A CallConv enum on every function signature makes it possible to
generate calls to functions with different calling conventions within
the same ISA / within a single function.
The calling conventions also serve as a way of customizing Cretonne's
behavior when embedded inside a VM. As an example, the SpiderWASM
calling convention is used to compile WebAssembly functions that run
inside the SpiderMonkey virtual machine.
All function signatures must have a calling convention at the end, so
this changes the textual IL syntax.
Before:
sig1 = signature(i32, f64) -> f64
After
sig1 = (i32, f64) -> f64 native
sig2 = (i32) spiderwasm
When printing functions, the signature goes after the return types:
function %r1() -> i32, f32 spiderwasm {
ebb1:
...
}
In the parser, this calling convention is optional and defaults to
"native". This is mostly to avoid updating all the existing test cases
under filetests/. When printing a function, the calling convention is
always included, including for "native" functions.
151 lines
3.5 KiB
Rust
151 lines
3.5 KiB
Rust
extern crate cretonne;
|
|
extern crate cton_reader;
|
|
|
|
use self::cretonne::flowgraph::ControlFlowGraph;
|
|
use self::cretonne::dominator_tree::DominatorTree;
|
|
use self::cretonne::ir::Ebb;
|
|
use self::cton_reader::parse_functions;
|
|
|
|
fn test_reverse_postorder_traversal(function_source: &str, ebb_order: Vec<u32>) {
|
|
let func = &parse_functions(function_source).unwrap()[0];
|
|
let cfg = ControlFlowGraph::with_function(&func);
|
|
let domtree = DominatorTree::with_function(&func, &cfg);
|
|
|
|
let got = domtree
|
|
.cfg_postorder()
|
|
.iter()
|
|
.rev()
|
|
.cloned()
|
|
.collect::<Vec<_>>();
|
|
let want = ebb_order
|
|
.iter()
|
|
.map(|&n| Ebb::with_number(n).unwrap())
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(got, want);
|
|
}
|
|
|
|
#[test]
|
|
fn simple_traversal() {
|
|
test_reverse_postorder_traversal("
|
|
function %test(i32) native {
|
|
ebb0(v0: i32):
|
|
brz v0, ebb1
|
|
jump ebb2
|
|
ebb1:
|
|
jump ebb3
|
|
ebb2:
|
|
v1 = iconst.i32 1
|
|
v2 = iadd v1, v0
|
|
brz v2, ebb2
|
|
v3 = iadd v1, v2
|
|
brz v3, ebb1
|
|
v4 = iadd v1, v3
|
|
brz v4, ebb4
|
|
jump ebb5
|
|
ebb3:
|
|
trap
|
|
ebb4:
|
|
trap
|
|
ebb5:
|
|
trap
|
|
}
|
|
",
|
|
vec![0, 1, 3, 2, 4, 5]);
|
|
}
|
|
|
|
#[test]
|
|
fn loops_one() {
|
|
test_reverse_postorder_traversal("
|
|
function %test(i32) native {
|
|
ebb0(v0: i32):
|
|
jump ebb1
|
|
ebb1:
|
|
brnz v0, ebb3
|
|
jump ebb2
|
|
ebb2:
|
|
jump ebb3
|
|
ebb3:
|
|
return
|
|
}
|
|
",
|
|
vec![0, 1, 3, 2]);
|
|
}
|
|
|
|
#[test]
|
|
fn loops_two() {
|
|
test_reverse_postorder_traversal("
|
|
function %test(i32) native {
|
|
ebb0(v0: i32):
|
|
brz v0, ebb1
|
|
jump ebb2
|
|
ebb1:
|
|
jump ebb3
|
|
ebb2:
|
|
brz v0, ebb4
|
|
jump ebb5
|
|
ebb3:
|
|
jump ebb4
|
|
ebb4:
|
|
brz v0, ebb3
|
|
jump ebb5
|
|
ebb5:
|
|
brz v0, ebb4
|
|
return
|
|
}
|
|
",
|
|
vec![0, 1, 2, 4, 3, 5]);
|
|
}
|
|
|
|
#[test]
|
|
fn loops_three() {
|
|
test_reverse_postorder_traversal("
|
|
function %test(i32) native {
|
|
ebb0(v0: i32):
|
|
brz v0, ebb1
|
|
jump ebb2
|
|
ebb1:
|
|
jump ebb3
|
|
ebb2:
|
|
brz v0, ebb4
|
|
jump ebb5
|
|
ebb3:
|
|
jump ebb4
|
|
ebb4:
|
|
brz v0, ebb3
|
|
brnz v0, ebb5
|
|
jump ebb6
|
|
ebb5:
|
|
brz v0, ebb4
|
|
trap
|
|
ebb6:
|
|
jump ebb7
|
|
ebb7:
|
|
return
|
|
}
|
|
",
|
|
vec![0, 1, 2, 4, 3, 6, 7, 5]);
|
|
}
|
|
|
|
#[test]
|
|
fn back_edge_one() {
|
|
test_reverse_postorder_traversal("
|
|
function %test(i32) native {
|
|
ebb0(v0: i32):
|
|
brz v0, ebb1
|
|
jump ebb2
|
|
ebb1:
|
|
jump ebb3
|
|
ebb2:
|
|
brz v0, ebb0
|
|
jump ebb4
|
|
ebb3:
|
|
brz v0, ebb2
|
|
brnz v0, ebb0
|
|
return
|
|
ebb4:
|
|
trap
|
|
}
|
|
",
|
|
vec![0, 1, 3, 2, 4]);
|
|
}
|