These sign bit manipulations need to use a -0.0 floating point constant which we didn't have a way of materializing previously. Add a ieee32.bits(0x...) syntax to the Python AST nodes that creates am f32 immediate value with the exact requested bitwise representation.
64 lines
1.1 KiB
Plaintext
64 lines
1.1 KiB
Plaintext
; Test basic code generation for f64 arithmetic WebAssembly instructions.
|
|
test compile
|
|
|
|
set is_64bit=1
|
|
isa intel haswell
|
|
|
|
; Constants.
|
|
|
|
function %f64_const() -> f64 {
|
|
ebb0:
|
|
v1 = f64const 0x3.0
|
|
return v1
|
|
}
|
|
|
|
; Unary operations
|
|
|
|
function %f64_abs(f64) -> f64 {
|
|
ebb0(v0: f64):
|
|
v1 = fabs v0
|
|
return v1
|
|
}
|
|
|
|
function %f64_neg(f64) -> f64 {
|
|
ebb0(v0: f64):
|
|
v1 = fneg v0
|
|
return v1
|
|
}
|
|
|
|
; function %f64_sqrt(f64) -> f64
|
|
; function %f64_ceil(f64) -> f64
|
|
; function %f64_floor(f64) -> f64
|
|
; function %f64_trunc(f64) -> f64
|
|
; function %f64_nearest (f64) -> f64
|
|
|
|
; Binary Operations
|
|
|
|
function %f64_add(f64, f64) -> f64 {
|
|
ebb0(v0: f64, v1: f64):
|
|
v2 = fadd v0, v1
|
|
return v2
|
|
}
|
|
|
|
function %f64_sub(f64, f64) -> f64 {
|
|
ebb0(v0: f64, v1: f64):
|
|
v2 = fsub v0, v1
|
|
return v2
|
|
}
|
|
|
|
function %f64_mul(f64, f64) -> f64 {
|
|
ebb0(v0: f64, v1: f64):
|
|
v2 = fmul v0, v1
|
|
return v2
|
|
}
|
|
|
|
function %f64_div(f64, f64) -> f64 {
|
|
ebb0(v0: f64, v1: f64):
|
|
v2 = fdiv v0, v1
|
|
return v2
|
|
}
|
|
|
|
; function %f64_min(f64, f64) -> f64
|
|
; function %f64_max(f64, f64) -> f64
|
|
; function %f64_copysign(f64, f64) -> f64
|