This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. After the suggestion of Chris, `Function` has been split into mostly two parts: - on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`. - on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on. Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache: - most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set. - user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`. - some refactorings have been made for function names: - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name. - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with. The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions. A basic fuzz target has been introduced that tries to do the bare minimum: - check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function. - check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache. - This last check is less efficient and less likely to happen, so probably should be rethought a bit. Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip. Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. Fixes #4155.
685 lines
22 KiB
Rust
685 lines
22 KiB
Rust
//! Converting Cranelift IR to text.
|
|
//!
|
|
//! The `write` module provides the `write_function` function which converts an IR `Function` to an
|
|
//! equivalent textual form. This textual form can be read back by the `cranelift-reader` crate.
|
|
|
|
use crate::entity::SecondaryMap;
|
|
use crate::ir::entities::AnyEntity;
|
|
use crate::ir::{Block, DataFlowGraph, Function, Inst, SigRef, Type, Value, ValueDef};
|
|
use crate::packed_option::ReservedValue;
|
|
use alloc::string::String;
|
|
use alloc::vec::Vec;
|
|
use core::fmt::{self, Write};
|
|
|
|
/// A `FuncWriter` used to decorate functions during printing.
|
|
pub trait FuncWriter {
|
|
/// Write the basic block header for the current function.
|
|
fn write_block_header(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
block: Block,
|
|
indent: usize,
|
|
) -> fmt::Result;
|
|
|
|
/// Write the given `inst` to `w`.
|
|
fn write_instruction(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
inst: Inst,
|
|
indent: usize,
|
|
) -> fmt::Result;
|
|
|
|
/// Write the preamble to `w`. By default, this uses `write_entity_definition`.
|
|
fn write_preamble(&mut self, w: &mut dyn Write, func: &Function) -> Result<bool, fmt::Error> {
|
|
self.super_preamble(w, func)
|
|
}
|
|
|
|
/// Default impl of `write_preamble`
|
|
fn super_preamble(&mut self, w: &mut dyn Write, func: &Function) -> Result<bool, fmt::Error> {
|
|
let mut any = false;
|
|
|
|
for (ss, slot) in func.dynamic_stack_slots.iter() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, ss.into(), slot)?;
|
|
}
|
|
|
|
for (ss, slot) in func.sized_stack_slots.iter() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, ss.into(), slot)?;
|
|
}
|
|
|
|
for (gv, gv_data) in &func.global_values {
|
|
any = true;
|
|
self.write_entity_definition(w, func, gv.into(), gv_data)?;
|
|
}
|
|
|
|
for (heap, heap_data) in &func.heaps {
|
|
if !heap_data.index_type.is_invalid() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, heap.into(), heap_data)?;
|
|
}
|
|
}
|
|
|
|
for (table, table_data) in &func.tables {
|
|
if !table_data.index_type.is_invalid() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, table.into(), table_data)?;
|
|
}
|
|
}
|
|
|
|
// Write out all signatures before functions since function declarations can refer to
|
|
// signatures.
|
|
for (sig, sig_data) in &func.dfg.signatures {
|
|
any = true;
|
|
self.write_entity_definition(w, func, sig.into(), &sig_data)?;
|
|
}
|
|
|
|
for (fnref, ext_func) in &func.dfg.ext_funcs {
|
|
if ext_func.signature != SigRef::reserved_value() {
|
|
any = true;
|
|
self.write_entity_definition(
|
|
w,
|
|
func,
|
|
fnref.into(),
|
|
&ext_func.display(Some(&func.params)),
|
|
)?;
|
|
}
|
|
}
|
|
|
|
for (jt, jt_data) in &func.jump_tables {
|
|
any = true;
|
|
self.write_entity_definition(w, func, jt.into(), jt_data)?;
|
|
}
|
|
|
|
for (&cref, cval) in func.dfg.constants.iter() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, cref.into(), cval)?;
|
|
}
|
|
|
|
if let Some(limit) = func.stack_limit {
|
|
any = true;
|
|
self.write_entity_definition(w, func, AnyEntity::StackLimit, &limit)?;
|
|
}
|
|
|
|
Ok(any)
|
|
}
|
|
|
|
/// Write an entity definition defined in the preamble to `w`.
|
|
fn write_entity_definition(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
entity: AnyEntity,
|
|
value: &dyn fmt::Display,
|
|
) -> fmt::Result {
|
|
self.super_entity_definition(w, func, entity, value)
|
|
}
|
|
|
|
/// Default impl of `write_entity_definition`
|
|
#[allow(unused_variables)]
|
|
fn super_entity_definition(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
entity: AnyEntity,
|
|
value: &dyn fmt::Display,
|
|
) -> fmt::Result {
|
|
writeln!(w, " {} = {}", entity, value)
|
|
}
|
|
}
|
|
|
|
/// A `PlainWriter` that doesn't decorate the function.
|
|
pub struct PlainWriter;
|
|
|
|
impl FuncWriter for PlainWriter {
|
|
fn write_instruction(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
inst: Inst,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
write_instruction(w, func, aliases, inst, indent)
|
|
}
|
|
|
|
fn write_block_header(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
block: Block,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
write_block_header(w, func, block, indent)
|
|
}
|
|
}
|
|
|
|
/// Write `func` to `w` as equivalent text.
|
|
/// Use `isa` to emit ISA-dependent annotations.
|
|
pub fn write_function(w: &mut dyn Write, func: &Function) -> fmt::Result {
|
|
decorate_function(&mut PlainWriter, w, func)
|
|
}
|
|
|
|
/// Create a reverse-alias map from a value to all aliases having that value as a direct target
|
|
fn alias_map(func: &Function) -> SecondaryMap<Value, Vec<Value>> {
|
|
let mut aliases = SecondaryMap::<_, Vec<_>>::new();
|
|
for v in func.dfg.values() {
|
|
// VADFS returns the immediate target of an alias
|
|
if let Some(k) = func.dfg.value_alias_dest_for_serialization(v) {
|
|
aliases[k].push(v);
|
|
}
|
|
}
|
|
aliases
|
|
}
|
|
|
|
/// Writes `func` to `w` as text.
|
|
/// write_function_plain is passed as 'closure' to print instructions as text.
|
|
/// pretty_function_error is passed as 'closure' to add error decoration.
|
|
pub fn decorate_function<FW: FuncWriter>(
|
|
func_w: &mut FW,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
) -> fmt::Result {
|
|
write!(w, "function ")?;
|
|
write_spec(w, func)?;
|
|
writeln!(w, " {{")?;
|
|
let aliases = alias_map(func);
|
|
let mut any = func_w.write_preamble(w, func)?;
|
|
for block in &func.layout {
|
|
if any {
|
|
writeln!(w)?;
|
|
}
|
|
decorate_block(func_w, w, func, &aliases, block)?;
|
|
any = true;
|
|
}
|
|
writeln!(w, "}}")
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// Function spec.
|
|
|
|
fn write_spec(w: &mut dyn Write, func: &Function) -> fmt::Result {
|
|
write!(w, "{}{}", func.name, func.signature)
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// Basic blocks
|
|
|
|
fn write_arg(w: &mut dyn Write, func: &Function, arg: Value) -> fmt::Result {
|
|
write!(w, "{}: {}", arg, func.dfg.value_type(arg))
|
|
}
|
|
|
|
/// Write out the basic block header, outdented:
|
|
///
|
|
/// block1:
|
|
/// block1(v1: i32):
|
|
/// block10(v4: f64, v5: b1):
|
|
///
|
|
pub fn write_block_header(
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
block: Block,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
let cold = if func.layout.is_cold(block) {
|
|
" cold"
|
|
} else {
|
|
""
|
|
};
|
|
|
|
// The `indent` is the instruction indentation. block headers are 4 spaces out from that.
|
|
write!(w, "{1:0$}{2}", indent - 4, "", block)?;
|
|
|
|
let mut args = func.dfg.block_params(block).iter().cloned();
|
|
match args.next() {
|
|
None => return writeln!(w, "{}:", cold),
|
|
Some(arg) => {
|
|
write!(w, "(")?;
|
|
write_arg(w, func, arg)?;
|
|
}
|
|
}
|
|
// Remaining arguments.
|
|
for arg in args {
|
|
write!(w, ", ")?;
|
|
write_arg(w, func, arg)?;
|
|
}
|
|
writeln!(w, "){}:", cold)
|
|
}
|
|
|
|
fn decorate_block<FW: FuncWriter>(
|
|
func_w: &mut FW,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
block: Block,
|
|
) -> fmt::Result {
|
|
// Indent all instructions if any srclocs are present.
|
|
let indent = if func.rel_srclocs().is_empty() { 4 } else { 36 };
|
|
|
|
func_w.write_block_header(w, func, block, indent)?;
|
|
for a in func.dfg.block_params(block).iter().cloned() {
|
|
write_value_aliases(w, aliases, a, indent)?;
|
|
}
|
|
|
|
for inst in func.layout.block_insts(block) {
|
|
func_w.write_instruction(w, func, aliases, inst, indent)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// Instructions
|
|
|
|
// Should `inst` be printed with a type suffix?
|
|
//
|
|
// Polymorphic instructions may need a suffix indicating the value of the controlling type variable
|
|
// if it can't be trivially inferred.
|
|
//
|
|
fn type_suffix(func: &Function, inst: Inst) -> Option<Type> {
|
|
let inst_data = &func.dfg[inst];
|
|
let constraints = inst_data.opcode().constraints();
|
|
|
|
if !constraints.is_polymorphic() {
|
|
return None;
|
|
}
|
|
|
|
// If the controlling type variable can be inferred from the type of the designated value input
|
|
// operand, we don't need the type suffix.
|
|
if constraints.use_typevar_operand() {
|
|
let ctrl_var = inst_data.typevar_operand(&func.dfg.value_lists).unwrap();
|
|
let def_block = match func.dfg.value_def(ctrl_var) {
|
|
ValueDef::Result(instr, _) => func.layout.inst_block(instr),
|
|
ValueDef::Param(block, _) => Some(block),
|
|
};
|
|
if def_block.is_some() && def_block == func.layout.inst_block(inst) {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
let rtype = func.dfg.ctrl_typevar(inst);
|
|
assert!(
|
|
!rtype.is_invalid(),
|
|
"Polymorphic instruction must produce a result"
|
|
);
|
|
Some(rtype)
|
|
}
|
|
|
|
/// Write out any aliases to the given target, including indirect aliases
|
|
fn write_value_aliases(
|
|
w: &mut dyn Write,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
target: Value,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
let mut todo_stack = vec![target];
|
|
while let Some(target) = todo_stack.pop() {
|
|
for &a in &aliases[target] {
|
|
writeln!(w, "{1:0$}{2} -> {3}", indent, "", a, target)?;
|
|
todo_stack.push(a);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn write_instruction(
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
inst: Inst,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
// Prefix containing source location, encoding, and value locations.
|
|
let mut s = String::with_capacity(16);
|
|
|
|
// Source location goes first.
|
|
let srcloc = func.srcloc(inst);
|
|
if !srcloc.is_default() {
|
|
write!(s, "{} ", srcloc)?;
|
|
}
|
|
|
|
// Write out prefix and indent the instruction.
|
|
write!(w, "{1:0$}", indent, s)?;
|
|
|
|
// Write out the result values, if any.
|
|
let mut has_results = false;
|
|
for r in func.dfg.inst_results(inst) {
|
|
if !has_results {
|
|
has_results = true;
|
|
write!(w, "{}", r)?;
|
|
} else {
|
|
write!(w, ", {}", r)?;
|
|
}
|
|
}
|
|
if has_results {
|
|
write!(w, " = ")?;
|
|
}
|
|
|
|
// Then the opcode, possibly with a '.type' suffix.
|
|
let opcode = func.dfg[inst].opcode();
|
|
|
|
match type_suffix(func, inst) {
|
|
Some(suf) => write!(w, "{}.{}", opcode, suf)?,
|
|
None => write!(w, "{}", opcode)?,
|
|
}
|
|
|
|
write_operands(w, &func.dfg, inst)?;
|
|
writeln!(w)?;
|
|
|
|
// Value aliases come out on lines after the instruction defining the referent.
|
|
for r in func.dfg.inst_results(inst) {
|
|
write_value_aliases(w, aliases, *r, indent)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Write the operands of `inst` to `w` with a prepended space.
|
|
pub fn write_operands(w: &mut dyn Write, dfg: &DataFlowGraph, inst: Inst) -> fmt::Result {
|
|
let pool = &dfg.value_lists;
|
|
use crate::ir::instructions::InstructionData::*;
|
|
match dfg[inst] {
|
|
AtomicRmw { op, args, .. } => write!(w, " {} {}, {}", op, args[0], args[1]),
|
|
AtomicCas { args, .. } => write!(w, " {}, {}, {}", args[0], args[1], args[2]),
|
|
LoadNoOffset { flags, arg, .. } => write!(w, "{} {}", flags, arg),
|
|
StoreNoOffset { flags, args, .. } => write!(w, "{} {}, {}", flags, args[0], args[1]),
|
|
Unary { arg, .. } => write!(w, " {}", arg),
|
|
UnaryImm { imm, .. } => write!(w, " {}", imm),
|
|
UnaryIeee32 { imm, .. } => write!(w, " {}", imm),
|
|
UnaryIeee64 { imm, .. } => write!(w, " {}", imm),
|
|
UnaryBool { imm, .. } => write!(w, " {}", imm),
|
|
UnaryGlobalValue { global_value, .. } => write!(w, " {}", global_value),
|
|
UnaryConst {
|
|
constant_handle, ..
|
|
} => write!(w, " {}", constant_handle),
|
|
Binary { args, .. } => write!(w, " {}, {}", args[0], args[1]),
|
|
BinaryImm8 { arg, imm, .. } => write!(w, " {}, {}", arg, imm),
|
|
BinaryImm64 { arg, imm, .. } => write!(w, " {}, {}", arg, imm),
|
|
Ternary { args, .. } => write!(w, " {}, {}, {}", args[0], args[1], args[2]),
|
|
MultiAry { ref args, .. } => {
|
|
if args.is_empty() {
|
|
write!(w, "")
|
|
} else {
|
|
write!(w, " {}", DisplayValues(args.as_slice(pool)))
|
|
}
|
|
}
|
|
NullAry { .. } => write!(w, " "),
|
|
TernaryImm8 { imm, args, .. } => write!(w, " {}, {}, {}", args[0], args[1], imm),
|
|
Shuffle { imm, args, .. } => {
|
|
let data = dfg.immediates.get(imm).expect(
|
|
"Expected the shuffle mask to already be inserted into the immediates table",
|
|
);
|
|
write!(w, " {}, {}, {}", args[0], args[1], data)
|
|
}
|
|
IntCompare { cond, args, .. } => write!(w, " {} {}, {}", cond, args[0], args[1]),
|
|
IntCompareImm { cond, arg, imm, .. } => write!(w, " {} {}, {}", cond, arg, imm),
|
|
IntCond { cond, arg, .. } => write!(w, " {} {}", cond, arg),
|
|
FloatCompare { cond, args, .. } => write!(w, " {} {}, {}", cond, args[0], args[1]),
|
|
FloatCond { cond, arg, .. } => write!(w, " {} {}", cond, arg),
|
|
IntSelect { cond, args, .. } => {
|
|
write!(w, " {} {}, {}, {}", cond, args[0], args[1], args[2])
|
|
}
|
|
Jump {
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
write!(w, " {}", destination)?;
|
|
write_block_args(w, args.as_slice(pool))
|
|
}
|
|
Branch {
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(w, " {}, {}", args[0], destination)?;
|
|
write_block_args(w, &args[1..])
|
|
}
|
|
BranchInt {
|
|
cond,
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(w, " {} {}, {}", cond, args[0], destination)?;
|
|
write_block_args(w, &args[1..])
|
|
}
|
|
BranchFloat {
|
|
cond,
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(w, " {} {}, {}", cond, args[0], destination)?;
|
|
write_block_args(w, &args[1..])
|
|
}
|
|
BranchIcmp {
|
|
cond,
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(w, " {} {}, {}, {}", cond, args[0], args[1], destination)?;
|
|
write_block_args(w, &args[2..])
|
|
}
|
|
BranchTable {
|
|
arg,
|
|
destination,
|
|
table,
|
|
..
|
|
} => write!(w, " {}, {}, {}", arg, destination, table),
|
|
Call {
|
|
func_ref, ref args, ..
|
|
} => write!(w, " {}({})", func_ref, DisplayValues(args.as_slice(pool))),
|
|
CallIndirect {
|
|
sig_ref, ref args, ..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(
|
|
w,
|
|
" {}, {}({})",
|
|
sig_ref,
|
|
args[0],
|
|
DisplayValues(&args[1..])
|
|
)
|
|
}
|
|
FuncAddr { func_ref, .. } => write!(w, " {}", func_ref),
|
|
StackLoad {
|
|
stack_slot, offset, ..
|
|
} => write!(w, " {}{}", stack_slot, offset),
|
|
StackStore {
|
|
arg,
|
|
stack_slot,
|
|
offset,
|
|
..
|
|
} => write!(w, " {}, {}{}", arg, stack_slot, offset),
|
|
DynamicStackLoad {
|
|
dynamic_stack_slot, ..
|
|
} => write!(w, " {}", dynamic_stack_slot),
|
|
DynamicStackStore {
|
|
arg,
|
|
dynamic_stack_slot,
|
|
..
|
|
} => write!(w, " {}, {}", arg, dynamic_stack_slot),
|
|
HeapAddr { heap, arg, imm, .. } => write!(w, " {}, {}, {}", heap, arg, imm),
|
|
TableAddr { table, arg, .. } => write!(w, " {}, {}", table, arg),
|
|
Load {
|
|
flags, arg, offset, ..
|
|
} => write!(w, "{} {}{}", flags, arg, offset),
|
|
Store {
|
|
flags,
|
|
args,
|
|
offset,
|
|
..
|
|
} => write!(w, "{} {}, {}{}", flags, args[0], args[1], offset),
|
|
Trap { code, .. } => write!(w, " {}", code),
|
|
CondTrap { arg, code, .. } => write!(w, " {}, {}", arg, code),
|
|
IntCondTrap {
|
|
cond, arg, code, ..
|
|
} => write!(w, " {} {}, {}", cond, arg, code),
|
|
FloatCondTrap {
|
|
cond, arg, code, ..
|
|
} => write!(w, " {} {}, {}", cond, arg, code),
|
|
}
|
|
}
|
|
|
|
/// Write block args using optional parantheses.
|
|
fn write_block_args(w: &mut dyn Write, args: &[Value]) -> fmt::Result {
|
|
if args.is_empty() {
|
|
Ok(())
|
|
} else {
|
|
write!(w, "({})", DisplayValues(args))
|
|
}
|
|
}
|
|
|
|
/// Displayable slice of values.
|
|
struct DisplayValues<'a>(&'a [Value]);
|
|
|
|
impl<'a> fmt::Display for DisplayValues<'a> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
for (i, val) in self.0.iter().enumerate() {
|
|
if i == 0 {
|
|
write!(f, "{}", val)?;
|
|
} else {
|
|
write!(f, ", {}", val)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
struct DisplayValuesWithDelimiter<'a>(&'a [Value], char);
|
|
|
|
impl<'a> fmt::Display for DisplayValuesWithDelimiter<'a> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
for (i, val) in self.0.iter().enumerate() {
|
|
if i == 0 {
|
|
write!(f, "{}", val)?;
|
|
} else {
|
|
write!(f, "{}{}", self.1, val)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::cursor::{Cursor, CursorPosition, FuncCursor};
|
|
use crate::ir::types;
|
|
use crate::ir::{Function, InstBuilder, StackSlotData, StackSlotKind, UserFuncName};
|
|
use alloc::string::ToString;
|
|
|
|
#[test]
|
|
fn basic() {
|
|
let mut f = Function::new();
|
|
assert_eq!(f.to_string(), "function u0:0() fast {\n}\n");
|
|
|
|
f.name = UserFuncName::testcase("foo");
|
|
assert_eq!(f.to_string(), "function %foo() fast {\n}\n");
|
|
|
|
f.create_sized_stack_slot(StackSlotData::new(StackSlotKind::ExplicitSlot, 4));
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n}\n"
|
|
);
|
|
|
|
let block = f.dfg.make_block();
|
|
f.layout.append_block(block);
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0:\n}\n"
|
|
);
|
|
|
|
f.dfg.append_block_param(block, types::I8);
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0(v0: i8):\n}\n"
|
|
);
|
|
|
|
f.dfg.append_block_param(block, types::F32.by(4).unwrap());
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0(v0: i8, v1: f32x4):\n}\n"
|
|
);
|
|
|
|
{
|
|
let mut cursor = FuncCursor::new(&mut f);
|
|
cursor.set_position(CursorPosition::After(block));
|
|
cursor.ins().return_(&[])
|
|
};
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0(v0: i8, v1: f32x4):\n return\n}\n"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn aliases() {
|
|
use crate::ir::InstBuilder;
|
|
|
|
let mut func = Function::new();
|
|
{
|
|
let block0 = func.dfg.make_block();
|
|
let mut pos = FuncCursor::new(&mut func);
|
|
pos.insert_block(block0);
|
|
|
|
// make some detached values for change_to_alias
|
|
let v0 = pos.func.dfg.append_block_param(block0, types::I32);
|
|
let v1 = pos.func.dfg.append_block_param(block0, types::I32);
|
|
let v2 = pos.func.dfg.append_block_param(block0, types::I32);
|
|
pos.func.dfg.detach_block_params(block0);
|
|
|
|
// alias to a param--will be printed at beginning of block defining param
|
|
let v3 = pos.func.dfg.append_block_param(block0, types::I32);
|
|
pos.func.dfg.change_to_alias(v0, v3);
|
|
|
|
// alias to an alias--should print attached to alias, not ultimate target
|
|
pos.func.dfg.make_value_alias_for_serialization(v0, v2); // v0 <- v2
|
|
|
|
// alias to a result--will be printed after instruction producing result
|
|
let _dummy0 = pos.ins().iconst(types::I32, 42);
|
|
let v4 = pos.ins().iadd(v0, v0);
|
|
pos.func.dfg.change_to_alias(v1, v4);
|
|
let _dummy1 = pos.ins().iconst(types::I32, 23);
|
|
let _v7 = pos.ins().iadd(v1, v1);
|
|
}
|
|
assert_eq!(
|
|
func.to_string(),
|
|
"function u0:0() fast {\nblock0(v3: i32):\n v0 -> v3\n v2 -> v0\n v4 = iconst.i32 42\n v5 = iadd v0, v0\n v1 -> v5\n v6 = iconst.i32 23\n v7 = iadd v1, v1\n}\n"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn cold_blocks() {
|
|
let mut func = Function::new();
|
|
{
|
|
let mut pos = FuncCursor::new(&mut func);
|
|
|
|
let block0 = pos.func.dfg.make_block();
|
|
pos.insert_block(block0);
|
|
pos.func.layout.set_cold(block0);
|
|
|
|
let block1 = pos.func.dfg.make_block();
|
|
pos.insert_block(block1);
|
|
pos.func.dfg.append_block_param(block1, types::I32);
|
|
pos.func.layout.set_cold(block1);
|
|
}
|
|
|
|
assert_eq!(
|
|
func.to_string(),
|
|
"function u0:0() fast {\nblock0 cold:\n\nblock1(v0: i32) cold:\n}\n"
|
|
);
|
|
}
|
|
}
|