Files
wasmtime/src/libcretonne/ir/instructions.rs
Jakob Stoklund Olesen 7cf25a073b Add FuncRef and SigRef entity references.
These refer to external functions and function signatures declared in
the preamble. Since we're already using the type names 'Signature' and
'Function', these entity references don't folow the usual EntityData /
Entity naming convention.
2016-10-12 15:20:46 -07:00

681 lines
20 KiB
Rust

//! Instruction formats and opcodes.
//!
//! The `instructions` module contains definitions for instruction formats, opcodes, and the
//! in-memory representation of IL instructions.
//!
//! A large part of this module is auto-generated from the instruction descriptions in the meta
//! directory.
use std::fmt::{self, Display, Formatter};
use std::str::FromStr;
use std::ops::{Deref, DerefMut};
use ir::{Value, Type, Ebb, JumpTable, FuncRef};
use ir::immediates::{Imm64, Ieee32, Ieee64};
use ir::condcodes::*;
use ir::types;
// Include code generated by `meta/gen_instr.py`. This file contains:
//
// - The `pub enum InstructionFormat` enum with all the instruction formats.
// - The `pub enum Opcode` definition with all known opcodes,
// - The `const OPCODE_FORMAT: [InstructionFormat; N]` table.
// - The private `fn opcode_name(Opcode) -> &'static str` function, and
// - The hash table `const OPCODE_HASH_TABLE: [Opcode; N]`.
//
// For value type constraints:
//
// - The `const OPCODE_CONSTRAINTS : [OpcodeConstraints; N]` table.
// - The `const TYPE_SETS : [ValueTypeSet; N]` table.
// - The `const OPERAND_CONSTRAINTS : [OperandConstraint; N]` table.
//
include!(concat!(env!("OUT_DIR"), "/opcodes.rs"));
impl Display for Opcode {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", opcode_name(*self))
}
}
impl Opcode {
/// Get the instruction format for this opcode.
pub fn format(self) -> Option<InstructionFormat> {
if self == Opcode::NotAnOpcode {
None
} else {
Some(OPCODE_FORMAT[self as usize - 1])
}
}
/// Get the constraint descriptor for this opcode.
/// Panic if this is called on `NotAnOpcode`.
pub fn constraints(self) -> OpcodeConstraints {
OPCODE_CONSTRAINTS[self as usize - 1]
}
}
// This trait really belongs in libreader where it is used by the .cton file parser, but since it
// critically depends on the `opcode_name()` function which is needed here anyway, it lives in this
// module. This also saves us from runing the build script twice to generate code for the two
// separate crates.
impl FromStr for Opcode {
type Err = &'static str;
/// Parse an Opcode name from a string.
fn from_str(s: &str) -> Result<Opcode, &'static str> {
use constant_hash::{Table, simple_hash, probe};
impl<'a> Table<&'a str> for [Opcode] {
fn len(&self) -> usize {
self.len()
}
fn key(&self, idx: usize) -> Option<&'a str> {
if self[idx] == Opcode::NotAnOpcode {
None
} else {
Some(opcode_name(self[idx]))
}
}
}
match probe::<&str, [Opcode]>(&OPCODE_HASH_TABLE, s, simple_hash(s)) {
None => Err("Unknown opcode"),
Some(i) => Ok(OPCODE_HASH_TABLE[i]),
}
}
}
/// Contents on an instruction.
///
/// Every variant must contain `opcode` and `ty` fields. An instruction that doesn't produce a
/// value should have its `ty` field set to `VOID`. The size of `InstructionData` should be kept at
/// 16 bytes on 64-bit architectures. If more space is needed to represent an instruction, use a
/// `Box<AuxData>` to store the additional information out of line.
#[derive(Clone, Debug)]
pub enum InstructionData {
Nullary { opcode: Opcode, ty: Type },
Unary {
opcode: Opcode,
ty: Type,
arg: Value,
},
UnaryImm {
opcode: Opcode,
ty: Type,
imm: Imm64,
},
UnaryIeee32 {
opcode: Opcode,
ty: Type,
imm: Ieee32,
},
UnaryIeee64 {
opcode: Opcode,
ty: Type,
imm: Ieee64,
},
UnaryImmVector {
opcode: Opcode,
ty: Type, // TBD: imm: Box<ImmVectorData>
},
UnarySplit {
opcode: Opcode,
ty: Type,
second_result: Value,
arg: Value,
},
Binary {
opcode: Opcode,
ty: Type,
args: [Value; 2],
},
BinaryImm {
opcode: Opcode,
ty: Type,
arg: Value,
imm: Imm64,
},
// Same as BinaryImm, but the immediate is the lhs operand.
BinaryImmRev {
opcode: Opcode,
ty: Type,
arg: Value,
imm: Imm64,
},
BinaryOverflow {
opcode: Opcode,
ty: Type,
second_result: Value,
args: [Value; 2],
},
Ternary {
opcode: Opcode,
ty: Type,
args: [Value; 3],
},
TernaryOverflow {
opcode: Opcode,
ty: Type,
data: Box<TernaryOverflowData>,
},
InsertLane {
opcode: Opcode,
ty: Type,
lane: u8,
args: [Value; 2],
},
ExtractLane {
opcode: Opcode,
ty: Type,
lane: u8,
arg: Value,
},
IntCompare {
opcode: Opcode,
ty: Type,
cond: IntCC,
args: [Value; 2],
},
FloatCompare {
opcode: Opcode,
ty: Type,
cond: FloatCC,
args: [Value; 2],
},
Jump {
opcode: Opcode,
ty: Type,
data: Box<JumpData>,
},
Branch {
opcode: Opcode,
ty: Type,
data: Box<BranchData>,
},
BranchTable {
opcode: Opcode,
ty: Type,
arg: Value,
table: JumpTable,
},
Call {
opcode: Opcode,
ty: Type,
data: Box<CallData>,
},
Return {
opcode: Opcode,
ty: Type,
data: Box<ReturnData>,
},
}
/// A variable list of `Value` operands used for function call arguments and passing arguments to
/// basic blocks.
#[derive(Clone, Debug)]
pub struct VariableArgs(Vec<Value>);
impl VariableArgs {
pub fn new() -> VariableArgs {
VariableArgs(Vec::new())
}
pub fn push(&mut self, v: Value) {
self.0.push(v)
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
}
// Coerce VariableArgs into a &[Value] slice.
impl Deref for VariableArgs {
type Target = [Value];
fn deref<'a>(&'a self) -> &'a [Value] {
&self.0
}
}
impl DerefMut for VariableArgs {
fn deref_mut<'a>(&'a mut self) -> &'a mut [Value] {
&mut self.0
}
}
impl Display for VariableArgs {
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
for (i, val) in self.0.iter().enumerate() {
if i == 0 {
try!(write!(fmt, "{}", val));
} else {
try!(write!(fmt, ", {}", val));
}
}
Ok(())
}
}
impl Default for VariableArgs {
fn default() -> VariableArgs {
VariableArgs::new()
}
}
/// Payload data for ternary instructions with multiple results, such as `iadd_carry`.
#[derive(Clone, Debug)]
pub struct TernaryOverflowData {
pub second_result: Value,
pub args: [Value; 3],
}
impl Display for TernaryOverflowData {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}, {}, {}", self.args[0], self.args[1], self.args[2])
}
}
/// Payload data for jump instructions. These need to carry lists of EBB arguments that won't fit
/// in the allowed InstructionData size.
#[derive(Clone, Debug)]
pub struct JumpData {
pub destination: Ebb,
pub varargs: VariableArgs,
}
impl Display for JumpData {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
if self.varargs.is_empty() {
write!(f, "{}", self.destination)
} else {
write!(f, "{}({})", self.destination, self.varargs)
}
}
}
/// Payload data for branch instructions. These need to carry lists of EBB arguments that won't fit
/// in the allowed InstructionData size.
#[derive(Clone, Debug)]
pub struct BranchData {
pub arg: Value,
pub destination: Ebb,
pub varargs: VariableArgs,
}
impl Display for BranchData {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
try!(write!(f, "{}, {}", self.arg, self.destination));
if !self.varargs.is_empty() {
try!(write!(f, "({})", self.varargs));
}
Ok(())
}
}
/// Payload of a call instruction.
#[derive(Clone, Debug)]
pub struct CallData {
/// Second result value for a call producing multiple return values.
second_result: Value,
/// Callee function.
pub func_ref: FuncRef,
/// Dynamically sized array containing call argument values.
pub varargs: VariableArgs,
}
impl Display for CallData {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "TBD({})", self.varargs)
}
}
/// Payload of a return instruction.
#[derive(Clone, Debug)]
pub struct ReturnData {
// Dynamically sized array containing return values.
pub varargs: VariableArgs,
}
/// Analyzing an instruction.
///
/// Avoid large matches on instruction formats by using the methods efined here to examine
/// instructions.
impl InstructionData {
/// Return information about the destination of a branch or jump instruction.
///
/// Any instruction that can transfer control to another EBB reveals its possible destinations
/// here.
pub fn analyze_branch<'a>(&'a self) -> BranchInfo<'a> {
match self {
&InstructionData::Jump { ref data, .. } => {
BranchInfo::SingleDest(data.destination, &data.varargs)
}
&InstructionData::Branch { ref data, .. } => {
BranchInfo::SingleDest(data.destination, &data.varargs)
}
&InstructionData::BranchTable { table, .. } => BranchInfo::Table(table),
_ => BranchInfo::NotABranch,
}
}
/// Return true if an instruction is terminating, or false otherwise.
pub fn is_terminating<'a>(&'a self) -> bool {
match self {
&InstructionData::Jump { .. } => true,
&InstructionData::Return { .. } => true,
&InstructionData::Nullary { .. } => true,
_ => false,
}
}
}
/// Information about branch and jump instructions.
pub enum BranchInfo<'a> {
/// This is not a branch or jump instruction.
/// This instruction will not transfer control to another EBB in the function, but it may still
/// affect control flow by returning or trapping.
NotABranch,
/// This is a branch or jump to a single destination EBB, possibly taking value arguments.
SingleDest(Ebb, &'a [Value]),
/// This is a jump table branch which can have many destination EBBs.
Table(JumpTable),
}
/// Value type constraints for a given opcode.
///
/// The `InstructionFormat` determines the constraints on most operands, but `Value` operands and
/// results are not determined by the format. Every `Opcode` has an associated
/// `OpcodeConstraints` object that provides the missing details.
#[derive(Clone, Copy)]
pub struct OpcodeConstraints {
/// Flags for this opcode encoded as a bit field:
///
/// Bits 0-2:
/// Number of fixed result values. This does not include `variable_args` results as are
/// produced by call instructions.
///
/// Bit 3:
/// This opcode is polymorphic and the controlling type variable can be inferred from the
/// designated input operand. This is the `typevar_operand` index given to the
/// `InstructionFormat` meta language object. When bit 0 is not set, the controlling type
/// variable must be the first output value instead.
flags: u8,
/// Permitted set of types for the controlling type variable as an index into `TYPE_SETS`.
typeset_offset: u8,
/// Offset into `OPERAND_CONSTRAINT` table of the descriptors for this opcode. The first
/// `fixed_results()` entries describe the result constraints, then follows constraints for the
/// fixed `Value` input operands. The number of `Value` inputs is determined by the instruction
/// format.
constraint_offset: u16,
}
impl OpcodeConstraints {
/// Can the controlling type variable for this opcode be inferred from the designated value
/// input operand?
/// This also implies that this opcode is polymorphic.
pub fn use_typevar_operand(self) -> bool {
(self.flags & 0x8) != 0
}
/// Get the number of *fixed* result values produced by this opcode.
/// This does not include `variable_args` produced by calls.
pub fn fixed_results(self) -> usize {
(self.flags & 0x7) as usize
}
/// Get the offset into `TYPE_SETS` for the controlling type variable.
/// Returns `None` if the instruction is not polymorphic.
fn typeset_offset(self) -> Option<usize> {
let offset = self.typeset_offset as usize;
if offset < TYPE_SETS.len() {
Some(offset)
} else {
None
}
}
/// Get the offset into OPERAND_CONSTRAINTS where the descriptors for this opcode begin.
fn constraint_offset(self) -> usize {
self.constraint_offset as usize
}
/// Get the value type of result number `n`, having resolved the controlling type variable to
/// `ctrl_type`.
pub fn result_type(self, n: usize, ctrl_type: Type) -> Type {
assert!(n < self.fixed_results(), "Invalid result index");
OPERAND_CONSTRAINTS[self.constraint_offset() + n]
.resolve(ctrl_type)
.expect("Result constraints can't be free")
}
/// Get the typeset of allowed types for the controlling type variable in a polymorphic
/// instruction.
pub fn ctrl_typeset(self) -> Option<ValueTypeSet> {
self.typeset_offset().map(|offset| TYPE_SETS[offset])
}
/// Is this instruction polymorphic?
pub fn is_polymorphic(self) -> bool {
self.ctrl_typeset().is_some()
}
}
/// A value type set describes the permitted set of types for a type variable.
#[derive(Clone, Copy)]
pub struct ValueTypeSet {
min_lanes: u8,
max_lanes: u8,
min_int: u8,
max_int: u8,
min_float: u8,
max_float: u8,
min_bool: u8,
max_bool: u8,
}
impl ValueTypeSet {
/// Is `scalar` part of the base type set?
///
/// Note that the base type set does not have to be included in the type set proper.
fn is_base_type(&self, scalar: Type) -> bool {
let l2b = scalar.log2_lane_bits();
if scalar.is_int() {
self.min_int <= l2b && l2b < self.max_int
} else if scalar.is_float() {
self.min_float <= l2b && l2b < self.max_float
} else if scalar.is_bool() {
self.min_bool <= l2b && l2b < self.max_bool
} else {
false
}
}
/// Does `typ` belong to this set?
pub fn contains(&self, typ: Type) -> bool {
let l2l = typ.log2_lane_count();
self.min_lanes <= l2l && l2l < self.max_lanes && self.is_base_type(typ.lane_type())
}
/// Get an example member of this type set.
///
/// This is used for error messages to avoid suggesting invalid types.
pub fn example(&self) -> Type {
let t = if self.max_int > 5 {
types::I32
} else if self.max_float > 5 {
types::F32
} else if self.max_bool > 5 {
types::B32
} else {
types::B1
};
t.by(1 << self.min_lanes).unwrap()
}
}
/// Operand constraints. This describes the value type constraints on a single `Value` operand.
enum OperandConstraint {
/// This operand has a concrete value type.
Concrete(Type),
/// This operand can vary freely within the given type set.
/// The type set is identified by its index into the TYPE_SETS constant table.
Free(u8),
/// This operand is the same type as the controlling type variable.
Same,
/// This operand is `ctrlType.lane_type()`.
LaneOf,
/// This operand is `ctrlType.as_bool()`.
AsBool,
/// This operand is `ctrlType.half_width()`.
HalfWidth,
/// This operand is `ctrlType.double_width()`.
DoubleWidth,
}
impl OperandConstraint {
/// Resolve this operand constraint into a concrete value type, given the value of the
/// controlling type variable.
/// Returns `None` if this is a free operand which is independent of the controlling type
/// variable.
pub fn resolve(&self, ctrl_type: Type) -> Option<Type> {
use self::OperandConstraint::*;
match *self {
Concrete(t) => Some(t),
Free(_) => None,
Same => Some(ctrl_type),
LaneOf => Some(ctrl_type.lane_type()),
AsBool => Some(ctrl_type.as_bool()),
HalfWidth => Some(ctrl_type.half_width().expect("invalid type for half_width")),
DoubleWidth => Some(ctrl_type.double_width().expect("invalid type for double_width")),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn opcodes() {
let x = Opcode::Iadd;
let mut y = Opcode::Isub;
assert!(x != y);
y = Opcode::Iadd;
assert_eq!(x, y);
assert_eq!(x.format(), Some(InstructionFormat::Binary));
assert_eq!(format!("{:?}", Opcode::IaddImm), "IaddImm");
assert_eq!(Opcode::IaddImm.to_string(), "iadd_imm");
// Check the matcher.
assert_eq!("iadd".parse::<Opcode>(), Ok(Opcode::Iadd));
assert_eq!("iadd_imm".parse::<Opcode>(), Ok(Opcode::IaddImm));
assert_eq!("iadd\0".parse::<Opcode>(), Err("Unknown opcode"));
assert_eq!("".parse::<Opcode>(), Err("Unknown opcode"));
assert_eq!("\0".parse::<Opcode>(), Err("Unknown opcode"));
}
#[test]
fn instruction_data() {
use std::mem;
// The size of the InstructionData enum is important for performance. It should not exceed
// 16 bytes. Use `Box<FooData>` out-of-line payloads for instruction formats that require
// more space than that.
// It would be fine with a data structure smaller than 16 bytes, but what are the odds of
// that?
assert_eq!(mem::size_of::<InstructionData>(), 16);
}
#[test]
fn value_set() {
use ir::types::*;
let vts = ValueTypeSet {
min_lanes: 0,
max_lanes: 8,
min_int: 3,
max_int: 7,
min_float: 0,
max_float: 0,
min_bool: 3,
max_bool: 7,
};
assert!(vts.contains(I32));
assert!(vts.contains(I64));
assert!(vts.contains(I32X4));
assert!(!vts.contains(F32));
assert!(!vts.contains(B1));
assert!(vts.contains(B8));
assert!(vts.contains(B64));
assert_eq!(vts.example().to_string(), "i32");
let vts = ValueTypeSet {
min_lanes: 0,
max_lanes: 8,
min_int: 0,
max_int: 0,
min_float: 5,
max_float: 7,
min_bool: 3,
max_bool: 7,
};
assert_eq!(vts.example().to_string(), "f32");
let vts = ValueTypeSet {
min_lanes: 1,
max_lanes: 8,
min_int: 0,
max_int: 0,
min_float: 5,
max_float: 7,
min_bool: 3,
max_bool: 7,
};
assert_eq!(vts.example().to_string(), "f32x2");
let vts = ValueTypeSet {
min_lanes: 2,
max_lanes: 8,
min_int: 0,
max_int: 0,
min_float: 0,
max_float: 0,
min_bool: 3,
max_bool: 7,
};
assert!(!vts.contains(B32X2));
assert!(vts.contains(B32X4));
assert_eq!(vts.example().to_string(), "b32x4");
let vts = ValueTypeSet {
// TypeSet(lanes=(1, 256), ints=(8, 64))
min_lanes: 0,
max_lanes: 9,
min_int: 3,
max_int: 7,
min_float: 0,
max_float: 0,
min_bool: 0,
max_bool: 0,
};
assert!(vts.contains(I32));
assert!(vts.contains(I32X4));
}
}