Files
wasmtime/cranelift/wasm/src/environ/dummy.rs
Benjamin Bouvier 8a9b1a9025 Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. 

After the suggestion of Chris, `Function` has been split into mostly two parts:

- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.

Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:

- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
  - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
  - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.

The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.

A basic fuzz target has been introduced that tries to do the bare minimum:

- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
  - This last check is less efficient and less likely to happen, so probably should be rethought a bit.

Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.

Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. 

Fixes #4155.
2022-08-12 16:47:43 +00:00

886 lines
27 KiB
Rust

//! "Dummy" implementations of `ModuleEnvironment` and `FuncEnvironment` for testing
//! wasm translation. For complete implementations of `ModuleEnvironment` and
//! `FuncEnvironment`, see [wasmtime-environ] in [Wasmtime].
//!
//! [wasmtime-environ]: https://crates.io/crates/wasmtime-environ
//! [Wasmtime]: https://github.com/bytecodealliance/wasmtime
use crate::environ::{FuncEnvironment, GlobalVariable, ModuleEnvironment, TargetEnvironment};
use crate::func_translator::FuncTranslator;
use crate::state::FuncTranslationState;
use crate::WasmType;
use crate::{
DataIndex, DefinedFuncIndex, ElemIndex, FuncIndex, Global, GlobalIndex, Memory, MemoryIndex,
Table, TableIndex, TypeIndex, WasmFuncType, WasmResult,
};
use core::convert::TryFrom;
use cranelift_codegen::cursor::FuncCursor;
use cranelift_codegen::ir::immediates::{Offset32, Uimm64};
use cranelift_codegen::ir::{self, InstBuilder};
use cranelift_codegen::ir::{types::*, UserFuncName};
use cranelift_codegen::isa::{CallConv, TargetFrontendConfig};
use cranelift_entity::{EntityRef, PrimaryMap, SecondaryMap};
use cranelift_frontend::FunctionBuilder;
use std::boxed::Box;
use std::string::String;
use std::vec::Vec;
use wasmparser::{FuncValidator, FunctionBody, Operator, ValidatorResources, WasmFeatures};
/// A collection of names under which a given entity is exported.
pub struct Exportable<T> {
/// A wasm entity.
pub entity: T,
/// Names under which the entity is exported.
pub export_names: Vec<String>,
}
impl<T> Exportable<T> {
pub fn new(entity: T) -> Self {
Self {
entity,
export_names: Vec::new(),
}
}
}
/// The main state belonging to a `DummyEnvironment`. This is split out from
/// `DummyEnvironment` to allow it to be borrowed separately from the
/// `FuncTranslator` field.
pub struct DummyModuleInfo {
/// Target description relevant to frontends producing Cranelift IR.
config: TargetFrontendConfig,
/// Signatures as provided by `declare_signature`.
pub signatures: PrimaryMap<TypeIndex, ir::Signature>,
/// Module and field names of imported functions as provided by `declare_func_import`.
pub imported_funcs: Vec<(String, String)>,
/// Module and field names of imported globals as provided by `declare_global_import`.
pub imported_globals: Vec<(String, String)>,
/// Module and field names of imported tables as provided by `declare_table_import`.
pub imported_tables: Vec<(String, String)>,
/// Module and field names of imported memories as provided by `declare_memory_import`.
pub imported_memories: Vec<(String, String)>,
/// Functions, imported and local.
pub functions: PrimaryMap<FuncIndex, Exportable<TypeIndex>>,
/// Function bodies.
pub function_bodies: PrimaryMap<DefinedFuncIndex, ir::Function>,
/// Tables as provided by `declare_table`.
pub tables: PrimaryMap<TableIndex, Exportable<Table>>,
/// Memories as provided by `declare_memory`.
pub memories: PrimaryMap<MemoryIndex, Exportable<Memory>>,
/// Globals as provided by `declare_global`.
pub globals: PrimaryMap<GlobalIndex, Exportable<Global>>,
/// The start function.
pub start_func: Option<FuncIndex>,
}
impl DummyModuleInfo {
/// Creates a new `DummyModuleInfo` instance.
pub fn new(config: TargetFrontendConfig) -> Self {
Self {
config,
signatures: PrimaryMap::new(),
imported_funcs: Vec::new(),
imported_globals: Vec::new(),
imported_tables: Vec::new(),
imported_memories: Vec::new(),
functions: PrimaryMap::new(),
function_bodies: PrimaryMap::new(),
tables: PrimaryMap::new(),
memories: PrimaryMap::new(),
globals: PrimaryMap::new(),
start_func: None,
}
}
}
/// State for tracking and checking reachability at each operator. Used for unit testing with the
/// `DummyEnvironment`.
#[derive(Clone)]
pub struct ExpectedReachability {
/// Before- and after-reachability
reachability: Vec<(bool, bool)>,
before_idx: usize,
after_idx: usize,
}
impl ExpectedReachability {
fn check_before(&mut self, reachable: bool) {
assert_eq!(reachable, self.reachability[self.before_idx].0);
self.before_idx += 1;
}
fn check_after(&mut self, reachable: bool) {
assert_eq!(reachable, self.reachability[self.after_idx].1);
self.after_idx += 1;
}
fn check_end(&self) {
assert_eq!(self.before_idx, self.reachability.len());
assert_eq!(self.after_idx, self.reachability.len());
}
}
/// This `ModuleEnvironment` implementation is a "naïve" one, doing essentially nothing and
/// emitting placeholders when forced to. Don't try to execute code translated for this
/// environment, essentially here for translation debug purposes.
pub struct DummyEnvironment {
/// Module information.
pub info: DummyModuleInfo,
/// Function translation.
trans: FuncTranslator,
/// Vector of wasm bytecode size for each function.
pub func_bytecode_sizes: Vec<usize>,
/// Instructs to collect debug data during translation.
debug_info: bool,
/// Name of the module from the wasm file.
pub module_name: Option<String>,
/// Function names.
function_names: SecondaryMap<FuncIndex, String>,
/// Expected reachability data (before/after for each op) to assert. This is used for testing.
expected_reachability: Option<ExpectedReachability>,
}
impl DummyEnvironment {
/// Creates a new `DummyEnvironment` instance.
pub fn new(config: TargetFrontendConfig, debug_info: bool) -> Self {
Self {
info: DummyModuleInfo::new(config),
trans: FuncTranslator::new(),
func_bytecode_sizes: Vec::new(),
debug_info,
module_name: None,
function_names: SecondaryMap::new(),
expected_reachability: None,
}
}
/// Return a `DummyFuncEnvironment` for translating functions within this
/// `DummyEnvironment`.
pub fn func_env(&self) -> DummyFuncEnvironment {
DummyFuncEnvironment::new(&self.info, self.expected_reachability.clone())
}
fn get_func_type(&self, func_index: FuncIndex) -> TypeIndex {
self.info.functions[func_index].entity
}
/// Return the number of imported functions within this `DummyEnvironment`.
pub fn get_num_func_imports(&self) -> usize {
self.info.imported_funcs.len()
}
/// Return the name of the function, if a name for the function with
/// the corresponding index exists.
pub fn get_func_name(&self, func_index: FuncIndex) -> Option<&str> {
self.function_names.get(func_index).map(String::as_ref)
}
/// Test reachability bits before and after every opcode during translation, as provided by the
/// `FuncTranslationState`. This is generally used only for unit tests. This is applied to
/// every function in the module (so is likely only useful for test modules with one function).
pub fn test_expected_reachability(&mut self, reachability: Vec<(bool, bool)>) {
self.expected_reachability = Some(ExpectedReachability {
reachability,
before_idx: 0,
after_idx: 0,
});
}
}
/// The `FuncEnvironment` implementation for use by the `DummyEnvironment`.
pub struct DummyFuncEnvironment<'dummy_environment> {
pub mod_info: &'dummy_environment DummyModuleInfo,
/// Expected reachability data (before/after for each op) to assert. This is used for testing.
expected_reachability: Option<ExpectedReachability>,
}
impl<'dummy_environment> DummyFuncEnvironment<'dummy_environment> {
pub fn new(
mod_info: &'dummy_environment DummyModuleInfo,
expected_reachability: Option<ExpectedReachability>,
) -> Self {
Self {
mod_info,
expected_reachability,
}
}
// Create a signature for `sigidx` amended with a `vmctx` argument after the standard wasm
// arguments.
fn vmctx_sig(&self, sigidx: TypeIndex) -> ir::Signature {
let mut sig = self.mod_info.signatures[sigidx].clone();
sig.params.push(ir::AbiParam::special(
self.pointer_type(),
ir::ArgumentPurpose::VMContext,
));
sig
}
fn reference_type(&self) -> ir::Type {
match self.pointer_type() {
ir::types::I32 => ir::types::R32,
ir::types::I64 => ir::types::R64,
_ => panic!("unsupported pointer type"),
}
}
}
impl<'dummy_environment> TargetEnvironment for DummyFuncEnvironment<'dummy_environment> {
fn target_config(&self) -> TargetFrontendConfig {
self.mod_info.config
}
}
impl<'dummy_environment> FuncEnvironment for DummyFuncEnvironment<'dummy_environment> {
fn make_global(
&mut self,
func: &mut ir::Function,
index: GlobalIndex,
) -> WasmResult<GlobalVariable> {
// Just create a dummy `vmctx` global.
let offset = i32::try_from((index.index() * 8) + 8).unwrap().into();
let vmctx = func.create_global_value(ir::GlobalValueData::VMContext {});
Ok(GlobalVariable::Memory {
gv: vmctx,
offset,
ty: match self.mod_info.globals[index].entity.wasm_ty {
WasmType::I32 => ir::types::I32,
WasmType::I64 => ir::types::I64,
WasmType::F32 => ir::types::F32,
WasmType::F64 => ir::types::F64,
WasmType::V128 => ir::types::I8X16,
WasmType::FuncRef | WasmType::ExternRef => ir::types::R64,
},
})
}
fn make_heap(&mut self, func: &mut ir::Function, _index: MemoryIndex) -> WasmResult<ir::Heap> {
// Create a static heap whose base address is stored at `vmctx+0`.
let addr = func.create_global_value(ir::GlobalValueData::VMContext);
let gv = func.create_global_value(ir::GlobalValueData::Load {
base: addr,
offset: Offset32::new(0),
global_type: self.pointer_type(),
readonly: true,
});
Ok(func.create_heap(ir::HeapData {
base: gv,
min_size: 0.into(),
offset_guard_size: 0x8000_0000.into(),
style: ir::HeapStyle::Static {
bound: 0x1_0000_0000.into(),
},
index_type: I32,
}))
}
fn make_table(&mut self, func: &mut ir::Function, _index: TableIndex) -> WasmResult<ir::Table> {
// Create a table whose base address is stored at `vmctx+0`.
let vmctx = func.create_global_value(ir::GlobalValueData::VMContext);
let base_gv = func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: Offset32::new(0),
global_type: self.pointer_type(),
readonly: true, // when tables in wasm become "growable", revisit whether this can be readonly or not.
});
let bound_gv = func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: Offset32::new(0),
global_type: I32,
readonly: true,
});
Ok(func.create_table(ir::TableData {
base_gv,
min_size: Uimm64::new(0),
bound_gv,
element_size: Uimm64::from(u64::from(self.pointer_bytes()) * 2),
index_type: I32,
}))
}
fn make_indirect_sig(
&mut self,
func: &mut ir::Function,
index: TypeIndex,
) -> WasmResult<ir::SigRef> {
// A real implementation would probably change the calling convention and add `vmctx` and
// signature index arguments.
Ok(func.import_signature(self.vmctx_sig(index)))
}
fn make_direct_func(
&mut self,
func: &mut ir::Function,
index: FuncIndex,
) -> WasmResult<ir::FuncRef> {
let sigidx = self.mod_info.functions[index].entity;
// A real implementation would probably add a `vmctx` argument.
// And maybe attempt some signature de-duplication.
let signature = func.import_signature(self.vmctx_sig(sigidx));
let name =
ir::ExternalName::User(func.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: index.as_u32(),
}));
Ok(func.import_function(ir::ExtFuncData {
name,
signature,
colocated: false,
}))
}
fn before_translate_operator(
&mut self,
_op: &Operator,
_builder: &mut FunctionBuilder,
state: &FuncTranslationState,
) -> WasmResult<()> {
if let Some(ref mut r) = &mut self.expected_reachability {
r.check_before(state.reachable());
}
Ok(())
}
fn after_translate_operator(
&mut self,
_op: &Operator,
_builder: &mut FunctionBuilder,
state: &FuncTranslationState,
) -> WasmResult<()> {
if let Some(ref mut r) = &mut self.expected_reachability {
r.check_after(state.reachable());
}
Ok(())
}
fn after_translate_function(
&mut self,
_builder: &mut FunctionBuilder,
_state: &FuncTranslationState,
) -> WasmResult<()> {
if let Some(ref mut r) = &mut self.expected_reachability {
r.check_end();
}
Ok(())
}
fn translate_call_indirect(
&mut self,
builder: &mut FunctionBuilder,
_table_index: TableIndex,
_table: ir::Table,
_sig_index: TypeIndex,
sig_ref: ir::SigRef,
callee: ir::Value,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
// Pass the current function's vmctx parameter on to the callee.
let vmctx = builder
.func
.special_param(ir::ArgumentPurpose::VMContext)
.expect("Missing vmctx parameter");
// The `callee` value is an index into a table of function pointers.
// Apparently, that table is stored at absolute address 0 in this dummy environment.
// TODO: Generate bounds checking code.
let ptr = self.pointer_type();
let callee_offset = if ptr == I32 {
builder.ins().imul_imm(callee, 4)
} else {
let ext = builder.ins().uextend(I64, callee);
builder.ins().imul_imm(ext, 4)
};
let mflags = ir::MemFlags::trusted();
let func_ptr = builder.ins().load(ptr, mflags, callee_offset, 0);
// Build a value list for the indirect call instruction containing the callee, call_args,
// and the vmctx parameter.
let mut args = ir::ValueList::default();
args.push(func_ptr, &mut builder.func.dfg.value_lists);
args.extend(call_args.iter().cloned(), &mut builder.func.dfg.value_lists);
args.push(vmctx, &mut builder.func.dfg.value_lists);
Ok(builder
.ins()
.CallIndirect(ir::Opcode::CallIndirect, INVALID, sig_ref, args)
.0)
}
fn translate_call(
&mut self,
mut pos: FuncCursor,
_callee_index: FuncIndex,
callee: ir::FuncRef,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
// Pass the current function's vmctx parameter on to the callee.
let vmctx = pos
.func
.special_param(ir::ArgumentPurpose::VMContext)
.expect("Missing vmctx parameter");
// Build a value list for the call instruction containing the call_args and the vmctx
// parameter.
let mut args = ir::ValueList::default();
args.extend(call_args.iter().cloned(), &mut pos.func.dfg.value_lists);
args.push(vmctx, &mut pos.func.dfg.value_lists);
Ok(pos.ins().Call(ir::Opcode::Call, INVALID, callee, args).0)
}
fn translate_memory_grow(
&mut self,
mut pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
_val: ir::Value,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn translate_memory_size(
&mut self,
mut pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn translate_memory_copy(
&mut self,
_pos: FuncCursor,
_src_index: MemoryIndex,
_src_heap: ir::Heap,
_dst_index: MemoryIndex,
_dst_heap: ir::Heap,
_dst: ir::Value,
_src: ir::Value,
_len: ir::Value,
) -> WasmResult<()> {
Ok(())
}
fn translate_memory_fill(
&mut self,
_pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
_dst: ir::Value,
_val: ir::Value,
_len: ir::Value,
) -> WasmResult<()> {
Ok(())
}
fn translate_memory_init(
&mut self,
_pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
_seg_index: u32,
_dst: ir::Value,
_src: ir::Value,
_len: ir::Value,
) -> WasmResult<()> {
Ok(())
}
fn translate_data_drop(&mut self, _pos: FuncCursor, _seg_index: u32) -> WasmResult<()> {
Ok(())
}
fn translate_table_size(
&mut self,
mut pos: FuncCursor,
_index: TableIndex,
_table: ir::Table,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn translate_table_grow(
&mut self,
mut pos: FuncCursor,
_table_index: TableIndex,
_table: ir::Table,
_delta: ir::Value,
_init_value: ir::Value,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn translate_table_get(
&mut self,
builder: &mut FunctionBuilder,
_table_index: TableIndex,
_table: ir::Table,
_index: ir::Value,
) -> WasmResult<ir::Value> {
Ok(builder.ins().null(self.reference_type()))
}
fn translate_table_set(
&mut self,
_builder: &mut FunctionBuilder,
_table_index: TableIndex,
_table: ir::Table,
_value: ir::Value,
_index: ir::Value,
) -> WasmResult<()> {
Ok(())
}
fn translate_table_copy(
&mut self,
_pos: FuncCursor,
_dst_index: TableIndex,
_dst_table: ir::Table,
_src_index: TableIndex,
_src_table: ir::Table,
_dst: ir::Value,
_src: ir::Value,
_len: ir::Value,
) -> WasmResult<()> {
Ok(())
}
fn translate_table_fill(
&mut self,
_pos: FuncCursor,
_table_index: TableIndex,
_dst: ir::Value,
_val: ir::Value,
_len: ir::Value,
) -> WasmResult<()> {
Ok(())
}
fn translate_table_init(
&mut self,
_pos: FuncCursor,
_seg_index: u32,
_table_index: TableIndex,
_table: ir::Table,
_dst: ir::Value,
_src: ir::Value,
_len: ir::Value,
) -> WasmResult<()> {
Ok(())
}
fn translate_elem_drop(&mut self, _pos: FuncCursor, _seg_index: u32) -> WasmResult<()> {
Ok(())
}
fn translate_ref_func(
&mut self,
mut pos: FuncCursor,
_func_index: FuncIndex,
) -> WasmResult<ir::Value> {
Ok(pos.ins().null(self.reference_type()))
}
fn translate_custom_global_get(
&mut self,
mut pos: FuncCursor,
_global_index: GlobalIndex,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn translate_custom_global_set(
&mut self,
_pos: FuncCursor,
_global_index: GlobalIndex,
_val: ir::Value,
) -> WasmResult<()> {
Ok(())
}
fn translate_atomic_wait(
&mut self,
mut pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
_addr: ir::Value,
_expected: ir::Value,
_timeout: ir::Value,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn translate_atomic_notify(
&mut self,
mut pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
_addr: ir::Value,
_count: ir::Value,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, 0))
}
fn unsigned_add_overflow_condition(&self) -> ir::condcodes::IntCC {
unimplemented!()
}
}
impl TargetEnvironment for DummyEnvironment {
fn target_config(&self) -> TargetFrontendConfig {
self.info.config
}
}
impl<'data> ModuleEnvironment<'data> for DummyEnvironment {
fn declare_type_func(&mut self, wasm: WasmFuncType) -> WasmResult<()> {
let mut sig = ir::Signature::new(CallConv::Fast);
let mut cvt = |ty: &WasmType| {
let reference_type = match self.pointer_type() {
ir::types::I32 => ir::types::R32,
ir::types::I64 => ir::types::R64,
_ => panic!("unsupported pointer type"),
};
ir::AbiParam::new(match ty {
WasmType::I32 => ir::types::I32,
WasmType::I64 => ir::types::I64,
WasmType::F32 => ir::types::F32,
WasmType::F64 => ir::types::F64,
WasmType::V128 => ir::types::I8X16,
WasmType::FuncRef | WasmType::ExternRef => reference_type,
})
};
sig.params.extend(wasm.params().iter().map(&mut cvt));
sig.returns.extend(wasm.returns().iter().map(&mut cvt));
self.info.signatures.push(sig);
Ok(())
}
fn declare_func_import(
&mut self,
index: TypeIndex,
module: &'data str,
field: &'data str,
) -> WasmResult<()> {
assert_eq!(
self.info.functions.len(),
self.info.imported_funcs.len(),
"Imported functions must be declared first"
);
self.info.functions.push(Exportable::new(index));
self.info
.imported_funcs
.push((String::from(module), String::from(field)));
Ok(())
}
fn declare_func_type(&mut self, index: TypeIndex) -> WasmResult<()> {
self.info.functions.push(Exportable::new(index));
Ok(())
}
fn declare_global(&mut self, global: Global) -> WasmResult<()> {
self.info.globals.push(Exportable::new(global));
Ok(())
}
fn declare_global_import(
&mut self,
global: Global,
module: &'data str,
field: &'data str,
) -> WasmResult<()> {
self.info.globals.push(Exportable::new(global));
self.info
.imported_globals
.push((String::from(module), String::from(field)));
Ok(())
}
fn declare_table(&mut self, table: Table) -> WasmResult<()> {
self.info.tables.push(Exportable::new(table));
Ok(())
}
fn declare_table_import(
&mut self,
table: Table,
module: &'data str,
field: &'data str,
) -> WasmResult<()> {
self.info.tables.push(Exportable::new(table));
self.info
.imported_tables
.push((String::from(module), String::from(field)));
Ok(())
}
fn declare_table_elements(
&mut self,
_table_index: TableIndex,
_base: Option<GlobalIndex>,
_offset: u32,
_elements: Box<[FuncIndex]>,
) -> WasmResult<()> {
// We do nothing
Ok(())
}
fn declare_passive_element(
&mut self,
_elem_index: ElemIndex,
_segments: Box<[FuncIndex]>,
) -> WasmResult<()> {
Ok(())
}
fn declare_passive_data(
&mut self,
_elem_index: DataIndex,
_segments: &'data [u8],
) -> WasmResult<()> {
Ok(())
}
fn declare_memory(&mut self, memory: Memory) -> WasmResult<()> {
self.info.memories.push(Exportable::new(memory));
Ok(())
}
fn declare_memory_import(
&mut self,
memory: Memory,
module: &'data str,
field: &'data str,
) -> WasmResult<()> {
self.info.memories.push(Exportable::new(memory));
self.info
.imported_memories
.push((String::from(module), String::from(field)));
Ok(())
}
fn declare_data_initialization(
&mut self,
_memory_index: MemoryIndex,
_base: Option<GlobalIndex>,
_offset: u64,
_data: &'data [u8],
) -> WasmResult<()> {
// We do nothing
Ok(())
}
fn declare_func_export(&mut self, func_index: FuncIndex, name: &'data str) -> WasmResult<()> {
self.info.functions[func_index]
.export_names
.push(String::from(name));
Ok(())
}
fn declare_table_export(
&mut self,
table_index: TableIndex,
name: &'data str,
) -> WasmResult<()> {
self.info.tables[table_index]
.export_names
.push(String::from(name));
Ok(())
}
fn declare_memory_export(
&mut self,
memory_index: MemoryIndex,
name: &'data str,
) -> WasmResult<()> {
self.info.memories[memory_index]
.export_names
.push(String::from(name));
Ok(())
}
fn declare_global_export(
&mut self,
global_index: GlobalIndex,
name: &'data str,
) -> WasmResult<()> {
self.info.globals[global_index]
.export_names
.push(String::from(name));
Ok(())
}
fn declare_start_func(&mut self, func_index: FuncIndex) -> WasmResult<()> {
debug_assert!(self.info.start_func.is_none());
self.info.start_func = Some(func_index);
Ok(())
}
fn define_function_body(
&mut self,
mut validator: FuncValidator<ValidatorResources>,
body: FunctionBody<'data>,
) -> WasmResult<()> {
self.func_bytecode_sizes
.push(body.get_binary_reader().bytes_remaining());
let func = {
let mut func_environ =
DummyFuncEnvironment::new(&self.info, self.expected_reachability.clone());
let func_index =
FuncIndex::new(self.get_num_func_imports() + self.info.function_bodies.len());
let sig = func_environ.vmctx_sig(self.get_func_type(func_index));
let mut func =
ir::Function::with_name_signature(UserFuncName::user(0, func_index.as_u32()), sig);
if self.debug_info {
func.collect_debug_info();
}
self.trans
.translate_body(&mut validator, body, &mut func, &mut func_environ)?;
func
};
self.info.function_bodies.push(func);
Ok(())
}
fn declare_module_name(&mut self, name: &'data str) {
self.module_name = Some(String::from(name));
}
fn declare_func_name(&mut self, func_index: FuncIndex, name: &'data str) {
self.function_names[func_index] = String::from(name);
}
fn wasm_features(&self) -> WasmFeatures {
WasmFeatures {
multi_value: true,
simd: true,
reference_types: true,
bulk_memory: true,
..WasmFeatures::default()
}
}
}