Files
wasmtime/fuzz/fuzz_targets/differential_meta.rs
Andrew Brown 5ec92d59d2 [fuzz] Add a meta-differential fuzz target (#4515)
* [fuzz] Add `Module` enum, refactor `ModuleConfig`

This change adds a way to create either a single-instruction module or a
regular (big) `wasm-smith` module. It has some slight refactorings in
preparation for the use of this new code.

* [fuzz] Add `DiffValue` for differential evaluation

In order to evaluate functions with randomly-generated values, we needed
a common way to generate these values. Using the Wasmtime `Val` type is
not great because we would like to be able to implement various traits
on the new value type, e.g., to convert `Into` and `From` boxed values
of other engines we differentially fuzz against. This new type,
`DiffValue`, gives us a common ground for all the conversions and
comparisons between the other engine types.

* [fuzz] Add interface for differential engines

In order to randomly choose an engine to fuzz against, we expect all of
the engines to meet a common interface. The traits in this commit allow
us to instantiate a module from its binary form, evaluate exported
functions, and (possibly) hash the exported items of the instance.

This change has some missing pieces, though:
 - the `wasm-spec-interpreter` needs some work to be able to create
   instances, evaluate a function by name, and expose exported items
 - the `v8` engine is not implemented yet due to the complexity of its
   Rust lifetimes

* [fuzz] Use `ModuleFeatures` instead of existing configuration

When attempting to use both wasm-smith and single-instruction modules,
there is a mismatch in how we communicate what an engine must be able to
support. In the first case, we could use the `ModuleConfig`, a wrapper
for wasm-smith's `SwarmConfig`, but single-instruction modules do not
have a `SwarmConfig`--the many options simply don't apply. Here, we
instead add `ModuleFeatures` and adapt a `ModuleConfig` to that.
`ModuleFeatures` then becomes the way to communicate what features an
engine must support to evaluate functions in a module.

* [fuzz] Add a new fuzz target using the meta-differential oracle

This change adds the `differential_meta` target to the list of fuzz
targets. I expect that sometime soon this could replace the other
`differential*` targets, as it almost checks all the things those check.
The major missing piece is that currently it only chooses
single-instruction modules instead of also generating arbitrary modules
using `wasm-smith`.

Also, this change adds the concept of an ignorable error: some
differential engines will choke with certain inputs (e.g., `wasmi` might
have an old opcode mapping) which we do not want to flag as fuzz bugs.
Here we wrap those errors in `DiffIgnoreError` and then use a new helper
trait, `DiffIgnorable`, to downcast and inspect the `anyhow` error to
only panic on non-ignorable errors; the ignorable errors are converted
to one of the `arbitrary::Error` variants, which we already ignore.

* [fuzz] Compare `DiffValue` NaNs more leniently

Because arithmetic NaNs can contain arbitrary payload bits, checking
that two differential executions should produce the same result should
relax the comparison of the `F32` and `F64` types (and eventually `V128`
as well... TODO). This change adds several considerations, however, so
that in the future we make the comparison a bit stricter, e.g., re:
canonical NaNs. This change, however, just matches the current logic
used by other fuzz targets.

* review: allow hashing mutate the instance state

@alexcrichton requested that the interface be adapted to accommodate
Wasmtime's API, in which even reading from an instance could trigger
mutation of the store.

* review: refactor where configurations are made compatible

See @alexcrichton's
[suggestion](https://github.com/bytecodealliance/wasmtime/pull/4515#discussion_r928974376).

* review: convert `DiffValueType` using `TryFrom`

See @alexcrichton's
[comment](https://github.com/bytecodealliance/wasmtime/pull/4515#discussion_r928962394).

* review: adapt target implementation to Wasmtime-specific RHS

This change is joint work with @alexcrichton to adapt the structure of
the fuzz target to his comments
[here](https://github.com/bytecodealliance/wasmtime/pull/4515#pullrequestreview-1073247791).

This change:
- removes `ModuleFeatures` and the `Module` enum (for big and small
  modules)
- upgrades `SingleInstModule` to filter out cases that are not valid for
  a given `ModuleConfig`
- adds `DiffEngine::name()`
- constructs each `DiffEngine` using a `ModuleConfig`, eliminating
  `DiffIgnoreError` completely
- prints an execution rate to the `differential_meta` target

Still TODO:
- `get_exported_function_signatures` could be re-written in terms of the
  Wasmtime API instead `wasmparser`
- the fuzzer crashes eventually, we think due to the signal handler
  interference between OCaml and Wasmtime
- the spec interpreter has several cases that we skip for now but could
  be fuzzed with further work

Co-authored-by: Alex Crichton <alex@alexcrichton.com>

* fix: avoid SIGSEGV by explicitly initializing OCaml runtime first

* review: use Wasmtime's API to retrieve exported functions

Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-08-18 19:22:58 -05:00

110 lines
4.1 KiB
Rust

#![no_main]
use libfuzzer_sys::arbitrary::{Result, Unstructured};
use libfuzzer_sys::fuzz_target;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::Once;
use wasmtime_fuzzing::generators::{Config, DiffValue, SingleInstModule};
use wasmtime_fuzzing::oracles::diff_spec;
use wasmtime_fuzzing::oracles::diff_wasmtime::WasmtimeInstance;
use wasmtime_fuzzing::oracles::{differential, engine, log_wasm};
// Upper limit on the number of invocations for each WebAssembly function
// executed by this fuzz target.
const NUM_INVOCATIONS: usize = 5;
// Keep track of how many WebAssembly modules we actually executed (i.e. ran to
// completion) versus how many were tried.
static TOTAL_INVOCATIONS: AtomicUsize = AtomicUsize::new(0);
static TOTAL_SUCCESSES: AtomicUsize = AtomicUsize::new(0);
static TOTAL_ATTEMPTED: AtomicUsize = AtomicUsize::new(0);
// The spec interpreter requires special one-time setup.
static SETUP: Once = Once::new();
fuzz_target!(|data: &[u8]| {
// To avoid a uncaught `SIGSEGV` due to signal handlers; see comments on
// `setup_ocaml_runtime`.
SETUP.call_once(|| diff_spec::setup_ocaml_runtime());
// Errors in `run` have to do with not enough input in `data`, which we
// ignore here since it doesn't affect how we'd like to fuzz.
drop(run(&data));
});
fn run(data: &[u8]) -> Result<()> {
let successes = TOTAL_SUCCESSES.load(SeqCst);
let attempts = TOTAL_ATTEMPTED.fetch_add(1, SeqCst);
if attempts > 1 && attempts % 1_000 == 0 {
println!("=== Execution rate ({} successes / {} attempted modules): {}% (total invocations: {}) ===",
successes,
attempts,
successes as f64 / attempts as f64 * 100f64,
TOTAL_INVOCATIONS.load(SeqCst)
);
}
let mut u = Unstructured::new(data);
let mut config: Config = u.arbitrary()?;
config.set_differential_config();
// Generate the Wasm module.
let wasm = if u.arbitrary()? {
// TODO figure out if this always eats up the rest of the unstructured;
// can we limit the number of instructions/functions.
let module = config.generate(&mut u, Some(1000))?;
module.to_bytes()
} else {
let module = SingleInstModule::new(&mut u, &mut config.module_config)?;
module.to_bytes()
};
log_wasm(&wasm);
// Choose a left-hand side Wasm engine.
let lhs = engine::choose(&mut u, &config)?;
let lhs_instance = lhs.instantiate(&wasm);
// Choose a right-hand side Wasm engine--this will always be Wasmtime.
let rhs_store = config.to_store();
let rhs_module = wasmtime::Module::new(rhs_store.engine(), &wasm).unwrap();
let rhs_instance = WasmtimeInstance::new(rhs_store, rhs_module);
// If we fail to instantiate, check that both sides do.
let (mut lhs_instance, mut rhs_instance) = match (lhs_instance, rhs_instance) {
(Ok(l), Ok(r)) => (l, r),
(Err(_), Err(_)) => return Ok(()), // TODO match the error messages.
(l, r) => panic!(
"failed to instantiate only one side: {:?} != {:?}",
l.err(),
r.err()
),
};
// Call each exported function with different sets of arguments.
for (name, signature) in rhs_instance.exported_functions() {
let mut invocations = 0;
loop {
let arguments = signature
.params()
.map(|t| DiffValue::arbitrary_of_type(&mut u, t.try_into().unwrap()))
.collect::<Result<Vec<_>>>()?;
differential(lhs_instance.as_mut(), &mut rhs_instance, &name, &arguments)
.expect("failed to run differential evaluation");
// We evaluate the same function with different arguments until we
// hit a predetermined limit or we run out of unstructured data--it
// does not make sense to re-evaluate the same arguments over and
// over.
invocations += 1;
TOTAL_INVOCATIONS.fetch_add(1, SeqCst);
if invocations > NUM_INVOCATIONS || u.is_empty() {
break;
}
}
}
TOTAL_SUCCESSES.fetch_add(1, SeqCst);
Ok(())
}