
/// memory with the stack maps associated with those bytes.
pub fn stack_maps(
&self,
) -> impl Iterator<Item = (*mut [VMFunctionBody], &[StackMapInformation])> {
self.finished_functions().values().copied().zip(
self.artifacts
.funcs
.values()
.map(|f| f.stack_maps.as_slice()),
)
}
/// Iterates over all functions in this module, returning information about
/// how to decode traps which happen in the function.
pub fn trap_information(
&self,
) -> impl Iterator<
Item = (
DefinedFuncIndex,
*mut [VMFunctionBody],
&[TrapInformation],
&FunctionAddressMap,
),
> {
self.finished_functions()
.iter()
.zip(self.artifacts.funcs.values())
.map(|((i, alloc), func)| (i, *alloc, func.traps.as_slice(), &func.address_map))
}
/// Returns all ranges convered by JIT code.
pub fn jit_code_ranges<'a>(&'a self) -> impl Iterator<Item = (usize, usize)> + 'a {
self.code.code_memory.published_ranges()
}
/// Returns module's JIT code.
pub fn code(&self) -> &Arc<ModuleCode> {
&self.code
}
/// Creates a new symbolication context which can be used to further
/// symbolicate stack traces.
///
/// Basically this makes a thing which parses debuginfo and can tell you
/// what filename and line number a wasm pc comes from.
pub fn symbolize_context(&self) -> Result<Option<SymbolizeContext>, gimli::Error> {
use gimli::EndianSlice;
let info = match &self.artifacts.debug_info {
Some(info) => info,
None => return Ok(None),
};
// For now we clone the data into the `SymbolizeContext`, but if this
// becomes prohibitive we could always `Arc` it with our own allocation
// here.
let data = info.data.clone();
let endian = gimli::LittleEndian;
let cx = addr2line::Context::from_sections(
EndianSlice::new(&data[info.debug_abbrev.clone()], endian).into(),
EndianSlice::new(&data[info.debug_addr.clone()], endian).into(),
EndianSlice::new(&data[info.debug_info.clone()], endian).into(),
EndianSlice::new(&data[info.debug_line.clone()], endian).into(),
EndianSlice::new(&data[info.debug_line_str.clone()], endian).into(),
EndianSlice::new(&data[info.debug_ranges.clone()], endian).into(),
EndianSlice::new(&data[info.debug_rnglists.clone()], endian).into(),
EndianSlice::new(&data[info.debug_str.clone()], endian).into(),
EndianSlice::new(&data[info.debug_str_offsets.clone()], endian).into(),
EndianSlice::new(&[], endian),
)?;
Ok(Some(SymbolizeContext {
// See comments on `SymbolizeContext` for why we do this static
// lifetime promotion.
inner: unsafe {
std::mem::transmute::<Addr2LineContext<'_>, Addr2LineContext<'static>>(cx)
},
code_section_offset: info.code_section_offset,
_data: data,
}))
}
/// Returns whether the original wasm module had unparsed debug information
/// based on the tunables configuration.
pub fn has_unparsed_debuginfo(&self) -> bool {
self.artifacts.has_unparsed_debuginfo
}
}
type Addr2LineContext<'a> = addr2line::Context<gimli::EndianSlice<'a, gimli::LittleEndian>>;
/// A context which contains dwarf debug information to translate program
/// counters back to filenames and line numbers.
pub struct SymbolizeContext {
// Note the `'static` lifetime on `inner`. That's actually a bunch of slices
// which point back into the `_data` field. We currently unsafely manage
// this by saying that when inside the struct it's `'static` (since we own
// the referenced data just next to it) and we only loan out borrowed
// references.
_data: Box<[u8]>,
inner: Addr2LineContext<'static>,
code_section_offset: u64,
}
impl SymbolizeContext {
/// Returns access to the [`addr2line::Context`] which can be used to query
/// frame information with.
pub fn addr2line(&self) -> &Addr2LineContext<'_> {
// Here we demote our synthetic `'static` lifetime which doesn't
// actually exist back to a lifetime that's tied to `&self`, which
// should be safe.
unsafe {
std::mem::transmute::<&Addr2LineContext<'static>, &Addr2LineContext<'_>>(&self.inner)
}
}
/// Returns the offset of the code section in the original wasm file, used
/// to calculate lookup values into the DWARF.
pub fn code_section_offset(&self) -> u64 {
self.code_section_offset
}
}
/// Similar to `DataInitializer`, but owns its own copy of the data rather
/// than holding a slice of the original module.
#[derive(Clone, Serialize, Deserialize)]
pub struct OwnedDataInitializer {
/// The location where the initialization is to be performed.
location: DataInitializerLocation,
/// The initialization data.
data: Box<[u8]>,
}
impl OwnedDataInitializer {
fn new(borrowed: DataInitializer<'_>) -> Self {
Self {
location: borrowed.location.clone(),
data: borrowed.data.to_vec().into_boxed_slice(),
}
}
}
fn create_dbg_image(
obj: Vec<u8>,
code_range: (*const u8, usize),
module: &Module,
finished_functions: &PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
) -> Result<Vec<u8>, SetupError> {
let funcs = finished_functions
.values()
.map(|allocated: &*mut [VMFunctionBody]| (*allocated) as *const u8)
.collect::<Vec<_>>();
create_gdbjit_image(obj, code_range, module.num_imported_funcs, &funcs)
.map_err(SetupError::DebugInfo)
}
fn build_code_memory(
isa: &dyn TargetIsa,
obj: &[u8],
module: &Module,
unwind_info: &Box<[ObjectUnwindInfo]>,
) -> Result<
(
CodeMemory,
(*const u8, usize),
PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
PrimaryMap<SignatureIndex, VMTrampoline>,
),
String,
> {
let obj = ObjectFile::parse(obj).map_err(|_| "Unable to read obj".to_string())?;
let mut code_memory = CodeMemory::new();
let allocation = code_memory.allocate_for_object(&obj, unwind_info)?;
// Second, create a PrimaryMap from result vector of pointers.
let mut finished_functions = PrimaryMap::new();
for (i, fat_ptr) in allocation.funcs() {
let fat_ptr: *mut [VMFunctionBody] = fat_ptr;
assert_eq!(
Some(finished_functions.push(fat_ptr)),
module.defined_func_index(i)
);
}
let mut trampolines = PrimaryMap::new();
for (i, fat_ptr) in allocation.trampolines() {
let fat_ptr =
unsafe { std::mem::transmute::<*const VMFunctionBody, VMTrampoline>(fat_ptr.as_ptr()) };
assert_eq!(trampolines.push(fat_ptr), i);
}
let code_range = allocation.code_range();
link_module(&obj, &module, code_range, &finished_functions);
let code_range = (code_range.as_ptr(), code_range.len());
// Make all code compiled thus far executable.
code_memory.publish(isa);
Ok((code_memory, code_range, finished_functions, trampolines))
}
impl From<DebugInfoData<'_>> for DebugInfo {
fn from(raw: DebugInfoData<'_>) -> DebugInfo {
use gimli::Section;
let mut data = Vec::new();
let mut push = |section: &[u8]| {
data.extend_from_slice(section);
data.len() - section.len()..data.len()
};
let debug_abbrev = push(raw.dwarf.debug_abbrev.reader().slice());
let debug_addr = push(raw.dwarf.debug_addr.reader().slice());
let debug_info = push(raw.dwarf.debug_info.reader().slice());
let debug_line = push(raw.dwarf.debug_line.reader().slice());
let debug_line_str = push(raw.dwarf.debug_line_str.reader().slice());
let debug_ranges = push(raw.debug_ranges.reader().slice());
let debug_rnglists = push(raw.debug_rnglists.reader().slice());
let debug_str = push(raw.dwarf.debug_str.reader().slice());
let debug_str_offsets = push(raw.dwarf.debug_str_offsets.reader().slice());
DebugInfo {
data: data.into(),
debug_abbrev,
debug_addr,
debug_info,
debug_line,
debug_line_str,
debug_ranges,
debug_rnglists,
debug_str,
debug_str_offsets,
code_section_offset: raw.wasm_file.code_section_offset,
}
}
}