Files
wasmtime/lib/execute/src/invoke.rs
2018-12-08 21:00:42 -05:00

233 lines
8.0 KiB
Rust

//! Support for invoking wasm functions from outside a wasm module.
use action::{ActionError, ActionOutcome, RuntimeValue};
use code::Code;
use cranelift_codegen::ir::InstBuilder;
use cranelift_codegen::{binemit, ir, isa, Context};
use cranelift_entity::EntityRef;
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
use cranelift_wasm::FuncIndex;
use instance::Instance;
use signalhandlers::{ensure_eager_signal_handlers, ensure_full_signal_handlers, TrapContext};
use std::mem;
use std::ptr;
use std::vec::Vec;
use traphandlers::call_wasm;
use vmcontext::{VMContext, VMFunctionBody};
use wasmtime_environ::{CompileError, Export, Module, RelocSink};
/// Calls the given named function, passing its return values and returning
/// its results.
pub fn invoke(
code: &mut Code,
isa: &isa::TargetIsa,
module: &Module,
instance: &mut Instance,
function: &str,
args: &[RuntimeValue],
) -> Result<ActionOutcome, ActionError> {
let fn_index = match module.exports.get(function) {
Some(Export::Function(index)) => *index,
Some(_) => {
return Err(ActionError::Kind(format!(
"exported item \"{}\" is not a function",
function
)))
}
None => {
return Err(ActionError::Field(format!(
"no export named \"{}\"",
function
)))
}
};
invoke_by_index(code, isa, module, instance, fn_index, args)
}
/// Invoke the WebAssembly start function of the instance, if one is present.
pub fn invoke_start_function(
code: &mut Code,
isa: &isa::TargetIsa,
module: &Module,
instance: &mut Instance,
) -> Result<ActionOutcome, ActionError> {
if let Some(start_index) = module.start_func {
invoke_by_index(code, isa, module, instance, start_index, &[])
} else {
// No start function, just return nothing.
Ok(ActionOutcome::Returned { values: vec![] })
}
}
/// Calls the given indexed function, passing its return values and returning
/// its results.
pub fn invoke_by_index(
code: &mut Code,
isa: &isa::TargetIsa,
module: &Module,
instance: &mut Instance,
fn_index: FuncIndex,
args: &[RuntimeValue],
) -> Result<ActionOutcome, ActionError> {
let exec_code_buf = match module.defined_func_index(fn_index) {
Some(def_fn_index) => instance
.get_allocated_function(def_fn_index)
.ok_or_else(|| ActionError::Index(def_fn_index.index() as u64))?
.as_ptr(),
None => instance
.get_imported_function(fn_index)
.ok_or_else(|| ActionError::Index(fn_index.index() as u64))?,
};
let sig = &module.signatures[module.functions[fn_index]];
// TODO: Move this out to be done once per thread rather than per call.
let mut traps = TrapContext {
triedToInstallSignalHandlers: false,
haveSignalHandlers: false,
};
// Rather than writing inline assembly to jump to the code region, we use the fact that
// the Rust ABI for calling a function with no arguments and no return values matches the one
// of the generated code. Thanks to this, we can transmute the code region into a first-class
// Rust function and call it.
// Ensure that our signal handlers are ready for action.
ensure_eager_signal_handlers();
ensure_full_signal_handlers(&mut traps);
if !traps.haveSignalHandlers {
return Err(ActionError::Resource(
"failed to install signal handlers".to_string(),
));
}
call_through_wrapper(code, isa, exec_code_buf, instance, args, &sig)
}
fn call_through_wrapper(
code: &mut Code,
isa: &isa::TargetIsa,
callee: *const VMFunctionBody,
instance: &mut Instance,
args: &[RuntimeValue],
sig: &ir::Signature,
) -> Result<ActionOutcome, ActionError> {
let vmctx = instance.vmctx() as *mut VMContext;
for (index, value) in args.iter().enumerate() {
assert_eq!(value.value_type(), sig.params[index].value_type);
}
let wrapper_sig = ir::Signature::new(isa.frontend_config().default_call_conv);
let mut context = Context::new();
context.func = ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wrapper_sig);
let value_size = 8;
let mut results_vec = Vec::new();
results_vec.resize(sig.returns.len(), 0i64);
let mut fn_builder_ctx = FunctionBuilderContext::new();
{
let mut builder = FunctionBuilder::new(&mut context.func, &mut fn_builder_ctx);
let block0 = builder.create_ebb();
builder.append_ebb_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
let mut callee_args = Vec::new();
let pointer_type = isa.pointer_type();
let callee_value = builder.ins().iconst(pointer_type, callee as i64);
for value in args {
match value {
RuntimeValue::I32(i) => {
callee_args.push(builder.ins().iconst(ir::types::I32, i64::from(*i)))
}
RuntimeValue::I64(i) => callee_args.push(builder.ins().iconst(ir::types::I64, *i)),
RuntimeValue::F32(i) => callee_args.push(
builder
.ins()
.f32const(ir::immediates::Ieee32::with_bits(*i)),
),
RuntimeValue::F64(i) => callee_args.push(
builder
.ins()
.f64const(ir::immediates::Ieee64::with_bits(*i)),
),
}
}
let vmctx_value = builder.ins().iconst(pointer_type, vmctx as i64);
callee_args.push(vmctx_value);
let new_sig = builder.import_signature(sig.clone());
// TODO: It's possible to make this a direct call. We just need Cranelift
// to support functions declared with an immediate integer address.
let call = builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
let results = builder.func.dfg.inst_results(call).to_vec();
let results_vec_value = builder
.ins()
.iconst(pointer_type, results_vec.as_ptr() as i64);
let mut mflags = ir::MemFlags::new();
mflags.set_notrap();
mflags.set_aligned();
for (i, r) in results.iter().enumerate() {
builder
.ins()
.store(mflags, *r, results_vec_value, (i * value_size) as i32);
}
builder.ins().return_(&[]);
}
let mut code_buf: Vec<u8> = Vec::new();
let mut reloc_sink = RelocSink::new();
let mut trap_sink = binemit::NullTrapSink {};
context
.compile_and_emit(isa, &mut code_buf, &mut reloc_sink, &mut trap_sink)
.map_err(|error| ActionError::Compile(CompileError::Codegen(error)))?;
assert!(reloc_sink.func_relocs.is_empty());
let exec_code_buf = code
.allocate_copy_of_byte_slice(&code_buf)
.map_err(ActionError::Resource)?
.as_ptr();
code.publish();
let func: fn() = unsafe { mem::transmute(exec_code_buf) };
Ok(match call_wasm(func) {
Ok(()) => {
let mut values = Vec::with_capacity(sig.returns.len());
for (index, abi_param) in sig.returns.iter().enumerate() {
let v = unsafe {
let ptr = results_vec.as_ptr().add(index * value_size);
match abi_param.value_type {
ir::types::I32 => RuntimeValue::I32(ptr::read(ptr as *const i32)),
ir::types::I64 => RuntimeValue::I64(ptr::read(ptr as *const i64)),
ir::types::F32 => RuntimeValue::F32(ptr::read(ptr as *const u32)),
ir::types::F64 => RuntimeValue::F64(ptr::read(ptr as *const u64)),
other => panic!("unsupported value type {:?}", other),
}
};
values.push(v);
}
ActionOutcome::Returned { values }
}
Err(message) => ActionOutcome::Trapped { message },
})
}