This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. After the suggestion of Chris, `Function` has been split into mostly two parts: - on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`. - on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on. Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache: - most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set. - user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`. - some refactorings have been made for function names: - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name. - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with. The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions. A basic fuzz target has been introduced that tries to do the bare minimum: - check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function. - check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache. - This last check is less efficient and less likely to happen, so probably should be rethought a bit. Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip. Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. Fixes #4155.
845 lines
29 KiB
Rust
845 lines
29 KiB
Rust
//! Small lists of entity references.
|
|
use crate::packed_option::ReservedValue;
|
|
use crate::EntityRef;
|
|
use alloc::vec::Vec;
|
|
use core::marker::PhantomData;
|
|
use core::mem;
|
|
|
|
#[cfg(feature = "enable-serde")]
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
/// A small list of entity references allocated from a pool.
|
|
///
|
|
/// An `EntityList<T>` type provides similar functionality to `Vec<T>`, but with some important
|
|
/// differences in the implementation:
|
|
///
|
|
/// 1. Memory is allocated from a `ListPool<T>` instead of the global heap.
|
|
/// 2. The footprint of an entity list is 4 bytes, compared with the 24 bytes for `Vec<T>`.
|
|
/// 3. An entity list doesn't implement `Drop`, leaving it to the pool to manage memory.
|
|
///
|
|
/// The list pool is intended to be used as a LIFO allocator. After building up a larger data
|
|
/// structure with many list references, the whole thing can be discarded quickly by clearing the
|
|
/// pool.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Entity lists are not as safe to use as `Vec<T>`, but they never jeopardize Rust's memory safety
|
|
/// guarantees. These are the problems to be aware of:
|
|
///
|
|
/// - If you lose track of an entity list, its memory won't be recycled until the pool is cleared.
|
|
/// This can cause the pool to grow very large with leaked lists.
|
|
/// - If entity lists are used after their pool is cleared, they may contain garbage data, and
|
|
/// modifying them may corrupt other lists in the pool.
|
|
/// - If an entity list is used with two different pool instances, both pools are likely to become
|
|
/// corrupted.
|
|
///
|
|
/// Entity lists can be cloned, but that operation should only be used as part of cloning the whole
|
|
/// function they belong to. *Cloning an entity list does not allocate new memory for the clone*.
|
|
/// It creates an alias of the same memory.
|
|
///
|
|
/// Entity lists cannot be hashed and compared for equality because it's not possible to compare the
|
|
/// contents of the list without the pool reference.
|
|
///
|
|
/// # Implementation
|
|
///
|
|
/// The `EntityList` itself is designed to have the smallest possible footprint. This is important
|
|
/// because it is used inside very compact data structures like `InstructionData`. The list
|
|
/// contains only a 32-bit index into the pool's memory vector, pointing to the first element of
|
|
/// the list.
|
|
///
|
|
/// The pool is just a single `Vec<T>` containing all of the allocated lists. Each list is
|
|
/// represented as three contiguous parts:
|
|
///
|
|
/// 1. The number of elements in the list.
|
|
/// 2. The list elements.
|
|
/// 3. Excess capacity elements.
|
|
///
|
|
/// The total size of the three parts is always a power of two, and the excess capacity is always
|
|
/// as small as possible. This means that shrinking a list may cause the excess capacity to shrink
|
|
/// if a smaller power-of-two size becomes available.
|
|
///
|
|
/// Both growing and shrinking a list may cause it to be reallocated in the pool vector.
|
|
///
|
|
/// The index stored in an `EntityList` points to part 2, the list elements. The value 0 is
|
|
/// reserved for the empty list which isn't allocated in the vector.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Hash)]
|
|
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
|
|
pub struct EntityList<T: EntityRef + ReservedValue> {
|
|
index: u32,
|
|
unused: PhantomData<T>,
|
|
}
|
|
|
|
/// Create an empty list.
|
|
impl<T: EntityRef + ReservedValue> Default for EntityList<T> {
|
|
fn default() -> Self {
|
|
Self {
|
|
index: 0,
|
|
unused: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A memory pool for storing lists of `T`.
|
|
#[derive(Clone, Debug)]
|
|
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
|
|
pub struct ListPool<T: EntityRef + ReservedValue> {
|
|
// The main array containing the lists.
|
|
data: Vec<T>,
|
|
|
|
// Heads of the free lists, one for each size class.
|
|
free: Vec<usize>,
|
|
}
|
|
|
|
impl<T: EntityRef + ReservedValue> PartialEq for ListPool<T> {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
// ignore the free list
|
|
self.data == other.data
|
|
}
|
|
}
|
|
|
|
impl<T: core::hash::Hash + EntityRef + ReservedValue> core::hash::Hash for ListPool<T> {
|
|
fn hash<H: __core::hash::Hasher>(&self, state: &mut H) {
|
|
// ignore the free list
|
|
self.data.hash(state);
|
|
}
|
|
}
|
|
|
|
/// Lists are allocated in sizes that are powers of two, starting from 4.
|
|
/// Each power of two is assigned a size class number, so the size is `4 << SizeClass`.
|
|
type SizeClass = u8;
|
|
|
|
/// Get the size of a given size class. The size includes the length field, so the maximum list
|
|
/// length is one less than the class size.
|
|
#[inline]
|
|
fn sclass_size(sclass: SizeClass) -> usize {
|
|
4 << sclass
|
|
}
|
|
|
|
/// Get the size class to use for a given list length.
|
|
/// This always leaves room for the length element in addition to the list elements.
|
|
#[inline]
|
|
fn sclass_for_length(len: usize) -> SizeClass {
|
|
30 - (len as u32 | 3).leading_zeros() as SizeClass
|
|
}
|
|
|
|
/// Is `len` the minimum length in its size class?
|
|
#[inline]
|
|
fn is_sclass_min_length(len: usize) -> bool {
|
|
len > 3 && len.is_power_of_two()
|
|
}
|
|
|
|
impl<T: EntityRef + ReservedValue> ListPool<T> {
|
|
/// Create a new list pool.
|
|
pub fn new() -> Self {
|
|
Self {
|
|
data: Vec::new(),
|
|
free: Vec::new(),
|
|
}
|
|
}
|
|
|
|
/// Clear the pool, forgetting about all lists that use it.
|
|
///
|
|
/// This invalidates any existing entity lists that used this pool to allocate memory.
|
|
///
|
|
/// The pool's memory is not released to the operating system, but kept around for faster
|
|
/// allocation in the future.
|
|
pub fn clear(&mut self) {
|
|
self.data.clear();
|
|
self.free.clear();
|
|
}
|
|
|
|
/// Read the length of a list field, if it exists.
|
|
fn len_of(&self, list: &EntityList<T>) -> Option<usize> {
|
|
let idx = list.index as usize;
|
|
// `idx` points at the list elements. The list length is encoded in the element immediately
|
|
// before the list elements.
|
|
//
|
|
// The `wrapping_sub` handles the special case 0, which is the empty list. This way, the
|
|
// cost of the bounds check that we have to pay anyway is co-opted to handle the special
|
|
// case of the empty list.
|
|
self.data.get(idx.wrapping_sub(1)).map(|len| len.index())
|
|
}
|
|
|
|
/// Allocate a storage block with a size given by `sclass`.
|
|
///
|
|
/// Returns the first index of an available segment of `self.data` containing
|
|
/// `sclass_size(sclass)` elements. The allocated memory is filled with reserved
|
|
/// values.
|
|
fn alloc(&mut self, sclass: SizeClass) -> usize {
|
|
// First try the free list for this size class.
|
|
match self.free.get(sclass as usize).cloned() {
|
|
Some(head) if head > 0 => {
|
|
// The free list pointers are offset by 1, using 0 to terminate the list.
|
|
// A block on the free list has two entries: `[ 0, next ]`.
|
|
// The 0 is where the length field would be stored for a block in use.
|
|
// The free list heads and the next pointer point at the `next` field.
|
|
self.free[sclass as usize] = self.data[head].index();
|
|
head - 1
|
|
}
|
|
_ => {
|
|
// Nothing on the free list. Allocate more memory.
|
|
let offset = self.data.len();
|
|
self.data
|
|
.resize(offset + sclass_size(sclass), T::reserved_value());
|
|
offset
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Free a storage block with a size given by `sclass`.
|
|
///
|
|
/// This must be a block that was previously allocated by `alloc()` with the same size class.
|
|
fn free(&mut self, block: usize, sclass: SizeClass) {
|
|
let sclass = sclass as usize;
|
|
|
|
// Make sure we have a free-list head for `sclass`.
|
|
if self.free.len() <= sclass {
|
|
self.free.resize(sclass + 1, 0);
|
|
}
|
|
|
|
// Make sure the length field is cleared.
|
|
self.data[block] = T::new(0);
|
|
// Insert the block on the free list which is a single linked list.
|
|
self.data[block + 1] = T::new(self.free[sclass]);
|
|
self.free[sclass] = block + 1
|
|
}
|
|
|
|
/// Returns two mutable slices representing the two requested blocks.
|
|
///
|
|
/// The two returned slices can be longer than the blocks. Each block is located at the front
|
|
/// of the respective slice.
|
|
fn mut_slices(&mut self, block0: usize, block1: usize) -> (&mut [T], &mut [T]) {
|
|
if block0 < block1 {
|
|
let (s0, s1) = self.data.split_at_mut(block1);
|
|
(&mut s0[block0..], s1)
|
|
} else {
|
|
let (s1, s0) = self.data.split_at_mut(block0);
|
|
(s0, &mut s1[block1..])
|
|
}
|
|
}
|
|
|
|
/// Reallocate a block to a different size class.
|
|
///
|
|
/// Copy `elems_to_copy` elements from the old to the new block.
|
|
fn realloc(
|
|
&mut self,
|
|
block: usize,
|
|
from_sclass: SizeClass,
|
|
to_sclass: SizeClass,
|
|
elems_to_copy: usize,
|
|
) -> usize {
|
|
debug_assert!(elems_to_copy <= sclass_size(from_sclass));
|
|
debug_assert!(elems_to_copy <= sclass_size(to_sclass));
|
|
let new_block = self.alloc(to_sclass);
|
|
|
|
if elems_to_copy > 0 {
|
|
let (old, new) = self.mut_slices(block, new_block);
|
|
(&mut new[0..elems_to_copy]).copy_from_slice(&old[0..elems_to_copy]);
|
|
}
|
|
|
|
self.free(block, from_sclass);
|
|
new_block
|
|
}
|
|
}
|
|
|
|
impl<T: EntityRef + ReservedValue> EntityList<T> {
|
|
/// Create a new empty list.
|
|
pub fn new() -> Self {
|
|
Default::default()
|
|
}
|
|
|
|
/// Create a new list with the contents initialized from a slice.
|
|
pub fn from_slice(slice: &[T], pool: &mut ListPool<T>) -> Self {
|
|
let len = slice.len();
|
|
if len == 0 {
|
|
return Self::new();
|
|
}
|
|
|
|
let block = pool.alloc(sclass_for_length(len));
|
|
pool.data[block] = T::new(len);
|
|
pool.data[block + 1..=block + len].copy_from_slice(slice);
|
|
|
|
Self {
|
|
index: (block + 1) as u32,
|
|
unused: PhantomData,
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the list has a length of 0.
|
|
pub fn is_empty(&self) -> bool {
|
|
// 0 is a magic value for the empty list. Any list in the pool array must have a positive
|
|
// length.
|
|
self.index == 0
|
|
}
|
|
|
|
/// Get the number of elements in the list.
|
|
pub fn len(&self, pool: &ListPool<T>) -> usize {
|
|
// Both the empty list and any invalidated old lists will return `None`.
|
|
pool.len_of(self).unwrap_or(0)
|
|
}
|
|
|
|
/// Returns `true` if the list is valid
|
|
pub fn is_valid(&self, pool: &ListPool<T>) -> bool {
|
|
// We consider an empty list to be valid
|
|
self.is_empty() || pool.len_of(self) != None
|
|
}
|
|
|
|
/// Get the list as a slice.
|
|
pub fn as_slice<'a>(&self, pool: &'a ListPool<T>) -> &'a [T] {
|
|
let idx = self.index as usize;
|
|
match pool.len_of(self) {
|
|
None => &[],
|
|
Some(len) => &pool.data[idx..idx + len],
|
|
}
|
|
}
|
|
|
|
/// Get a single element from the list.
|
|
pub fn get(&self, index: usize, pool: &ListPool<T>) -> Option<T> {
|
|
self.as_slice(pool).get(index).cloned()
|
|
}
|
|
|
|
/// Get the first element from the list.
|
|
pub fn first(&self, pool: &ListPool<T>) -> Option<T> {
|
|
if self.is_empty() {
|
|
None
|
|
} else {
|
|
Some(pool.data[self.index as usize])
|
|
}
|
|
}
|
|
|
|
/// Get the list as a mutable slice.
|
|
pub fn as_mut_slice<'a>(&'a mut self, pool: &'a mut ListPool<T>) -> &'a mut [T] {
|
|
let idx = self.index as usize;
|
|
match pool.len_of(self) {
|
|
None => &mut [],
|
|
Some(len) => &mut pool.data[idx..idx + len],
|
|
}
|
|
}
|
|
|
|
/// Get a mutable reference to a single element from the list.
|
|
pub fn get_mut<'a>(&'a mut self, index: usize, pool: &'a mut ListPool<T>) -> Option<&'a mut T> {
|
|
self.as_mut_slice(pool).get_mut(index)
|
|
}
|
|
|
|
/// Create a deep clone of the list, which does not alias the original list.
|
|
pub fn deep_clone(&self, pool: &mut ListPool<T>) -> Self {
|
|
match pool.len_of(self) {
|
|
None => return Self::new(),
|
|
Some(len) => {
|
|
let src = self.index as usize;
|
|
let block = pool.alloc(sclass_for_length(len));
|
|
pool.data[block] = T::new(len);
|
|
pool.data.copy_within(src..src + len, block + 1);
|
|
|
|
Self {
|
|
index: (block + 1) as u32,
|
|
unused: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Removes all elements from the list.
|
|
///
|
|
/// The memory used by the list is put back in the pool.
|
|
pub fn clear(&mut self, pool: &mut ListPool<T>) {
|
|
let idx = self.index as usize;
|
|
match pool.len_of(self) {
|
|
None => debug_assert_eq!(idx, 0, "Invalid pool"),
|
|
Some(len) => pool.free(idx - 1, sclass_for_length(len)),
|
|
}
|
|
// Switch back to the empty list representation which has no storage.
|
|
self.index = 0;
|
|
}
|
|
|
|
/// Take all elements from this list and return them as a new list. Leave this list empty.
|
|
///
|
|
/// This is the equivalent of `Option::take()`.
|
|
pub fn take(&mut self) -> Self {
|
|
mem::replace(self, Default::default())
|
|
}
|
|
|
|
/// Appends an element to the back of the list.
|
|
/// Returns the index where the element was inserted.
|
|
pub fn push(&mut self, element: T, pool: &mut ListPool<T>) -> usize {
|
|
let idx = self.index as usize;
|
|
match pool.len_of(self) {
|
|
None => {
|
|
// This is an empty list. Allocate a block and set length=1.
|
|
debug_assert_eq!(idx, 0, "Invalid pool");
|
|
let block = pool.alloc(sclass_for_length(1));
|
|
pool.data[block] = T::new(1);
|
|
pool.data[block + 1] = element;
|
|
self.index = (block + 1) as u32;
|
|
0
|
|
}
|
|
Some(len) => {
|
|
// Do we need to reallocate?
|
|
let new_len = len + 1;
|
|
let block;
|
|
if is_sclass_min_length(new_len) {
|
|
// Reallocate, preserving length + all old elements.
|
|
let sclass = sclass_for_length(len);
|
|
block = pool.realloc(idx - 1, sclass, sclass + 1, len + 1);
|
|
self.index = (block + 1) as u32;
|
|
} else {
|
|
block = idx - 1;
|
|
}
|
|
pool.data[block + new_len] = element;
|
|
pool.data[block] = T::new(new_len);
|
|
len
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Grow list by adding `count` reserved-value elements at the end.
|
|
///
|
|
/// Returns a mutable slice representing the whole list.
|
|
fn grow<'a>(&'a mut self, count: usize, pool: &'a mut ListPool<T>) -> &'a mut [T] {
|
|
let idx = self.index as usize;
|
|
let new_len;
|
|
let block;
|
|
match pool.len_of(self) {
|
|
None => {
|
|
// This is an empty list. Allocate a block.
|
|
debug_assert_eq!(idx, 0, "Invalid pool");
|
|
if count == 0 {
|
|
return &mut [];
|
|
}
|
|
new_len = count;
|
|
block = pool.alloc(sclass_for_length(new_len));
|
|
self.index = (block + 1) as u32;
|
|
}
|
|
Some(len) => {
|
|
// Do we need to reallocate?
|
|
let sclass = sclass_for_length(len);
|
|
new_len = len + count;
|
|
let new_sclass = sclass_for_length(new_len);
|
|
if new_sclass != sclass {
|
|
block = pool.realloc(idx - 1, sclass, new_sclass, len + 1);
|
|
self.index = (block + 1) as u32;
|
|
} else {
|
|
block = idx - 1;
|
|
}
|
|
}
|
|
}
|
|
pool.data[block] = T::new(new_len);
|
|
&mut pool.data[block + 1..block + 1 + new_len]
|
|
}
|
|
|
|
/// Constructs a list from an iterator.
|
|
pub fn from_iter<I>(elements: I, pool: &mut ListPool<T>) -> Self
|
|
where
|
|
I: IntoIterator<Item = T>,
|
|
{
|
|
let mut list = Self::new();
|
|
list.extend(elements, pool);
|
|
list
|
|
}
|
|
|
|
/// Appends multiple elements to the back of the list.
|
|
pub fn extend<I>(&mut self, elements: I, pool: &mut ListPool<T>)
|
|
where
|
|
I: IntoIterator<Item = T>,
|
|
{
|
|
let iterator = elements.into_iter();
|
|
let (len, upper) = iterator.size_hint();
|
|
// On most iterators this check is optimized down to `true`.
|
|
if upper == Some(len) {
|
|
let data = self.grow(len, pool);
|
|
let offset = data.len() - len;
|
|
for (src, dst) in iterator.zip(data[offset..].iter_mut()) {
|
|
*dst = src;
|
|
}
|
|
} else {
|
|
for x in iterator {
|
|
self.push(x, pool);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Inserts an element as position `index` in the list, shifting all elements after it to the
|
|
/// right.
|
|
pub fn insert(&mut self, index: usize, element: T, pool: &mut ListPool<T>) {
|
|
// Increase size by 1.
|
|
self.push(element, pool);
|
|
|
|
// Move tail elements.
|
|
let seq = self.as_mut_slice(pool);
|
|
if index < seq.len() {
|
|
let tail = &mut seq[index..];
|
|
for i in (1..tail.len()).rev() {
|
|
tail[i] = tail[i - 1];
|
|
}
|
|
tail[0] = element;
|
|
} else {
|
|
debug_assert_eq!(index, seq.len());
|
|
}
|
|
}
|
|
|
|
/// Removes the last element from the list.
|
|
fn remove_last(&mut self, len: usize, pool: &mut ListPool<T>) {
|
|
// Check if we deleted the last element.
|
|
if len == 1 {
|
|
self.clear(pool);
|
|
return;
|
|
}
|
|
|
|
// Do we need to reallocate to a smaller size class?
|
|
let mut block = self.index as usize - 1;
|
|
if is_sclass_min_length(len) {
|
|
let sclass = sclass_for_length(len);
|
|
block = pool.realloc(block, sclass, sclass - 1, len);
|
|
self.index = (block + 1) as u32;
|
|
}
|
|
|
|
// Finally adjust the length.
|
|
pool.data[block] = T::new(len - 1);
|
|
}
|
|
|
|
/// Removes the element at position `index` from the list. Potentially linear complexity.
|
|
pub fn remove(&mut self, index: usize, pool: &mut ListPool<T>) {
|
|
let len;
|
|
{
|
|
let seq = self.as_mut_slice(pool);
|
|
len = seq.len();
|
|
debug_assert!(index < len);
|
|
|
|
// Copy elements down.
|
|
for i in index..len - 1 {
|
|
seq[i] = seq[i + 1];
|
|
}
|
|
}
|
|
|
|
self.remove_last(len, pool);
|
|
}
|
|
|
|
/// Removes the element at `index` in constant time by switching it with the last element of
|
|
/// the list.
|
|
pub fn swap_remove(&mut self, index: usize, pool: &mut ListPool<T>) {
|
|
let seq = self.as_mut_slice(pool);
|
|
let len = seq.len();
|
|
debug_assert!(index < len);
|
|
if index != len - 1 {
|
|
seq.swap(index, len - 1);
|
|
}
|
|
|
|
self.remove_last(len, pool);
|
|
}
|
|
|
|
/// Shortens the list down to `len` elements.
|
|
///
|
|
/// Does nothing if the list is already shorter than `len`.
|
|
pub fn truncate(&mut self, new_len: usize, pool: &mut ListPool<T>) {
|
|
if new_len == 0 {
|
|
self.clear(pool);
|
|
return;
|
|
}
|
|
|
|
match pool.len_of(self) {
|
|
None => return,
|
|
Some(len) => {
|
|
if len <= new_len {
|
|
return;
|
|
}
|
|
|
|
let block;
|
|
let idx = self.index as usize;
|
|
let sclass = sclass_for_length(len);
|
|
let new_sclass = sclass_for_length(new_len);
|
|
if sclass != new_sclass {
|
|
block = pool.realloc(idx - 1, sclass, new_sclass, new_len + 1);
|
|
self.index = (block + 1) as u32;
|
|
} else {
|
|
block = idx - 1;
|
|
}
|
|
pool.data[block] = T::new(new_len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Grow the list by inserting `count` elements at `index`.
|
|
///
|
|
/// The new elements are not initialized, they will contain whatever happened to be in memory.
|
|
/// Since the memory comes from the pool, this will be either zero entity references or
|
|
/// whatever where in a previously deallocated list.
|
|
pub fn grow_at(&mut self, index: usize, count: usize, pool: &mut ListPool<T>) {
|
|
let data = self.grow(count, pool);
|
|
|
|
// Copy elements after `index` up.
|
|
for i in (index + count..data.len()).rev() {
|
|
data[i] = data[i - count];
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use super::{sclass_for_length, sclass_size};
|
|
use crate::EntityRef;
|
|
|
|
/// An opaque reference to an instruction in a function.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
|
pub struct Inst(u32);
|
|
entity_impl!(Inst, "inst");
|
|
|
|
#[test]
|
|
fn size_classes() {
|
|
assert_eq!(sclass_size(0), 4);
|
|
assert_eq!(sclass_for_length(0), 0);
|
|
assert_eq!(sclass_for_length(1), 0);
|
|
assert_eq!(sclass_for_length(2), 0);
|
|
assert_eq!(sclass_for_length(3), 0);
|
|
assert_eq!(sclass_for_length(4), 1);
|
|
assert_eq!(sclass_for_length(7), 1);
|
|
assert_eq!(sclass_for_length(8), 2);
|
|
assert_eq!(sclass_size(1), 8);
|
|
for l in 0..300 {
|
|
assert!(sclass_size(sclass_for_length(l)) >= l + 1);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn block_allocator() {
|
|
let mut pool = ListPool::<Inst>::new();
|
|
let b1 = pool.alloc(0);
|
|
let b2 = pool.alloc(1);
|
|
let b3 = pool.alloc(0);
|
|
assert_ne!(b1, b2);
|
|
assert_ne!(b1, b3);
|
|
assert_ne!(b2, b3);
|
|
pool.free(b2, 1);
|
|
let b2a = pool.alloc(1);
|
|
let b2b = pool.alloc(1);
|
|
assert_ne!(b2a, b2b);
|
|
// One of these should reuse the freed block.
|
|
assert!(b2a == b2 || b2b == b2);
|
|
|
|
// Check the free lists for a size class smaller than the largest seen so far.
|
|
pool.free(b1, 0);
|
|
pool.free(b3, 0);
|
|
let b1a = pool.alloc(0);
|
|
let b3a = pool.alloc(0);
|
|
assert_ne!(b1a, b3a);
|
|
assert!(b1a == b1 || b1a == b3);
|
|
assert!(b3a == b1 || b3a == b3);
|
|
}
|
|
|
|
#[test]
|
|
fn empty_list() {
|
|
let pool = &mut ListPool::<Inst>::new();
|
|
let mut list = EntityList::<Inst>::default();
|
|
{
|
|
let ilist = &list;
|
|
assert!(ilist.is_empty());
|
|
assert_eq!(ilist.len(pool), 0);
|
|
assert_eq!(ilist.as_slice(pool), &[]);
|
|
assert_eq!(ilist.get(0, pool), None);
|
|
assert_eq!(ilist.get(100, pool), None);
|
|
}
|
|
assert_eq!(list.as_mut_slice(pool), &[]);
|
|
assert_eq!(list.get_mut(0, pool), None);
|
|
assert_eq!(list.get_mut(100, pool), None);
|
|
|
|
list.clear(pool);
|
|
assert!(list.is_empty());
|
|
assert_eq!(list.len(pool), 0);
|
|
assert_eq!(list.as_slice(pool), &[]);
|
|
assert_eq!(list.first(pool), None);
|
|
}
|
|
|
|
#[test]
|
|
fn from_slice() {
|
|
let pool = &mut ListPool::<Inst>::new();
|
|
|
|
let list = EntityList::<Inst>::from_slice(&[Inst(0), Inst(1)], pool);
|
|
assert!(!list.is_empty());
|
|
assert_eq!(list.len(pool), 2);
|
|
assert_eq!(list.as_slice(pool), &[Inst(0), Inst(1)]);
|
|
assert_eq!(list.get(0, pool), Some(Inst(0)));
|
|
assert_eq!(list.get(100, pool), None);
|
|
|
|
let list = EntityList::<Inst>::from_slice(&[], pool);
|
|
assert!(list.is_empty());
|
|
assert_eq!(list.len(pool), 0);
|
|
assert_eq!(list.as_slice(pool), &[]);
|
|
assert_eq!(list.get(0, pool), None);
|
|
assert_eq!(list.get(100, pool), None);
|
|
}
|
|
|
|
#[test]
|
|
fn push() {
|
|
let pool = &mut ListPool::<Inst>::new();
|
|
let mut list = EntityList::<Inst>::default();
|
|
|
|
let i1 = Inst::new(1);
|
|
let i2 = Inst::new(2);
|
|
let i3 = Inst::new(3);
|
|
let i4 = Inst::new(4);
|
|
|
|
assert_eq!(list.push(i1, pool), 0);
|
|
assert_eq!(list.len(pool), 1);
|
|
assert!(!list.is_empty());
|
|
assert_eq!(list.as_slice(pool), &[i1]);
|
|
assert_eq!(list.first(pool), Some(i1));
|
|
assert_eq!(list.get(0, pool), Some(i1));
|
|
assert_eq!(list.get(1, pool), None);
|
|
|
|
assert_eq!(list.push(i2, pool), 1);
|
|
assert_eq!(list.len(pool), 2);
|
|
assert!(!list.is_empty());
|
|
assert_eq!(list.as_slice(pool), &[i1, i2]);
|
|
assert_eq!(list.first(pool), Some(i1));
|
|
assert_eq!(list.get(0, pool), Some(i1));
|
|
assert_eq!(list.get(1, pool), Some(i2));
|
|
assert_eq!(list.get(2, pool), None);
|
|
|
|
assert_eq!(list.push(i3, pool), 2);
|
|
assert_eq!(list.len(pool), 3);
|
|
assert!(!list.is_empty());
|
|
assert_eq!(list.as_slice(pool), &[i1, i2, i3]);
|
|
assert_eq!(list.first(pool), Some(i1));
|
|
assert_eq!(list.get(0, pool), Some(i1));
|
|
assert_eq!(list.get(1, pool), Some(i2));
|
|
assert_eq!(list.get(2, pool), Some(i3));
|
|
assert_eq!(list.get(3, pool), None);
|
|
|
|
// This triggers a reallocation.
|
|
assert_eq!(list.push(i4, pool), 3);
|
|
assert_eq!(list.len(pool), 4);
|
|
assert!(!list.is_empty());
|
|
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4]);
|
|
assert_eq!(list.first(pool), Some(i1));
|
|
assert_eq!(list.get(0, pool), Some(i1));
|
|
assert_eq!(list.get(1, pool), Some(i2));
|
|
assert_eq!(list.get(2, pool), Some(i3));
|
|
assert_eq!(list.get(3, pool), Some(i4));
|
|
assert_eq!(list.get(4, pool), None);
|
|
|
|
list.extend([i1, i1, i2, i2, i3, i3, i4, i4].iter().cloned(), pool);
|
|
assert_eq!(list.len(pool), 12);
|
|
assert_eq!(
|
|
list.as_slice(pool),
|
|
&[i1, i2, i3, i4, i1, i1, i2, i2, i3, i3, i4, i4]
|
|
);
|
|
|
|
let list2 = EntityList::from_iter([i1, i1, i2, i2, i3, i3, i4, i4].iter().cloned(), pool);
|
|
assert_eq!(list2.len(pool), 8);
|
|
assert_eq!(list2.as_slice(pool), &[i1, i1, i2, i2, i3, i3, i4, i4]);
|
|
}
|
|
|
|
#[test]
|
|
fn insert_remove() {
|
|
let pool = &mut ListPool::<Inst>::new();
|
|
let mut list = EntityList::<Inst>::default();
|
|
|
|
let i1 = Inst::new(1);
|
|
let i2 = Inst::new(2);
|
|
let i3 = Inst::new(3);
|
|
let i4 = Inst::new(4);
|
|
|
|
list.insert(0, i4, pool);
|
|
assert_eq!(list.as_slice(pool), &[i4]);
|
|
|
|
list.insert(0, i3, pool);
|
|
assert_eq!(list.as_slice(pool), &[i3, i4]);
|
|
|
|
list.insert(2, i2, pool);
|
|
assert_eq!(list.as_slice(pool), &[i3, i4, i2]);
|
|
|
|
list.insert(2, i1, pool);
|
|
assert_eq!(list.as_slice(pool), &[i3, i4, i1, i2]);
|
|
|
|
list.remove(3, pool);
|
|
assert_eq!(list.as_slice(pool), &[i3, i4, i1]);
|
|
|
|
list.remove(2, pool);
|
|
assert_eq!(list.as_slice(pool), &[i3, i4]);
|
|
|
|
list.remove(0, pool);
|
|
assert_eq!(list.as_slice(pool), &[i4]);
|
|
|
|
list.remove(0, pool);
|
|
assert_eq!(list.as_slice(pool), &[]);
|
|
assert!(list.is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn growing() {
|
|
let pool = &mut ListPool::<Inst>::new();
|
|
let mut list = EntityList::<Inst>::default();
|
|
|
|
let i1 = Inst::new(1);
|
|
let i2 = Inst::new(2);
|
|
let i3 = Inst::new(3);
|
|
let i4 = Inst::new(4);
|
|
|
|
// This is not supposed to change the list.
|
|
list.grow_at(0, 0, pool);
|
|
assert_eq!(list.len(pool), 0);
|
|
assert!(list.is_empty());
|
|
|
|
list.grow_at(0, 2, pool);
|
|
assert_eq!(list.len(pool), 2);
|
|
|
|
list.as_mut_slice(pool).copy_from_slice(&[i2, i3]);
|
|
|
|
list.grow_at(1, 0, pool);
|
|
assert_eq!(list.as_slice(pool), &[i2, i3]);
|
|
|
|
list.grow_at(1, 1, pool);
|
|
list.as_mut_slice(pool)[1] = i1;
|
|
assert_eq!(list.as_slice(pool), &[i2, i1, i3]);
|
|
|
|
// Append nothing at the end.
|
|
list.grow_at(3, 0, pool);
|
|
assert_eq!(list.as_slice(pool), &[i2, i1, i3]);
|
|
|
|
// Append something at the end.
|
|
list.grow_at(3, 1, pool);
|
|
list.as_mut_slice(pool)[3] = i4;
|
|
assert_eq!(list.as_slice(pool), &[i2, i1, i3, i4]);
|
|
}
|
|
|
|
#[test]
|
|
fn deep_clone() {
|
|
let pool = &mut ListPool::<Inst>::new();
|
|
|
|
let i1 = Inst::new(1);
|
|
let i2 = Inst::new(2);
|
|
let i3 = Inst::new(3);
|
|
let i4 = Inst::new(4);
|
|
|
|
let mut list1 = EntityList::from_slice(&[i1, i2, i3], pool);
|
|
let list2 = list1.deep_clone(pool);
|
|
assert_eq!(list1.as_slice(pool), &[i1, i2, i3]);
|
|
assert_eq!(list2.as_slice(pool), &[i1, i2, i3]);
|
|
|
|
list1.as_mut_slice(pool)[0] = i4;
|
|
assert_eq!(list1.as_slice(pool), &[i4, i2, i3]);
|
|
assert_eq!(list2.as_slice(pool), &[i1, i2, i3]);
|
|
}
|
|
|
|
#[test]
|
|
fn truncate() {
|
|
let pool = &mut ListPool::<Inst>::new();
|
|
|
|
let i1 = Inst::new(1);
|
|
let i2 = Inst::new(2);
|
|
let i3 = Inst::new(3);
|
|
let i4 = Inst::new(4);
|
|
|
|
let mut list = EntityList::from_slice(&[i1, i2, i3, i4, i1, i2, i3, i4], pool);
|
|
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4, i1, i2, i3, i4]);
|
|
list.truncate(6, pool);
|
|
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4, i1, i2]);
|
|
list.truncate(9, pool);
|
|
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4, i1, i2]);
|
|
list.truncate(2, pool);
|
|
assert_eq!(list.as_slice(pool), &[i1, i2]);
|
|
list.truncate(0, pool);
|
|
assert!(list.is_empty());
|
|
}
|
|
}
|