Files
wasmtime/tests/arrays.rs
Alex Crichton ca9f33b6d9 Rewrite for recursive safety
This commit rewrites the runtime crate to provide safety in the face
of recursive calls to the guest. The basic principle is that
`GuestMemory` is now a trait which dynamically returns the
pointer/length pair. This also has an implicit contract (hence the
`unsafe` trait) that the pointer/length pair point to a valid list of
bytes in host memory "until something is reentrant".

After this changes the various suite of `Guest*` types were rewritten.
`GuestRef` and `GuestRefMut` were both removed since they cannot safely
exist. The `GuestPtrMut` type was removed for simplicity, and the final
`GuestPtr` type subsumes `GuestString` and `GuestArray`. This means
that there's only one guest pointer type, `GuestPtr<'a, T>`, where `'a`
is the borrow into host memory, basically borrowing the `GuestMemory`
trait object itself.

Some core utilities are exposed on `GuestPtr`, but they're all 100%
safe. Unsafety is now entirely contained within a few small locations:

* Implementations of the `GuestType` for primitive types (e.g. `i8`,
  `u8`, etc) use `unsafe` to read/write memory. The `unsafe` trait of
  `GuestMemory` though should prove that they're safe.

* `GuestPtr<'_, str>` has a method which validates utf-8 contents, and
  this requires `unsafe` internally to read all the bytes. This is
  guaranteed to be safe however given the contract of `GuestMemory`.

And that's it! Everything else is a bunch of safe combinators all built
up on the various utilities provided by `GuestPtr`. The general idioms
are roughly the same as before, with various tweaks here and there. A
summary of expected idioms are:

* For small values you'd `.read()` or `.write()` very quickly. You'd
  pass around the type itself.

* For strings, you'd pass `GuestPtr<'_, str>` down to the point where
  it's actually consumed. At that moment you'd either decide to copy it
  out (a safe operation) or you'd get a raw view to the string (an
  unsafe operation) and assert that you won't call back into wasm while
  you're holding that pointer.

* Arrays are similar to strings, passing around `GuestPtr<'_, [T]>`.
  Arrays also have a `iter()` method which yields an iterator of
  `GuestPtr<'_, T>` for convenience.

Overall there's still a lot of missing documentation on the runtime
crate specifically around the safety of the `GuestMemory` trait as well
as how the utilities/methods are expected to be used. Additionally
there's utilities which aren't currently implemented which would be easy
to implement. For example there's no method to copy out a string or a
slice, although that would be pretty easy to add.

In any case I'm curious to get feedback on this approach and see what
y'all think!
2020-03-04 10:26:47 -08:00

211 lines
6.7 KiB
Rust

use proptest::prelude::*;
use wiggle_runtime::{GuestError, GuestMemory, GuestPtr};
use wiggle_test::{impl_errno, HostMemory, MemArea, WasiCtx};
wiggle::from_witx!({
witx: ["tests/arrays.witx"],
ctx: WasiCtx,
});
impl_errno!(types::Errno);
impl arrays::Arrays for WasiCtx {
fn reduce_excuses(
&self,
excuses: &types::ConstExcuseArray,
) -> Result<types::Excuse, types::Errno> {
let last = &excuses
.iter()
.last()
.expect("input array is non-empty")
.expect("valid ptr to ptr")
.read()
.expect("valid ptr to some Excuse value");
Ok(last.read().expect("dereferencing ptr should succeed"))
}
fn populate_excuses(&self, excuses: &types::ExcuseArray) -> Result<(), types::Errno> {
for excuse in excuses.iter() {
let ptr_to_excuse = excuse
.expect("valid ptr to ptr")
.read()
.expect("valid ptr to some Excuse value");
ptr_to_excuse
.write(types::Excuse::Sleeping)
.expect("dereferencing mut ptr should succeed");
}
Ok(())
}
}
#[derive(Debug)]
struct ReduceExcusesExcercise {
excuse_values: Vec<types::Excuse>,
excuse_ptr_locs: Vec<MemArea>,
array_ptr_loc: MemArea,
return_ptr_loc: MemArea,
}
impl ReduceExcusesExcercise {
pub fn strat() -> BoxedStrategy<Self> {
(1..256u32)
.prop_flat_map(|len| {
let len_usize = len as usize;
(
proptest::collection::vec(excuse_strat(), len_usize..=len_usize),
proptest::collection::vec(HostMemory::mem_area_strat(4), len_usize..=len_usize),
HostMemory::mem_area_strat(4 * len),
HostMemory::mem_area_strat(4),
)
})
.prop_map(
|(excuse_values, excuse_ptr_locs, array_ptr_loc, return_ptr_loc)| Self {
excuse_values,
excuse_ptr_locs,
array_ptr_loc,
return_ptr_loc,
},
)
.prop_filter("non-overlapping pointers", |e| {
let mut all = vec![&e.array_ptr_loc, &e.return_ptr_loc];
all.extend(e.excuse_ptr_locs.iter());
MemArea::non_overlapping_set(&all)
})
.boxed()
}
pub fn test(&self) {
let mut ctx = WasiCtx::new();
let mut host_memory = HostMemory::new();
// Populate memory with pointers to generated Excuse values
for (&excuse, ptr) in self.excuse_values.iter().zip(self.excuse_ptr_locs.iter()) {
host_memory
.ptr(ptr.ptr)
.write(excuse)
.expect("deref ptr mut to Excuse value");
}
// Populate the array with pointers to generated Excuse values
{
let array: GuestPtr<'_, [GuestPtr<types::Excuse>]> =
host_memory.ptr((self.array_ptr_loc.ptr, self.excuse_ptr_locs.len() as u32));
for (slot, ptr) in array.iter().zip(&self.excuse_ptr_locs) {
let slot = slot.expect("array should be in bounds");
slot.write(host_memory.ptr(ptr.ptr))
.expect("should succeed in writing array");
}
}
let res = arrays::reduce_excuses(
&mut ctx,
&mut host_memory,
self.array_ptr_loc.ptr as i32,
self.excuse_ptr_locs.len() as i32,
self.return_ptr_loc.ptr as i32,
);
assert_eq!(res, types::Errno::Ok.into(), "reduce excuses errno");
let expected = *self
.excuse_values
.last()
.expect("generated vec of excuses should be non-empty");
let given: types::Excuse = host_memory
.ptr(self.return_ptr_loc.ptr)
.read()
.expect("deref ptr to returned value");
assert_eq!(expected, given, "reduce excuses return val");
}
}
proptest! {
#[test]
fn reduce_excuses(e in ReduceExcusesExcercise::strat()) {
e.test()
}
}
fn excuse_strat() -> impl Strategy<Value = types::Excuse> {
prop_oneof![
Just(types::Excuse::DogAte),
Just(types::Excuse::Traffic),
Just(types::Excuse::Sleeping),
]
.boxed()
}
#[derive(Debug)]
struct PopulateExcusesExcercise {
array_ptr_loc: MemArea,
elements: Vec<MemArea>,
}
impl PopulateExcusesExcercise {
pub fn strat() -> BoxedStrategy<Self> {
(1..256u32)
.prop_flat_map(|len| {
let len_usize = len as usize;
(
HostMemory::mem_area_strat(4 * len),
proptest::collection::vec(HostMemory::mem_area_strat(4), len_usize..=len_usize),
)
})
.prop_map(|(array_ptr_loc, elements)| Self {
array_ptr_loc,
elements,
})
.prop_filter("non-overlapping pointers", |e| {
let mut all = vec![&e.array_ptr_loc];
all.extend(e.elements.iter());
MemArea::non_overlapping_set(&all)
})
.boxed()
}
pub fn test(&self) {
let ctx = WasiCtx::new();
let host_memory = HostMemory::new();
// Populate array with valid pointers to Excuse type in memory
let ptr = host_memory.ptr::<[GuestPtr<'_, types::Excuse>]>((
self.array_ptr_loc.ptr,
self.elements.len() as u32,
));
for (ptr, val) in ptr.iter().zip(&self.elements) {
ptr.expect("should be valid pointer")
.write(host_memory.ptr(val.ptr))
.expect("failed to write value");
}
let res = arrays::populate_excuses(
&ctx,
&host_memory,
self.array_ptr_loc.ptr as i32,
self.elements.len() as i32,
);
assert_eq!(res, types::Errno::Ok.into(), "populate excuses errno");
let arr: GuestPtr<'_, [GuestPtr<'_, types::Excuse>]> =
host_memory.ptr((self.array_ptr_loc.ptr, self.elements.len() as u32));
for el in arr.iter() {
let ptr_to_ptr = el
.expect("valid ptr to ptr")
.read()
.expect("valid ptr to some Excuse value");
assert_eq!(
ptr_to_ptr
.read()
.expect("dereferencing ptr to some Excuse value"),
types::Excuse::Sleeping,
"element should equal Excuse::Sleeping"
);
}
}
}
proptest! {
#[test]
fn populate_excuses(e in PopulateExcusesExcercise::strat()) {
e.test()
}
}