Files
wasmtime/cranelift/object/src/backend.rs
Benjamin Bouvier 8a9b1a9025 Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. 

After the suggestion of Chris, `Function` has been split into mostly two parts:

- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.

Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:

- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
  - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
  - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.

The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.

A basic fuzz target has been introduced that tries to do the bare minimum:

- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
  - This last check is less efficient and less likely to happen, so probably should be rethought a bit.

Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.

Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. 

Fixes #4155.
2022-08-12 16:47:43 +00:00

777 lines
27 KiB
Rust

//! Defines `ObjectModule`.
use anyhow::anyhow;
use cranelift_codegen::entity::SecondaryMap;
use cranelift_codegen::isa::TargetIsa;
use cranelift_codegen::{self, ir, MachReloc};
use cranelift_codegen::{
binemit::{Addend, CodeOffset, Reloc},
CodegenError,
};
use cranelift_module::{
DataContext, DataDescription, DataId, FuncId, Init, Linkage, Module, ModuleCompiledFunction,
ModuleDeclarations, ModuleError, ModuleExtName, ModuleReloc, ModuleResult,
};
use log::info;
use object::write::{
Object, Relocation, SectionId, StandardSection, Symbol, SymbolId, SymbolSection,
};
use object::{
RelocationEncoding, RelocationKind, SectionKind, SymbolFlags, SymbolKind, SymbolScope,
};
use std::collections::HashMap;
use std::convert::TryInto;
use std::mem;
use target_lexicon::PointerWidth;
/// A builder for `ObjectModule`.
pub struct ObjectBuilder {
isa: Box<dyn TargetIsa>,
binary_format: object::BinaryFormat,
architecture: object::Architecture,
endian: object::Endianness,
name: Vec<u8>,
libcall_names: Box<dyn Fn(ir::LibCall) -> String + Send + Sync>,
function_alignment: u64,
per_function_section: bool,
}
impl ObjectBuilder {
/// Create a new `ObjectBuilder` using the given Cranelift target, that
/// can be passed to [`ObjectModule::new`].
///
/// The `libcall_names` function provides a way to translate `cranelift_codegen`'s [ir::LibCall]
/// enum to symbols. LibCalls are inserted in the IR as part of the legalization for certain
/// floating point instructions, and for stack probes. If you don't know what to use for this
/// argument, use [cranelift_module::default_libcall_names]().
pub fn new<V: Into<Vec<u8>>>(
isa: Box<dyn TargetIsa>,
name: V,
libcall_names: Box<dyn Fn(ir::LibCall) -> String + Send + Sync>,
) -> ModuleResult<Self> {
let binary_format = match isa.triple().binary_format {
target_lexicon::BinaryFormat::Elf => object::BinaryFormat::Elf,
target_lexicon::BinaryFormat::Coff => object::BinaryFormat::Coff,
target_lexicon::BinaryFormat::Macho => object::BinaryFormat::MachO,
target_lexicon::BinaryFormat::Wasm => {
return Err(ModuleError::Backend(anyhow!(
"binary format wasm is unsupported",
)))
}
target_lexicon::BinaryFormat::Unknown => {
return Err(ModuleError::Backend(anyhow!("binary format is unknown")))
}
other => {
return Err(ModuleError::Backend(anyhow!(
"binary format {} not recognized",
other
)))
}
};
let architecture = match isa.triple().architecture {
target_lexicon::Architecture::X86_32(_) => object::Architecture::I386,
target_lexicon::Architecture::X86_64 => object::Architecture::X86_64,
target_lexicon::Architecture::Arm(_) => object::Architecture::Arm,
target_lexicon::Architecture::Aarch64(_) => object::Architecture::Aarch64,
target_lexicon::Architecture::S390x => object::Architecture::S390x,
architecture => {
return Err(ModuleError::Backend(anyhow!(
"target architecture {:?} is unsupported",
architecture,
)))
}
};
let endian = match isa.triple().endianness().unwrap() {
target_lexicon::Endianness::Little => object::Endianness::Little,
target_lexicon::Endianness::Big => object::Endianness::Big,
};
Ok(Self {
isa,
binary_format,
architecture,
endian,
name: name.into(),
libcall_names,
function_alignment: 1,
per_function_section: false,
})
}
/// Set the alignment used for functions.
pub fn function_alignment(&mut self, alignment: u64) -> &mut Self {
self.function_alignment = alignment;
self
}
/// Set if every function should end up in their own section.
pub fn per_function_section(&mut self, per_function_section: bool) -> &mut Self {
self.per_function_section = per_function_section;
self
}
}
/// An `ObjectModule` implements `Module` and emits ".o" files using the `object` library.
///
/// See the `ObjectBuilder` for a convenient way to construct `ObjectModule` instances.
pub struct ObjectModule {
isa: Box<dyn TargetIsa>,
object: Object<'static>,
declarations: ModuleDeclarations,
functions: SecondaryMap<FuncId, Option<(SymbolId, bool)>>,
data_objects: SecondaryMap<DataId, Option<(SymbolId, bool)>>,
relocs: Vec<SymbolRelocs>,
libcalls: HashMap<ir::LibCall, SymbolId>,
libcall_names: Box<dyn Fn(ir::LibCall) -> String + Send + Sync>,
known_symbols: HashMap<ir::KnownSymbol, SymbolId>,
function_alignment: u64,
per_function_section: bool,
anon_func_number: u64,
anon_data_number: u64,
}
impl ObjectModule {
/// Create a new `ObjectModule` using the given Cranelift target.
pub fn new(builder: ObjectBuilder) -> Self {
let mut object = Object::new(builder.binary_format, builder.architecture, builder.endian);
object.add_file_symbol(builder.name);
Self {
isa: builder.isa,
object,
declarations: ModuleDeclarations::default(),
functions: SecondaryMap::new(),
data_objects: SecondaryMap::new(),
relocs: Vec::new(),
libcalls: HashMap::new(),
libcall_names: builder.libcall_names,
known_symbols: HashMap::new(),
function_alignment: builder.function_alignment,
per_function_section: builder.per_function_section,
anon_func_number: 0,
anon_data_number: 0,
}
}
}
fn validate_symbol(name: &str) -> ModuleResult<()> {
// null bytes are not allowed in symbol names and will cause the `object`
// crate to panic. Let's return a clean error instead.
if name.contains("\0") {
return Err(ModuleError::Backend(anyhow::anyhow!(
"Symbol {:?} has a null byte, which is disallowed",
name
)));
}
Ok(())
}
impl Module for ObjectModule {
fn isa(&self) -> &dyn TargetIsa {
&*self.isa
}
fn declarations(&self) -> &ModuleDeclarations {
&self.declarations
}
fn declare_function(
&mut self,
name: &str,
linkage: Linkage,
signature: &ir::Signature,
) -> ModuleResult<FuncId> {
validate_symbol(name)?;
let (id, linkage) = self
.declarations
.declare_function(name, linkage, signature)?;
let (scope, weak) = translate_linkage(linkage);
if let Some((function, _defined)) = self.functions[id] {
let symbol = self.object.symbol_mut(function);
symbol.scope = scope;
symbol.weak = weak;
} else {
let symbol_id = self.object.add_symbol(Symbol {
name: name.as_bytes().to_vec(),
value: 0,
size: 0,
kind: SymbolKind::Text,
scope,
weak,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
});
self.functions[id] = Some((symbol_id, false));
}
Ok(id)
}
fn declare_anonymous_function(&mut self, signature: &ir::Signature) -> ModuleResult<FuncId> {
// Symbols starting with .L are completely omitted from the symbol table after linking.
// Using hexadecimal instead of decimal for slightly smaller symbol names and often slightly
// faster linking.
let name = format!(".Lfn{:x}", self.anon_func_number);
self.anon_func_number += 1;
let id = self.declarations.declare_anonymous_function(signature)?;
let symbol_id = self.object.add_symbol(Symbol {
name: name.as_bytes().to_vec(),
value: 0,
size: 0,
kind: SymbolKind::Text,
scope: SymbolScope::Compilation,
weak: false,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
});
self.functions[id] = Some((symbol_id, false));
Ok(id)
}
fn declare_data(
&mut self,
name: &str,
linkage: Linkage,
writable: bool,
tls: bool,
) -> ModuleResult<DataId> {
validate_symbol(name)?;
let (id, linkage) = self
.declarations
.declare_data(name, linkage, writable, tls)?;
// Merging declarations with conflicting values for tls is not allowed, so it is safe to use
// the passed in tls value here.
let kind = if tls {
SymbolKind::Tls
} else {
SymbolKind::Data
};
let (scope, weak) = translate_linkage(linkage);
if let Some((data, _defined)) = self.data_objects[id] {
let symbol = self.object.symbol_mut(data);
symbol.kind = kind;
symbol.scope = scope;
symbol.weak = weak;
} else {
let symbol_id = self.object.add_symbol(Symbol {
name: name.as_bytes().to_vec(),
value: 0,
size: 0,
kind,
scope,
weak,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
});
self.data_objects[id] = Some((symbol_id, false));
}
Ok(id)
}
fn declare_anonymous_data(&mut self, writable: bool, tls: bool) -> ModuleResult<DataId> {
// Symbols starting with .L are completely omitted from the symbol table after linking.
// Using hexadecimal instead of decimal for slightly smaller symbol names and often slightly
// faster linking.
let name = format!(".Ldata{:x}", self.anon_data_number);
self.anon_data_number += 1;
let id = self.declarations.declare_anonymous_data(writable, tls)?;
let kind = if tls {
SymbolKind::Tls
} else {
SymbolKind::Data
};
let symbol_id = self.object.add_symbol(Symbol {
name: name.as_bytes().to_vec(),
value: 0,
size: 0,
kind,
scope: SymbolScope::Compilation,
weak: false,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
});
self.data_objects[id] = Some((symbol_id, false));
Ok(id)
}
fn define_function(
&mut self,
func_id: FuncId,
ctx: &mut cranelift_codegen::Context,
) -> ModuleResult<ModuleCompiledFunction> {
info!("defining function {}: {}", func_id, ctx.func.display());
let mut code: Vec<u8> = Vec::new();
ctx.compile_and_emit(self.isa(), &mut code)?;
self.define_function_bytes(
func_id,
&ctx.func,
&code,
ctx.compiled_code().unwrap().buffer.relocs(),
)
}
fn define_function_bytes(
&mut self,
func_id: FuncId,
func: &ir::Function,
bytes: &[u8],
relocs: &[MachReloc],
) -> ModuleResult<ModuleCompiledFunction> {
info!("defining function {} with bytes", func_id);
let total_size: u32 = match bytes.len().try_into() {
Ok(total_size) => total_size,
_ => Err(CodegenError::CodeTooLarge)?,
};
let decl = self.declarations.get_function_decl(func_id);
if !decl.linkage.is_definable() {
return Err(ModuleError::InvalidImportDefinition(decl.name.clone()));
}
let &mut (symbol, ref mut defined) = self.functions[func_id].as_mut().unwrap();
if *defined {
return Err(ModuleError::DuplicateDefinition(decl.name.clone()));
}
*defined = true;
let (section, offset) = if self.per_function_section {
let symbol_name = self.object.symbol(symbol).name.clone();
let (section, offset) = self.object.add_subsection(
StandardSection::Text,
&symbol_name,
bytes,
self.function_alignment,
);
self.object.symbol_mut(symbol).section = SymbolSection::Section(section);
self.object.symbol_mut(symbol).value = offset;
(section, offset)
} else {
let section = self.object.section_id(StandardSection::Text);
let offset =
self.object
.add_symbol_data(symbol, section, bytes, self.function_alignment);
(section, offset)
};
if !relocs.is_empty() {
let relocs = relocs
.iter()
.map(|record| self.process_reloc(&ModuleReloc::from_mach_reloc(&record, func)))
.collect();
self.relocs.push(SymbolRelocs {
section,
offset,
relocs,
});
}
Ok(ModuleCompiledFunction { size: total_size })
}
fn define_data(&mut self, data_id: DataId, data_ctx: &DataContext) -> ModuleResult<()> {
let decl = self.declarations.get_data_decl(data_id);
if !decl.linkage.is_definable() {
return Err(ModuleError::InvalidImportDefinition(decl.name.clone()));
}
let &mut (symbol, ref mut defined) = self.data_objects[data_id].as_mut().unwrap();
if *defined {
return Err(ModuleError::DuplicateDefinition(decl.name.clone()));
}
*defined = true;
let &DataDescription {
ref init,
function_decls: _,
data_decls: _,
function_relocs: _,
data_relocs: _,
ref custom_segment_section,
align,
} = data_ctx.description();
let pointer_reloc = match self.isa.triple().pointer_width().unwrap() {
PointerWidth::U16 => unimplemented!("16bit pointers"),
PointerWidth::U32 => Reloc::Abs4,
PointerWidth::U64 => Reloc::Abs8,
};
let relocs = data_ctx
.description()
.all_relocs(pointer_reloc)
.map(|record| self.process_reloc(&record))
.collect::<Vec<_>>();
let section = if custom_segment_section.is_none() {
let section_kind = if let Init::Zeros { .. } = *init {
if decl.tls {
StandardSection::UninitializedTls
} else {
StandardSection::UninitializedData
}
} else if decl.tls {
StandardSection::Tls
} else if decl.writable {
StandardSection::Data
} else if relocs.is_empty() {
StandardSection::ReadOnlyData
} else {
StandardSection::ReadOnlyDataWithRel
};
self.object.section_id(section_kind)
} else {
if decl.tls {
return Err(cranelift_module::ModuleError::Backend(anyhow::anyhow!(
"Custom section not supported for TLS"
)));
}
let (seg, sec) = &custom_segment_section.as_ref().unwrap();
self.object.add_section(
seg.clone().into_bytes(),
sec.clone().into_bytes(),
if decl.writable {
SectionKind::Data
} else if relocs.is_empty() {
SectionKind::ReadOnlyData
} else {
SectionKind::Data
},
)
};
let align = align.unwrap_or(1);
let offset = match *init {
Init::Uninitialized => {
panic!("data is not initialized yet");
}
Init::Zeros { size } => self
.object
.add_symbol_bss(symbol, section, size as u64, align),
Init::Bytes { ref contents } => self
.object
.add_symbol_data(symbol, section, &contents, align),
};
if !relocs.is_empty() {
self.relocs.push(SymbolRelocs {
section,
offset,
relocs,
});
}
Ok(())
}
}
impl ObjectModule {
/// Finalize all relocations and output an object.
pub fn finish(mut self) -> ObjectProduct {
let symbol_relocs = mem::take(&mut self.relocs);
for symbol in symbol_relocs {
for &ObjectRelocRecord {
offset,
ref name,
kind,
encoding,
size,
addend,
} in &symbol.relocs
{
let target_symbol = self.get_symbol(name);
self.object
.add_relocation(
symbol.section,
Relocation {
offset: symbol.offset + u64::from(offset),
size,
kind,
encoding,
symbol: target_symbol,
addend,
},
)
.unwrap();
}
}
// Indicate that this object has a non-executable stack.
if self.object.format() == object::BinaryFormat::Elf {
self.object.add_section(
vec![],
".note.GNU-stack".as_bytes().to_vec(),
SectionKind::Linker,
);
}
ObjectProduct {
object: self.object,
functions: self.functions,
data_objects: self.data_objects,
}
}
/// This should only be called during finish because it creates
/// symbols for missing libcalls.
fn get_symbol(&mut self, name: &ModuleExtName) -> SymbolId {
match *name {
ModuleExtName::User { .. } => {
if ModuleDeclarations::is_function(name) {
let id = FuncId::from_name(name);
self.functions[id].unwrap().0
} else {
let id = DataId::from_name(name);
self.data_objects[id].unwrap().0
}
}
ModuleExtName::LibCall(ref libcall) => {
let name = (self.libcall_names)(*libcall);
if let Some(symbol) = self.object.symbol_id(name.as_bytes()) {
symbol
} else if let Some(symbol) = self.libcalls.get(libcall) {
*symbol
} else {
let symbol = self.object.add_symbol(Symbol {
name: name.as_bytes().to_vec(),
value: 0,
size: 0,
kind: SymbolKind::Text,
scope: SymbolScope::Unknown,
weak: false,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
});
self.libcalls.insert(*libcall, symbol);
symbol
}
}
// These are "magic" names well-known to the linker.
// They require special treatment.
ModuleExtName::KnownSymbol(ref known_symbol) => {
if let Some(symbol) = self.known_symbols.get(known_symbol) {
*symbol
} else {
let symbol = self.object.add_symbol(match known_symbol {
ir::KnownSymbol::ElfGlobalOffsetTable => Symbol {
name: b"_GLOBAL_OFFSET_TABLE_".to_vec(),
value: 0,
size: 0,
kind: SymbolKind::Data,
scope: SymbolScope::Unknown,
weak: false,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
},
ir::KnownSymbol::CoffTlsIndex => Symbol {
name: b"_tls_index".to_vec(),
value: 0,
size: 32,
kind: SymbolKind::Tls,
scope: SymbolScope::Unknown,
weak: false,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
},
});
self.known_symbols.insert(*known_symbol, symbol);
symbol
}
}
}
}
fn process_reloc(&self, record: &ModuleReloc) -> ObjectRelocRecord {
let mut addend = record.addend;
let (kind, encoding, size) = match record.kind {
Reloc::Abs4 => (RelocationKind::Absolute, RelocationEncoding::Generic, 32),
Reloc::Abs8 => (RelocationKind::Absolute, RelocationEncoding::Generic, 64),
Reloc::X86PCRel4 => (RelocationKind::Relative, RelocationEncoding::Generic, 32),
Reloc::X86CallPCRel4 => (RelocationKind::Relative, RelocationEncoding::X86Branch, 32),
// TODO: Get Cranelift to tell us when we can use
// R_X86_64_GOTPCRELX/R_X86_64_REX_GOTPCRELX.
Reloc::X86CallPLTRel4 => (
RelocationKind::PltRelative,
RelocationEncoding::X86Branch,
32,
),
Reloc::X86SecRel => (
RelocationKind::SectionOffset,
RelocationEncoding::Generic,
32,
),
Reloc::X86GOTPCRel4 => (RelocationKind::GotRelative, RelocationEncoding::Generic, 32),
Reloc::Arm64Call => (
RelocationKind::Relative,
RelocationEncoding::AArch64Call,
26,
),
Reloc::ElfX86_64TlsGd => {
assert_eq!(
self.object.format(),
object::BinaryFormat::Elf,
"ElfX86_64TlsGd is not supported for this file format"
);
(
RelocationKind::Elf(object::elf::R_X86_64_TLSGD),
RelocationEncoding::Generic,
32,
)
}
Reloc::MachOX86_64Tlv => {
assert_eq!(
self.object.format(),
object::BinaryFormat::MachO,
"MachOX86_64Tlv is not supported for this file format"
);
addend += 4; // X86_64_RELOC_TLV has an implicit addend of -4
(
RelocationKind::MachO {
value: object::macho::X86_64_RELOC_TLV,
relative: true,
},
RelocationEncoding::Generic,
32,
)
}
Reloc::Aarch64TlsGdAdrPage21 => {
assert_eq!(
self.object.format(),
object::BinaryFormat::Elf,
"Aarch64TlsGdAdrPrel21 is not supported for this file format"
);
(
RelocationKind::Elf(object::elf::R_AARCH64_TLSGD_ADR_PAGE21),
RelocationEncoding::Generic,
21,
)
}
Reloc::Aarch64TlsGdAddLo12Nc => {
assert_eq!(
self.object.format(),
object::BinaryFormat::Elf,
"Aarch64TlsGdAddLo12Nc is not supported for this file format"
);
(
RelocationKind::Elf(object::elf::R_AARCH64_TLSGD_ADD_LO12_NC),
RelocationEncoding::Generic,
12,
)
}
Reloc::S390xPCRel32Dbl => (RelocationKind::Relative, RelocationEncoding::S390xDbl, 32),
Reloc::S390xPLTRel32Dbl => (
RelocationKind::PltRelative,
RelocationEncoding::S390xDbl,
32,
),
Reloc::S390xTlsGd64 => {
assert_eq!(
self.object.format(),
object::BinaryFormat::Elf,
"S390xTlsGd64 is not supported for this file format"
);
(
RelocationKind::Elf(object::elf::R_390_TLS_GD64),
RelocationEncoding::Generic,
64,
)
}
Reloc::S390xTlsGdCall => {
assert_eq!(
self.object.format(),
object::BinaryFormat::Elf,
"S390xTlsGdCall is not supported for this file format"
);
(
RelocationKind::Elf(object::elf::R_390_TLS_GDCALL),
RelocationEncoding::Generic,
0,
)
}
// FIXME
reloc => unimplemented!("{:?}", reloc),
};
ObjectRelocRecord {
offset: record.offset,
name: record.name.clone(),
kind,
encoding,
size,
addend,
}
}
}
fn translate_linkage(linkage: Linkage) -> (SymbolScope, bool) {
let scope = match linkage {
Linkage::Import => SymbolScope::Unknown,
Linkage::Local => SymbolScope::Compilation,
Linkage::Hidden => SymbolScope::Linkage,
Linkage::Export | Linkage::Preemptible => SymbolScope::Dynamic,
};
// TODO: this matches rustc_codegen_cranelift, but may be wrong.
let weak = linkage == Linkage::Preemptible;
(scope, weak)
}
/// This is the output of `ObjectModule`'s
/// [`finish`](../struct.ObjectModule.html#method.finish) function.
/// It contains the generated `Object` and other information produced during
/// compilation.
pub struct ObjectProduct {
/// Object artifact with all functions and data from the module defined.
pub object: Object<'static>,
/// Symbol IDs for functions (both declared and defined).
pub functions: SecondaryMap<FuncId, Option<(SymbolId, bool)>>,
/// Symbol IDs for data objects (both declared and defined).
pub data_objects: SecondaryMap<DataId, Option<(SymbolId, bool)>>,
}
impl ObjectProduct {
/// Return the `SymbolId` for the given function.
#[inline]
pub fn function_symbol(&self, id: FuncId) -> SymbolId {
self.functions[id].unwrap().0
}
/// Return the `SymbolId` for the given data object.
#[inline]
pub fn data_symbol(&self, id: DataId) -> SymbolId {
self.data_objects[id].unwrap().0
}
/// Write the object bytes in memory.
#[inline]
pub fn emit(self) -> Result<Vec<u8>, object::write::Error> {
self.object.write()
}
}
#[derive(Clone)]
struct SymbolRelocs {
section: SectionId,
offset: u64,
relocs: Vec<ObjectRelocRecord>,
}
#[derive(Clone)]
struct ObjectRelocRecord {
offset: CodeOffset,
name: ModuleExtName,
kind: RelocationKind,
encoding: RelocationEncoding,
size: u8,
addend: Addend,
}