Files
wasmtime/lib/execute/src/invoke.rs

265 lines
8.7 KiB
Rust

//! Support for invoking wasm functions from outside a wasm module.
use code::Code;
use cranelift_codegen::ir::InstBuilder;
use cranelift_codegen::{binemit, ir, isa, Context};
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
use cranelift_wasm::FuncIndex;
use signalhandlers::{ensure_eager_signal_handlers, ensure_full_signal_handlers, TrapContext};
use std::mem;
use std::ptr;
use std::string::String;
use std::vec::Vec;
use traphandlers::call_wasm;
use vmcontext::VMContext;
use wasmtime_environ::{Compilation, Export, Module, RelocSink};
/// A runtime value.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Value {
/// A runtime value with type i32.
I32(i32),
/// A runtime value with type i64.
I64(i64),
/// A runtime value with type f32.
F32(u32),
/// A runtime value with type f64.
F64(u64),
}
impl Value {
/// Return the type of this `Value`.
pub fn value_type(self) -> ir::Type {
match self {
Value::I32(_) => ir::types::I32,
Value::I64(_) => ir::types::I64,
Value::F32(_) => ir::types::F32,
Value::F64(_) => ir::types::F64,
}
}
/// Assuming this `Value` holds an `i32`, return that value.
pub fn unwrap_i32(self) -> i32 {
match self {
Value::I32(x) => x,
_ => panic!("unwrapping value of type {} as i32", self.value_type()),
}
}
/// Assuming this `Value` holds an `i64`, return that value.
pub fn unwrap_i64(self) -> i64 {
match self {
Value::I64(x) => x,
_ => panic!("unwrapping value of type {} as i64", self.value_type()),
}
}
/// Assuming this `Value` holds an `f32`, return that value.
pub fn unwrap_f32(self) -> u32 {
match self {
Value::F32(x) => x,
_ => panic!("unwrapping value of type {} as f32", self.value_type()),
}
}
/// Assuming this `Value` holds an `f64`, return that value.
pub fn unwrap_f64(self) -> u64 {
match self {
Value::F64(x) => x,
_ => panic!("unwrapping value of type {} as f64", self.value_type()),
}
}
}
/// The result of invoking a wasm function.
#[derive(Debug)]
pub enum InvokeOutcome {
/// The function returned normally. Its return values are provided.
Returned {
/// The return values.
values: Vec<Value>,
},
/// A trap occurred while the function was executing.
Trapped {
/// The trap message.
message: String,
},
}
/// Jumps to the code region of memory and invoke the exported function
pub fn invoke(
code: &mut Code,
isa: &isa::TargetIsa,
module: &Module,
compilation: &Compilation,
vmctx: *mut VMContext,
function: &str,
args: &[Value],
) -> Result<InvokeOutcome, String> {
let fn_index = match module.exports.get(function) {
Some(Export::Function(index)) => *index,
Some(_) => return Err(format!("exported item \"{}\" is not a function", function)),
None => return Err(format!("no export named \"{}\"", function)),
};
invoke_by_index(code, isa, module, compilation, vmctx, fn_index, args)
}
pub fn invoke_by_index(
code: &mut Code,
isa: &isa::TargetIsa,
module: &Module,
compilation: &Compilation,
vmctx: *mut VMContext,
fn_index: FuncIndex,
args: &[Value],
) -> Result<InvokeOutcome, String> {
let code_buf = &compilation.functions[module
.defined_func_index(fn_index)
.expect("imported start functions not supported yet")];
let sig = &module.signatures[module.functions[fn_index]];
let exec_code_buf = code.allocate_copy_of_slice(&code_buf)?.as_ptr();
// TODO: Move this out to be done once per thread rather than per call.
let mut traps = TrapContext {
triedToInstallSignalHandlers: false,
haveSignalHandlers: false,
};
// Rather than writing inline assembly to jump to the code region, we use the fact that
// the Rust ABI for calling a function with no arguments and no return values matches the one
// of the generated code. Thanks to this, we can transmute the code region into a first-class
// Rust function and call it.
// Ensure that our signal handlers are ready for action.
ensure_eager_signal_handlers();
ensure_full_signal_handlers(&mut traps);
if !traps.haveSignalHandlers {
return Err("failed to install signal handlers".to_string());
}
call_through_wrapper(code, isa, exec_code_buf as usize, vmctx, args, &sig)
}
fn call_through_wrapper(
code: &mut Code,
isa: &isa::TargetIsa,
callee: usize,
vmctx: *mut VMContext,
args: &[Value],
sig: &ir::Signature,
) -> Result<InvokeOutcome, String> {
for (index, value) in args.iter().enumerate() {
assert_eq!(value.value_type(), sig.params[index].value_type);
}
let wrapper_sig = ir::Signature::new(isa.frontend_config().default_call_conv);
let mut context = Context::new();
context.func = ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wrapper_sig);
let value_size = 8;
let mut results_vec = Vec::new();
results_vec.resize(sig.returns.len(), 0i64);
let mut fn_builder_ctx = FunctionBuilderContext::new();
{
let mut builder = FunctionBuilder::new(&mut context.func, &mut fn_builder_ctx);
let block0 = builder.create_ebb();
builder.append_ebb_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
let mut callee_args = Vec::new();
let pointer_type = isa.pointer_type();
let callee_value = builder.ins().iconst(pointer_type, callee as i64);
for value in args {
match value {
Value::I32(i) => {
callee_args.push(builder.ins().iconst(ir::types::I32, i64::from(*i)))
}
Value::I64(i) => callee_args.push(builder.ins().iconst(ir::types::I64, *i)),
Value::F32(i) => callee_args.push(
builder
.ins()
.f32const(ir::immediates::Ieee32::with_bits(*i)),
),
Value::F64(i) => callee_args.push(
builder
.ins()
.f64const(ir::immediates::Ieee64::with_bits(*i)),
),
}
}
let vmctx_value = builder.ins().iconst(pointer_type, vmctx as i64);
callee_args.push(vmctx_value);
let new_sig = builder.import_signature(sig.clone());
// TODO: It's possible to make this a direct call. We just need Cranelift
// to support functions declared with an immediate integer address.
let call = builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
let results = builder.func.dfg.inst_results(call).to_vec();
let results_vec_value = builder
.ins()
.iconst(pointer_type, results_vec.as_ptr() as i64);
let mut mflags = ir::MemFlags::new();
mflags.set_notrap();
mflags.set_aligned();
for (i, r) in results.iter().enumerate() {
builder
.ins()
.store(mflags, *r, results_vec_value, (i * value_size) as i32);
}
builder.ins().return_(&[]);
}
let mut code_buf: Vec<u8> = Vec::new();
let mut reloc_sink = RelocSink::new();
let mut trap_sink = binemit::NullTrapSink {};
context
.compile_and_emit(isa, &mut code_buf, &mut reloc_sink, &mut trap_sink)
.map_err(|e| e.to_string())?;
assert!(reloc_sink.func_relocs.is_empty());
let exec_code_buf = code.allocate_copy_of_slice(&code_buf)?.as_ptr();
code.publish();
let func = unsafe { mem::transmute::<_, fn()>(exec_code_buf) };
Ok(match call_wasm(func) {
Ok(()) => {
let mut values = Vec::with_capacity(sig.returns.len());
for (index, abi_param) in sig.returns.iter().enumerate() {
let v = unsafe {
let ptr = results_vec.as_ptr().add(index * value_size);
match abi_param.value_type {
ir::types::I32 => Value::I32(ptr::read(ptr as *const i32)),
ir::types::I64 => Value::I64(ptr::read(ptr as *const i64)),
ir::types::F32 => Value::F32(ptr::read(ptr as *const u32)),
ir::types::F64 => Value::F64(ptr::read(ptr as *const u64)),
other => panic!("unsupported value type {:?}", other),
}
};
values.push(v);
}
InvokeOutcome::Returned { values }
}
Err(message) => InvokeOutcome::Trapped { message },
})
}