Files
wasmtime/crates/jit/src/code_memory.rs
Peter Huene ad9fa11d48 Code review feedback.
* Remove `once-cell` dependency.
* Remove function address `BTreeMap` from `CompiledModule` in favor of binary
  searching finished functions directly.
* Use `with_capacity` when populating `CompiledModule` finished functions and
  trampolines.
2021-04-07 16:37:04 -07:00

351 lines
12 KiB
Rust

//! Memory management for executable code.
use crate::object::{
utils::{try_parse_func_name, try_parse_trampoline_name},
ObjectUnwindInfo,
};
use crate::unwind::UnwindRegistry;
use object::read::{File as ObjectFile, Object, ObjectSection, ObjectSymbol};
use region;
use std::collections::BTreeMap;
use std::mem::ManuallyDrop;
use std::{cmp, mem};
use wasmtime_environ::{
isa::{unwind::UnwindInfo, TargetIsa},
wasm::{FuncIndex, SignatureIndex},
CompiledFunction,
};
use wasmtime_runtime::{Mmap, VMFunctionBody};
struct CodeMemoryEntry {
mmap: ManuallyDrop<Mmap>,
registry: ManuallyDrop<UnwindRegistry>,
len: usize,
}
impl CodeMemoryEntry {
fn with_capacity(cap: usize) -> Result<Self, String> {
let mmap = ManuallyDrop::new(Mmap::with_at_least(cap).map_err(|e| e.to_string())?);
let registry = ManuallyDrop::new(UnwindRegistry::new(mmap.as_ptr() as usize));
Ok(Self {
mmap,
registry,
len: 0,
})
}
fn range(&self) -> (usize, usize) {
let start = self.mmap.as_ptr() as usize;
let end = start + self.len;
(start, end)
}
}
impl Drop for CodeMemoryEntry {
fn drop(&mut self) {
unsafe {
// The registry needs to be dropped before the mmap
ManuallyDrop::drop(&mut self.registry);
ManuallyDrop::drop(&mut self.mmap);
}
}
}
pub(crate) struct CodeMemoryObjectAllocation<'a> {
buf: &'a mut [u8],
funcs: BTreeMap<FuncIndex, (usize, usize)>,
trampolines: BTreeMap<SignatureIndex, (usize, usize)>,
}
impl<'a> CodeMemoryObjectAllocation<'a> {
pub fn code_range(self) -> &'a mut [u8] {
self.buf
}
pub fn funcs_len(&self) -> usize {
self.funcs.len()
}
pub fn trampolines_len(&self) -> usize {
self.trampolines.len()
}
pub fn funcs(&'a self) -> impl Iterator<Item = (FuncIndex, &'a mut [VMFunctionBody])> + 'a {
let buf = self.buf as *const _ as *mut [u8];
self.funcs.iter().map(move |(i, (start, len))| {
(*i, unsafe {
CodeMemory::view_as_mut_vmfunc_slice(&mut (*buf)[*start..*start + *len])
})
})
}
pub fn trampolines(
&'a self,
) -> impl Iterator<Item = (SignatureIndex, &'a mut [VMFunctionBody])> + 'a {
let buf = self.buf as *const _ as *mut [u8];
self.trampolines.iter().map(move |(i, (start, len))| {
(*i, unsafe {
CodeMemory::view_as_mut_vmfunc_slice(&mut (*buf)[*start..*start + *len])
})
})
}
}
/// Memory manager for executable code.
pub struct CodeMemory {
current: Option<CodeMemoryEntry>,
entries: Vec<CodeMemoryEntry>,
published: usize,
}
fn _assert() {
fn _assert_send_sync<T: Send + Sync>() {}
_assert_send_sync::<CodeMemory>();
}
impl CodeMemory {
/// Create a new `CodeMemory` instance.
pub fn new() -> Self {
Self {
current: None,
entries: Vec::new(),
published: 0,
}
}
/// Allocate a continuous memory block for a single compiled function.
/// TODO: Reorganize the code that calls this to emit code directly into the
/// mmap region rather than into a Vec that we need to copy in.
pub fn allocate_for_function<'a>(
&mut self,
func: &'a CompiledFunction,
) -> Result<&mut [VMFunctionBody], String> {
let size = Self::function_allocation_size(func);
let (buf, registry, start) = self.allocate(size)?;
let (_, _, vmfunc) = Self::copy_function(func, start as u32, buf, registry);
Ok(vmfunc)
}
/// Make all allocated memory executable.
pub fn publish(&mut self, isa: &dyn TargetIsa) {
self.push_current(0)
.expect("failed to push current memory map");
for CodeMemoryEntry {
mmap: m,
registry: r,
..
} in &mut self.entries[self.published..]
{
// Remove write access to the pages due to the relocation fixups.
r.publish(isa)
.expect("failed to publish function unwind registry");
if !m.is_empty() {
unsafe {
region::protect(m.as_mut_ptr(), m.len(), region::Protection::READ_EXECUTE)
}
.expect("unable to make memory readonly and executable");
}
}
self.published = self.entries.len();
}
/// Allocate `size` bytes of memory which can be made executable later by
/// calling `publish()`. Note that we allocate the memory as writeable so
/// that it can be written to and patched, though we make it readonly before
/// actually executing from it.
///
/// A few values are returned:
///
/// * A mutable slice which references the allocated memory
/// * A function table instance where unwind information is registered
/// * The offset within the current mmap that the slice starts at
///
/// TODO: Add an alignment flag.
fn allocate(&mut self, size: usize) -> Result<(&mut [u8], &mut UnwindRegistry, usize), String> {
assert!(size > 0);
if match &self.current {
Some(e) => e.mmap.len() - e.len < size,
None => true,
} {
self.push_current(cmp::max(0x10000, size))?;
}
let e = self.current.as_mut().unwrap();
let old_position = e.len;
e.len += size;
Ok((
&mut e.mmap.as_mut_slice()[old_position..e.len],
&mut e.registry,
old_position,
))
}
/// Calculates the allocation size of the given compiled function.
fn function_allocation_size(func: &CompiledFunction) -> usize {
match &func.unwind_info {
Some(UnwindInfo::WindowsX64(info)) => {
// Windows unwind information is required to be emitted into code memory
// This is because it must be a positive relative offset from the start of the memory
// Account for necessary unwind information alignment padding (32-bit alignment)
((func.body.len() + 3) & !3) + info.emit_size()
}
_ => func.body.len(),
}
}
/// Copies the data of the compiled function to the given buffer.
///
/// This will also add the function to the current unwind registry.
fn copy_function<'a>(
func: &CompiledFunction,
func_start: u32,
buf: &'a mut [u8],
registry: &mut UnwindRegistry,
) -> (u32, &'a mut [u8], &'a mut [VMFunctionBody]) {
let func_len = func.body.len();
let mut func_end = func_start + (func_len as u32);
let (body, mut remainder) = buf.split_at_mut(func_len);
body.copy_from_slice(&func.body);
let vmfunc = Self::view_as_mut_vmfunc_slice(body);
if let Some(UnwindInfo::WindowsX64(info)) = &func.unwind_info {
// Windows unwind information is written following the function body
// Keep unwind information 32-bit aligned (round up to the nearest 4 byte boundary)
let unwind_start = (func_end + 3) & !3;
let unwind_size = info.emit_size();
let padding = (unwind_start - func_end) as usize;
let (slice, r) = remainder.split_at_mut(padding + unwind_size);
info.emit(&mut slice[padding..]);
func_end = unwind_start + (unwind_size as u32);
remainder = r;
}
if let Some(info) = &func.unwind_info {
registry
.register(func_start, func_len as u32, info)
.expect("failed to register unwind information");
}
(func_end, remainder, vmfunc)
}
/// Convert mut a slice from u8 to VMFunctionBody.
fn view_as_mut_vmfunc_slice(slice: &mut [u8]) -> &mut [VMFunctionBody] {
let byte_ptr: *mut [u8] = slice;
let body_ptr = byte_ptr as *mut [VMFunctionBody];
unsafe { &mut *body_ptr }
}
/// Pushes the current entry and allocates a new one with the given size.
fn push_current(&mut self, new_size: usize) -> Result<(), String> {
let previous = mem::replace(
&mut self.current,
if new_size == 0 {
None
} else {
Some(CodeMemoryEntry::with_capacity(cmp::max(0x10000, new_size))?)
},
);
if let Some(e) = previous {
self.entries.push(e);
}
Ok(())
}
/// Returns all published segment ranges.
pub fn published_ranges<'a>(&'a self) -> impl Iterator<Item = (usize, usize)> + 'a {
self.entries[..self.published]
.iter()
.map(|entry| entry.range())
}
/// Allocates and copies the ELF image code section into CodeMemory.
/// Returns references to functions and trampolines defined there.
pub(crate) fn allocate_for_object<'a>(
&'a mut self,
obj: &ObjectFile,
unwind_info: &[ObjectUnwindInfo],
) -> Result<CodeMemoryObjectAllocation<'a>, String> {
let text_section = obj.section_by_name(".text").unwrap();
if text_section.size() == 0 {
// No code in the image.
return Ok(CodeMemoryObjectAllocation {
buf: &mut [],
funcs: BTreeMap::new(),
trampolines: BTreeMap::new(),
});
}
// Allocate chunk memory that spans entire code section.
let (buf, registry, start) = self.allocate(text_section.size() as usize)?;
buf.copy_from_slice(
text_section
.data()
.map_err(|_| "cannot read section data".to_string())?,
);
// Track locations of all defined functions and trampolines.
let mut funcs = BTreeMap::new();
let mut trampolines = BTreeMap::new();
for sym in obj.symbols() {
match sym.name() {
Ok(name) => {
if let Some(index) = try_parse_func_name(name) {
let is_import = sym.section_index().is_none();
if !is_import {
funcs.insert(
index,
(start + sym.address() as usize, sym.size() as usize),
);
}
} else if let Some(index) = try_parse_trampoline_name(name) {
trampolines
.insert(index, (start + sym.address() as usize, sym.size() as usize));
}
}
Err(_) => (),
}
}
// Register all unwind entries for functions and trampolines.
// TODO will `u32` type for start/len be enough for large code base.
for i in unwind_info {
match i {
ObjectUnwindInfo::Func(func_index, info) => {
let (start, len) = funcs.get(&func_index).unwrap();
registry
.register(*start as u32, *len as u32, &info)
.expect("failed to register unwind information");
}
ObjectUnwindInfo::Trampoline(trampoline_index, info) => {
let (start, len) = trampolines.get(&trampoline_index).unwrap();
registry
.register(*start as u32, *len as u32, &info)
.expect("failed to register unwind information");
}
}
}
Ok(CodeMemoryObjectAllocation {
buf: &mut buf[..text_section.size() as usize],
funcs,
trampolines,
})
}
}