Files
wasmtime/cranelift/wasm/src/func_translator.rs
Alex Crichton 2c6841041d Validate modules while translating (#2059)
* Validate modules while translating

This commit is a change to cranelift-wasm to validate each function body
as it is translated. Additionally top-level module translation functions
will perform module validation. This commit builds on changes in
wasmparser to perform module validation interwtwined with parsing and
translation. This will be necessary for future wasm features such as
module linking where the type behind a function index, for example, can
be far away in another module. Additionally this also brings a nice
benefit where parsing the binary only happens once (instead of having an
up-front serial validation step) and validation can happen in parallel
for each function.

Most of the changes in this commit are plumbing to make sure everything
lines up right. The major functional change here is that module
compilation should be faster by validating in parallel (or skipping
function validation entirely in the case of a cache hit). Otherwise from
a user-facing perspective nothing should be that different.

This commit does mean that cranelift's translation now inherently
validates the input wasm module. This means that the Spidermonkey
integration of cranelift-wasm will also be validating the function as
it's being translated with cranelift. The associated PR for wasmparser
(bytecodealliance/wasmparser#62) provides the necessary tools to create
a `FuncValidator` for Gecko, but this is something I'll want careful
review for before landing!

* Read function operators until EOF

This way we can let the validator take care of any issues with
mismatched `end` instructions and/or trailing operators/bytes.
2020-10-05 11:02:01 -05:00

419 lines
16 KiB
Rust

//! Stand-alone WebAssembly to Cranelift IR translator.
//!
//! This module defines the `FuncTranslator` type which can translate a single WebAssembly
//! function to Cranelift IR guided by a `FuncEnvironment` which provides information about the
//! WebAssembly module and the runtime environment.
use crate::code_translator::{bitcast_arguments, translate_operator, wasm_param_types};
use crate::environ::{FuncEnvironment, ReturnMode, WasmResult};
use crate::state::FuncTranslationState;
use crate::translation_utils::get_vmctx_value_label;
use crate::wasm_unsupported;
use core::convert::TryInto;
use cranelift_codegen::entity::EntityRef;
use cranelift_codegen::ir::{self, Block, InstBuilder, ValueLabel};
use cranelift_codegen::timing;
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext, Variable};
use wasmparser::{self, BinaryReader, FuncValidator, FunctionBody, WasmModuleResources};
/// WebAssembly to Cranelift IR function translator.
///
/// A `FuncTranslator` is used to translate a binary WebAssembly function into Cranelift IR guided
/// by a `FuncEnvironment` object. A single translator instance can be reused to translate multiple
/// functions which will reduce heap allocation traffic.
pub struct FuncTranslator {
func_ctx: FunctionBuilderContext,
state: FuncTranslationState,
}
impl FuncTranslator {
/// Create a new translator.
pub fn new() -> Self {
Self {
func_ctx: FunctionBuilderContext::new(),
state: FuncTranslationState::new(),
}
}
/// Translate a binary WebAssembly function.
///
/// The `code` slice contains the binary WebAssembly *function code* as it appears in the code
/// section of a WebAssembly module, not including the initial size of the function code. The
/// slice is expected to contain two parts:
///
/// - The declaration of *locals*, and
/// - The function *body* as an expression.
///
/// See [the WebAssembly specification][wasm].
///
/// [wasm]: https://webassembly.github.io/spec/core/binary/modules.html#code-section
///
/// The Cranelift IR function `func` should be completely empty except for the `func.signature`
/// and `func.name` fields. The signature may contain special-purpose arguments which are not
/// regarded as WebAssembly local variables. Any signature arguments marked as
/// `ArgumentPurpose::Normal` are made accessible as WebAssembly local variables.
///
pub fn translate<FE: FuncEnvironment + ?Sized>(
&mut self,
validator: &mut FuncValidator<impl WasmModuleResources>,
code: &[u8],
code_offset: usize,
func: &mut ir::Function,
environ: &mut FE,
) -> WasmResult<()> {
self.translate_body(
validator,
FunctionBody::new(code_offset, code),
func,
environ,
)
}
/// Translate a binary WebAssembly function from a `FunctionBody`.
pub fn translate_body<FE: FuncEnvironment + ?Sized>(
&mut self,
validator: &mut FuncValidator<impl WasmModuleResources>,
body: FunctionBody<'_>,
func: &mut ir::Function,
environ: &mut FE,
) -> WasmResult<()> {
let _tt = timing::wasm_translate_function();
let mut reader = body.get_binary_reader();
log::debug!(
"translate({} bytes, {}{})",
reader.bytes_remaining(),
func.name,
func.signature
);
debug_assert_eq!(func.dfg.num_blocks(), 0, "Function must be empty");
debug_assert_eq!(func.dfg.num_insts(), 0, "Function must be empty");
// This clears the `FunctionBuilderContext`.
let mut builder = FunctionBuilder::new(func, &mut self.func_ctx);
builder.set_srcloc(cur_srcloc(&reader));
let entry_block = builder.create_block();
builder.append_block_params_for_function_params(entry_block);
builder.switch_to_block(entry_block); // This also creates values for the arguments.
builder.seal_block(entry_block); // Declare all predecessors known.
// Make sure the entry block is inserted in the layout before we make any callbacks to
// `environ`. The callback functions may need to insert things in the entry block.
builder.ensure_inserted_block();
let num_params = declare_wasm_parameters(&mut builder, entry_block, environ);
// Set up the translation state with a single pushed control block representing the whole
// function and its return values.
let exit_block = builder.create_block();
builder.append_block_params_for_function_returns(exit_block);
self.state.initialize(&builder.func.signature, exit_block);
parse_local_decls(&mut reader, &mut builder, num_params, environ, validator)?;
parse_function_body(validator, reader, &mut builder, &mut self.state, environ)?;
builder.finalize();
Ok(())
}
}
/// Declare local variables for the signature parameters that correspond to WebAssembly locals.
///
/// Return the number of local variables declared.
fn declare_wasm_parameters<FE: FuncEnvironment + ?Sized>(
builder: &mut FunctionBuilder,
entry_block: Block,
environ: &FE,
) -> usize {
let sig_len = builder.func.signature.params.len();
let mut next_local = 0;
for i in 0..sig_len {
let param_type = builder.func.signature.params[i];
// There may be additional special-purpose parameters in addition to the normal WebAssembly
// signature parameters. For example, a `vmctx` pointer.
if environ.is_wasm_parameter(&builder.func.signature, i) {
// This is a normal WebAssembly signature parameter, so create a local for it.
let local = Variable::new(next_local);
builder.declare_var(local, param_type.value_type);
next_local += 1;
let param_value = builder.block_params(entry_block)[i];
builder.def_var(local, param_value);
}
if param_type.purpose == ir::ArgumentPurpose::VMContext {
let param_value = builder.block_params(entry_block)[i];
builder.set_val_label(param_value, get_vmctx_value_label());
}
}
next_local
}
/// Parse the local variable declarations that precede the function body.
///
/// Declare local variables, starting from `num_params`.
fn parse_local_decls<FE: FuncEnvironment + ?Sized>(
reader: &mut BinaryReader,
builder: &mut FunctionBuilder,
num_params: usize,
environ: &mut FE,
validator: &mut FuncValidator<impl WasmModuleResources>,
) -> WasmResult<()> {
let mut next_local = num_params;
let local_count = reader.read_var_u32()?;
for _ in 0..local_count {
builder.set_srcloc(cur_srcloc(reader));
let pos = reader.original_position();
let count = reader.read_var_u32()?;
let ty = reader.read_type()?;
validator.define_locals(pos, count, ty)?;
declare_locals(builder, count, ty, &mut next_local, environ)?;
}
Ok(())
}
/// Declare `count` local variables of the same type, starting from `next_local`.
///
/// Fail of too many locals are declared in the function, or if the type is not valid for a local.
fn declare_locals<FE: FuncEnvironment + ?Sized>(
builder: &mut FunctionBuilder,
count: u32,
wasm_type: wasmparser::Type,
next_local: &mut usize,
environ: &mut FE,
) -> WasmResult<()> {
// All locals are initialized to 0.
use wasmparser::Type::*;
let zeroval = match wasm_type {
I32 => builder.ins().iconst(ir::types::I32, 0),
I64 => builder.ins().iconst(ir::types::I64, 0),
F32 => builder.ins().f32const(ir::immediates::Ieee32::with_bits(0)),
F64 => builder.ins().f64const(ir::immediates::Ieee64::with_bits(0)),
V128 => {
let constant_handle = builder.func.dfg.constants.insert([0; 16].to_vec().into());
builder.ins().vconst(ir::types::I8X16, constant_handle)
}
ExternRef | FuncRef => {
environ.translate_ref_null(builder.cursor(), wasm_type.try_into()?)?
}
ty => return Err(wasm_unsupported!("unsupported local type {:?}", ty)),
};
let ty = builder.func.dfg.value_type(zeroval);
for _ in 0..count {
let local = Variable::new(*next_local);
builder.declare_var(local, ty);
builder.def_var(local, zeroval);
builder.set_val_label(zeroval, ValueLabel::new(*next_local));
*next_local += 1;
}
Ok(())
}
/// Parse the function body in `reader`.
///
/// This assumes that the local variable declarations have already been parsed and function
/// arguments and locals are declared in the builder.
fn parse_function_body<FE: FuncEnvironment + ?Sized>(
validator: &mut FuncValidator<impl WasmModuleResources>,
mut reader: BinaryReader,
builder: &mut FunctionBuilder,
state: &mut FuncTranslationState,
environ: &mut FE,
) -> WasmResult<()> {
// The control stack is initialized with a single block representing the whole function.
debug_assert_eq!(state.control_stack.len(), 1, "State not initialized");
while !reader.eof() {
let pos = reader.original_position();
builder.set_srcloc(cur_srcloc(&reader));
let op = reader.read_operator()?;
validator.op(pos, &op)?;
environ.before_translate_operator(&op, builder, state)?;
translate_operator(validator, &op, builder, state, environ)?;
environ.after_translate_operator(&op, builder, state)?;
}
let pos = reader.original_position();
validator.finish(pos)?;
// The final `End` operator left us in the exit block where we need to manually add a return
// instruction.
//
// If the exit block is unreachable, it may not have the correct arguments, so we would
// generate a return instruction that doesn't match the signature.
if state.reachable {
debug_assert!(builder.is_pristine());
if !builder.is_unreachable() {
match environ.return_mode() {
ReturnMode::NormalReturns => {
let return_types = wasm_param_types(&builder.func.signature.returns, |i| {
environ.is_wasm_return(&builder.func.signature, i)
});
bitcast_arguments(&mut state.stack, &return_types, builder);
builder.ins().return_(&state.stack)
}
ReturnMode::FallthroughReturn => builder.ins().fallthrough_return(&state.stack),
};
}
}
// Discard any remaining values on the stack. Either we just returned them,
// or the end of the function is unreachable.
state.stack.clear();
Ok(())
}
/// Get the current source location from a reader.
fn cur_srcloc(reader: &BinaryReader) -> ir::SourceLoc {
// We record source locations as byte code offsets relative to the beginning of the file.
// This will wrap around if byte code is larger than 4 GB.
ir::SourceLoc::new(reader.original_position() as u32)
}
#[cfg(test)]
mod tests {
use super::{FuncTranslator, ReturnMode};
use crate::environ::DummyEnvironment;
use cranelift_codegen::ir::types::I32;
use cranelift_codegen::{ir, isa, settings, Context};
use log::debug;
use target_lexicon::PointerWidth;
use wasmparser::{
FuncValidator, FunctionBody, Parser, ValidPayload, Validator, ValidatorResources,
};
#[test]
fn small1() {
// Implicit return.
let wasm = wat::parse_str(
"
(module
(func $small2 (param i32) (result i32)
(i32.add (get_local 0) (i32.const 1))
)
)
",
)
.unwrap();
let mut trans = FuncTranslator::new();
let flags = settings::Flags::new(settings::builder());
let runtime = DummyEnvironment::new(
isa::TargetFrontendConfig {
default_call_conv: isa::CallConv::Fast,
pointer_width: PointerWidth::U64,
},
ReturnMode::NormalReturns,
false,
);
let mut ctx = Context::new();
ctx.func.name = ir::ExternalName::testcase("small1");
ctx.func.signature.params.push(ir::AbiParam::new(I32));
ctx.func.signature.returns.push(ir::AbiParam::new(I32));
let (body, mut validator) = extract_func(&wasm);
trans
.translate_body(&mut validator, body, &mut ctx.func, &mut runtime.func_env())
.unwrap();
debug!("{}", ctx.func.display(None));
ctx.verify(&flags).unwrap();
}
#[test]
fn small2() {
// Same as above, but with an explicit return instruction.
let wasm = wat::parse_str(
"
(module
(func $small2 (param i32) (result i32)
(return (i32.add (get_local 0) (i32.const 1)))
)
)
",
)
.unwrap();
let mut trans = FuncTranslator::new();
let flags = settings::Flags::new(settings::builder());
let runtime = DummyEnvironment::new(
isa::TargetFrontendConfig {
default_call_conv: isa::CallConv::Fast,
pointer_width: PointerWidth::U64,
},
ReturnMode::NormalReturns,
false,
);
let mut ctx = Context::new();
ctx.func.name = ir::ExternalName::testcase("small2");
ctx.func.signature.params.push(ir::AbiParam::new(I32));
ctx.func.signature.returns.push(ir::AbiParam::new(I32));
let (body, mut validator) = extract_func(&wasm);
trans
.translate_body(&mut validator, body, &mut ctx.func, &mut runtime.func_env())
.unwrap();
debug!("{}", ctx.func.display(None));
ctx.verify(&flags).unwrap();
}
#[test]
fn infloop() {
// An infinite loop, no return instructions.
let wasm = wat::parse_str(
"
(module
(func $infloop (result i32)
(local i32)
(loop (result i32)
(i32.add (get_local 0) (i32.const 1))
(set_local 0)
(br 0)
)
)
)
",
)
.unwrap();
let mut trans = FuncTranslator::new();
let flags = settings::Flags::new(settings::builder());
let runtime = DummyEnvironment::new(
isa::TargetFrontendConfig {
default_call_conv: isa::CallConv::Fast,
pointer_width: PointerWidth::U64,
},
ReturnMode::NormalReturns,
false,
);
let mut ctx = Context::new();
ctx.func.name = ir::ExternalName::testcase("infloop");
ctx.func.signature.returns.push(ir::AbiParam::new(I32));
let (body, mut validator) = extract_func(&wasm);
trans
.translate_body(&mut validator, body, &mut ctx.func, &mut runtime.func_env())
.unwrap();
debug!("{}", ctx.func.display(None));
ctx.verify(&flags).unwrap();
}
fn extract_func(wat: &[u8]) -> (FunctionBody<'_>, FuncValidator<ValidatorResources>) {
let mut validator = Validator::new();
for payload in Parser::new(0).parse_all(wat) {
match validator.payload(&payload.unwrap()).unwrap() {
ValidPayload::Func(validator, body) => return (body, validator),
_ => {}
}
}
panic!("failed to find function");
}
}