Files
wasmtime/lib/cretonne/src/ir/immediates.rs
Jakob Stoklund Olesen 46f0393417 Ensure that the docs examples verify as Cretonne IL.
Any *.cton files in the docs directory are now included when running the
test-all.sh script. This is to ensure that the examples are in fact
correct IL.

Always print NaN and Inf floats with a sign. Print the positive ones as
+NaN and +Inf to make them easier to parse.
2017-04-10 15:28:24 -07:00

926 lines
32 KiB
Rust

//! Immediate operands for Cretonne instructions
//!
//! This module defines the types of immediate operands that can appear on Cretonne instructions.
//! Each type here should have a corresponding definition in the `cretonne.immediates` Python
//! module in the meta language.
use std::fmt::{self, Display, Formatter};
use std::{i32, u32};
use std::mem;
use std::str::FromStr;
/// 64-bit immediate integer operand.
///
/// An `Imm64` operand can also be used to represent immediate values of smaller integer types by
/// sign-extending to `i64`.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Imm64(i64);
impl Imm64 {
/// Create a new `Imm64` representing the signed number `x`.
pub fn new(x: i64) -> Imm64 {
Imm64(x)
}
}
impl Into<i64> for Imm64 {
fn into(self) -> i64 {
self.0
}
}
impl From<i64> for Imm64 {
fn from(x: i64) -> Self {
Imm64(x)
}
}
// Hexadecimal with a multiple of 4 digits and group separators:
//
// 0xfff0
// 0x0001_ffff
// 0xffff_ffff_fff8_4400
//
fn write_hex(x: i64, f: &mut Formatter) -> fmt::Result {
let mut pos = (64 - x.leading_zeros() - 1) & 0xf0;
write!(f, "0x{:04x}", (x >> pos) & 0xffff)?;
while pos > 0 {
pos -= 16;
write!(f, "_{:04x}", (x >> pos) & 0xffff)?;
}
Ok(())
}
impl Display for Imm64 {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let x = self.0;
if -10_000 < x && x < 10_000 {
// Use decimal for small numbers.
write!(f, "{}", x)
} else {
write_hex(x, f)
}
}
}
/// Parse a 64-bit number.
fn parse_i64(s: &str) -> Result<i64, &'static str> {
let mut value: u64 = 0;
let mut digits = 0;
let negative = s.starts_with('-');
let s2 = if negative || s.starts_with('+') {
&s[1..]
} else {
s
};
if s2.starts_with("0x") {
// Hexadecimal.
for ch in s2[2..].chars() {
match ch.to_digit(16) {
Some(digit) => {
digits += 1;
if digits > 16 {
return Err("Too many hexadecimal digits");
}
// This can't overflow given the digit limit.
value = (value << 4) | digit as u64;
}
None => {
// Allow embedded underscores, but fail on anything else.
if ch != '_' {
return Err("Invalid character in hexadecimal number");
}
}
}
}
} else {
// Decimal number, possibly negative.
for ch in s2.chars() {
match ch.to_digit(16) {
Some(digit) => {
digits += 1;
match value.checked_mul(10) {
None => return Err("Too large decimal number"),
Some(v) => value = v,
}
match value.checked_add(digit as u64) {
None => return Err("Too large decimal number"),
Some(v) => value = v,
}
}
None => {
// Allow embedded underscores, but fail on anything else.
if ch != '_' {
return Err("Invalid character in decimal number");
}
}
}
}
}
if digits == 0 {
return Err("No digits in number");
}
// We support the range-and-a-half from -2^63 .. 2^64-1.
if negative {
value = value.wrapping_neg();
// Don't allow large negative values to wrap around and become positive.
if value as i64 > 0 {
return Err("Negative number too small");
}
}
Ok(value as i64)
}
impl FromStr for Imm64 {
type Err = &'static str;
// Parse a decimal or hexadecimal `Imm64`, formatted as above.
fn from_str(s: &str) -> Result<Imm64, &'static str> {
parse_i64(s).map(Imm64::new)
}
}
/// 8-bit unsigned integer immediate operand.
///
/// This is used to indicate lane indexes typically.
pub type Uimm8 = u8;
/// 32-bit signed immediate offset.
///
/// This is used to encode an immediate offset for load/store instructions. All supported ISAs have
/// a maximum load/store offset that fits in an `i32`.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Offset32(i32);
impl Offset32 {
/// Create a new `Offset32` representing the signed number `x`.
pub fn new(x: i32) -> Offset32 {
Offset32(x)
}
}
impl Into<i32> for Offset32 {
fn into(self) -> i32 {
self.0
}
}
impl Into<i64> for Offset32 {
fn into(self) -> i64 {
self.0 as i64
}
}
impl From<i32> for Offset32 {
fn from(x: i32) -> Self {
Offset32(x)
}
}
impl Display for Offset32 {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
// 0 displays as an empty offset.
if self.0 == 0 {
return Ok(());
}
// Always include a sign.
write!(f, "{}", if self.0 < 0 { '-' } else { '+' })?;
let val = (self.0 as i64).abs();
if val < 10_000 {
write!(f, "{}", val)
} else {
write_hex(val, f)
}
}
}
impl FromStr for Offset32 {
type Err = &'static str;
// Parse a decimal or hexadecimal `Offset32`, formatted as above.
fn from_str(s: &str) -> Result<Offset32, &'static str> {
if !(s.starts_with('-') || s.starts_with('+')) {
return Err("Offset must begin with sign");
}
parse_i64(s).and_then(|x| if i32::MIN as i64 <= x && x <= i32::MAX as i64 {
Ok(Offset32::new(x as i32))
} else {
Err("Offset out of range")
})
}
}
/// 32-bit unsigned immediate offset.
///
/// This is used to encode an immediate offset for WebAssembly heap_load/heap_store instructions.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Uoffset32(u32);
impl Uoffset32 {
/// Create a new `Uoffset32` representing the number `x`.
pub fn new(x: u32) -> Uoffset32 {
Uoffset32(x)
}
}
impl Into<u32> for Uoffset32 {
fn into(self) -> u32 {
self.0
}
}
impl Into<i64> for Uoffset32 {
fn into(self) -> i64 {
self.0 as i64
}
}
impl From<u32> for Uoffset32 {
fn from(x: u32) -> Self {
Uoffset32(x)
}
}
impl Display for Uoffset32 {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
// 0 displays as an empty offset.
if self.0 == 0 {
return Ok(());
}
// Always include a sign.
if self.0 < 10_000 {
write!(f, "+{}", self.0)
} else {
write!(f, "+")?;
write_hex(self.0 as i64, f)
}
}
}
impl FromStr for Uoffset32 {
type Err = &'static str;
// Parse a decimal or hexadecimal `Uoffset32`, formatted as above.
fn from_str(s: &str) -> Result<Uoffset32, &'static str> {
if !s.starts_with('+') {
return Err("Unsigned offset must begin with '+' sign");
}
parse_i64(s).and_then(|x| if 0 <= x && x <= u32::MAX as i64 {
Ok(Uoffset32::new(x as u32))
} else {
Err("Offset out of range")
})
}
}
/// An IEEE binary32 immediate floating point value.
///
/// All bit patterns are allowed.
#[derive(Copy, Clone, Debug)]
pub struct Ieee32(f32);
/// An IEEE binary64 immediate floating point value.
///
/// All bit patterns are allowed.
#[derive(Copy, Clone, Debug)]
pub struct Ieee64(f64);
// Format a floating point number in a way that is reasonably human-readable, and that can be
// converted back to binary without any rounding issues. The hexadecimal formatting of normal and
// subnormal numbers is compatible with C99 and the `printf "%a"` format specifier. The NaN and Inf
// formats are not supported by C99.
//
// The encoding parameters are:
//
// w - exponent field width in bits
// t - trailing significand field width in bits
//
fn format_float(bits: u64, w: u8, t: u8, f: &mut Formatter) -> fmt::Result {
debug_assert!(w > 0 && w <= 16, "Invalid exponent range");
debug_assert!(1 + w + t <= 64, "Too large IEEE format for u64");
debug_assert!((t + w + 1).is_power_of_two(), "Unexpected IEEE format size");
let max_e_bits = (1u64 << w) - 1;
let t_bits = bits & ((1u64 << t) - 1); // Trailing significand.
let e_bits = (bits >> t) & max_e_bits; // Biased exponent.
let sign_bit = (bits >> w + t) & 1;
let bias: i32 = (1 << (w - 1)) - 1;
let e = e_bits as i32 - bias; // Unbiased exponent.
let emin = 1 - bias; // Minimum exponent.
// How many hexadecimal digits are needed for the trailing significand?
let digits = (t + 3) / 4;
// Trailing significand left-aligned in `digits` hexadecimal digits.
let left_t_bits = t_bits << (4 * digits - t);
// All formats share the leading sign.
if sign_bit != 0 {
write!(f, "-")?;
}
if e_bits == 0 {
if t_bits == 0 {
// Zero.
write!(f, "0.0")
} else {
// Subnormal.
write!(f, "0x0.{0:01$x}p{2}", left_t_bits, digits as usize, emin)
}
} else if e_bits == max_e_bits {
// Always print a `+` or `-` sign for these special values.
// This makes them easier to parse as they can't be confused as identifiers.
if sign_bit == 0 {
write!(f, "+")?;
}
if t_bits == 0 {
// Infinity.
write!(f, "Inf")
} else {
// NaN.
let payload = t_bits & ((1 << (t - 1)) - 1);
if t_bits & (1 << (t - 1)) != 0 {
// Quiet NaN.
if payload != 0 {
write!(f, "NaN:0x{:x}", payload)
} else {
write!(f, "NaN")
}
} else {
// Signaling NaN.
write!(f, "sNaN:0x{:x}", payload)
}
}
} else {
// Normal number.
write!(f, "0x1.{0:01$x}p{2}", left_t_bits, digits as usize, e)
}
}
// Parse a float using the same format as `format_float` above.
//
// The encoding parameters are:
//
// w - exponent field width in bits
// t - trailing significand field width in bits
//
fn parse_float(s: &str, w: u8, t: u8) -> Result<u64, &'static str> {
debug_assert!(w > 0 && w <= 16, "Invalid exponent range");
debug_assert!(1 + w + t <= 64, "Too large IEEE format for u64");
debug_assert!((t + w + 1).is_power_of_two(), "Unexpected IEEE format size");
let (sign_bit, s2) = if s.starts_with('-') {
(1u64 << t + w, &s[1..])
} else if s.starts_with('+') {
(0, &s[1..])
} else {
(0, s)
};
if !s2.starts_with("0x") {
let max_e_bits = ((1u64 << w) - 1) << t;
let quiet_bit = 1u64 << (t - 1);
// The only decimal encoding allowed is 0.
if s2 == "0.0" {
return Ok(sign_bit);
}
if s2 == "Inf" {
// +/- infinity: e = max, t = 0.
return Ok(sign_bit | max_e_bits);
}
if s2 == "NaN" {
// Canonical quiet NaN: e = max, t = quiet.
return Ok(sign_bit | max_e_bits | quiet_bit);
}
if s2.starts_with("NaN:0x") {
// Quiet NaN with payload.
return match u64::from_str_radix(&s2[6..], 16) {
Ok(payload) if payload < quiet_bit => {
Ok(sign_bit | max_e_bits | quiet_bit | payload)
}
_ => Err("Invalid NaN payload"),
};
}
if s2.starts_with("sNaN:0x") {
// Signaling NaN with payload.
return match u64::from_str_radix(&s2[7..], 16) {
Ok(payload) if 0 < payload && payload < quiet_bit => {
Ok(sign_bit | max_e_bits | payload)
}
_ => Err("Invalid sNaN payload"),
};
}
return Err("Float must be hexadecimal");
}
let s3 = &s2[2..];
let mut digits = 0u8;
let mut digits_before_period: Option<u8> = None;
let mut significand = 0u64;
let mut exponent = 0i32;
for (idx, ch) in s3.char_indices() {
match ch {
'.' => {
// This is the radix point. There can only be one.
if digits_before_period != None {
return Err("Multiple radix points");
} else {
digits_before_period = Some(digits);
}
}
'p' => {
// The following exponent is a decimal number.
let exp_str = &s3[1 + idx..];
match exp_str.parse::<i16>() {
Ok(e) => {
exponent = e as i32;
break;
}
Err(_) => return Err("Bad exponent"),
}
}
_ => {
match ch.to_digit(16) {
Some(digit) => {
digits += 1;
if digits > 16 {
return Err("Too many digits");
}
significand = (significand << 4) | digit as u64;
}
None => return Err("Invalid character"),
}
}
}
}
if digits == 0 {
return Err("No digits");
}
if significand == 0 {
// This is +/- 0.0.
return Ok(sign_bit);
}
// Number of bits appearing after the radix point.
match digits_before_period {
None => {} // No radix point present.
Some(d) => exponent -= 4 * (digits - d) as i32,
};
// Normalize the significand and exponent.
let significant_bits = (64 - significand.leading_zeros()) as u8;
if significant_bits > t + 1 {
let adjust = significant_bits - (t + 1);
if significand & ((1u64 << adjust) - 1) != 0 {
return Err("Too many significant bits");
}
// Adjust significand down.
significand >>= adjust;
exponent += adjust as i32;
} else {
let adjust = t + 1 - significant_bits;
significand <<= adjust;
exponent -= adjust as i32;
}
assert_eq!(significand >> t, 1);
// Trailing significand excludes the high bit.
let t_bits = significand & ((1 << t) - 1);
let max_exp = (1i32 << w) - 2;
let bias: i32 = (1 << (w - 1)) - 1;
exponent += bias + t as i32;
if exponent > max_exp {
Err("Magnitude too large")
} else if exponent > 0 {
// This is a normal number.
let e_bits = (exponent as u64) << t;
Ok(sign_bit | e_bits | t_bits)
} else if 1 - exponent <= t as i32 {
// This is a subnormal number: e = 0, t = significand bits.
// Renormalize significand for exponent = 1.
let adjust = 1 - exponent;
if significand & ((1u64 << adjust) - 1) != 0 {
Err("Subnormal underflow")
} else {
significand >>= adjust;
Ok(sign_bit | significand)
}
} else {
Err("Magnitude too small")
}
}
impl Ieee32 {
/// Create a new `Ieee32` representing the number `x`.
pub fn new(x: f32) -> Ieee32 {
Ieee32(x)
}
/// Construct `Ieee32` immediate from raw bits.
pub fn from_bits(x: u32) -> Ieee32 {
Ieee32(unsafe { mem::transmute(x) })
}
}
impl Display for Ieee32 {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let bits: u32 = unsafe { mem::transmute(self.0) };
format_float(bits as u64, 8, 23, f)
}
}
impl FromStr for Ieee32 {
type Err = &'static str;
fn from_str(s: &str) -> Result<Ieee32, &'static str> {
match parse_float(s, 8, 23) {
Ok(b) => Ok(Ieee32::from_bits(b as u32)),
Err(s) => Err(s),
}
}
}
impl Ieee64 {
/// Create a new `Ieee64` representing the number `x`.
pub fn new(x: f64) -> Ieee64 {
Ieee64(x)
}
/// Construct `Ieee64` immediate from raw bits.
pub fn from_bits(x: u64) -> Ieee64 {
Ieee64(unsafe { mem::transmute(x) })
}
}
impl Display for Ieee64 {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let bits: u64 = unsafe { mem::transmute(self.0) };
format_float(bits, 11, 52, f)
}
}
impl FromStr for Ieee64 {
type Err = &'static str;
fn from_str(s: &str) -> Result<Ieee64, &'static str> {
match parse_float(s, 11, 52) {
Ok(b) => Ok(Ieee64::from_bits(b)),
Err(s) => Err(s),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::{f32, f64};
use std::str::FromStr;
use std::fmt::Display;
#[test]
fn format_imm64() {
assert_eq!(Imm64(0).to_string(), "0");
assert_eq!(Imm64(9999).to_string(), "9999");
assert_eq!(Imm64(10000).to_string(), "0x2710");
assert_eq!(Imm64(-9999).to_string(), "-9999");
assert_eq!(Imm64(-10000).to_string(), "0xffff_ffff_ffff_d8f0");
assert_eq!(Imm64(0xffff).to_string(), "0xffff");
assert_eq!(Imm64(0x10000).to_string(), "0x0001_0000");
}
// Verify that `text` can be parsed as a `T` into a value that displays as `want`.
fn parse_ok<T: FromStr + Display>(text: &str, want: &str)
where <T as FromStr>::Err: Display
{
match text.parse::<T>() {
Err(s) => panic!("\"{}\".parse() error: {}", text, s),
Ok(x) => assert_eq!(x.to_string(), want),
}
}
// Verify that `text` fails to parse as `T` with the error `msg`.
fn parse_err<T: FromStr + Display>(text: &str, msg: &str)
where <T as FromStr>::Err: Display
{
match text.parse::<T>() {
Err(s) => assert_eq!(s.to_string(), msg),
Ok(x) => panic!("Wanted Err({}), but got {}", msg, x),
}
}
#[test]
fn parse_imm64() {
parse_ok::<Imm64>("0", "0");
parse_ok::<Imm64>("1", "1");
parse_ok::<Imm64>("-0", "0");
parse_ok::<Imm64>("-1", "-1");
parse_ok::<Imm64>("0x0", "0");
parse_ok::<Imm64>("0xf", "15");
parse_ok::<Imm64>("-0x9", "-9");
// Probe limits.
parse_ok::<Imm64>("0xffffffff_ffffffff", "-1");
parse_ok::<Imm64>("0x80000000_00000000", "0x8000_0000_0000_0000");
parse_ok::<Imm64>("-0x80000000_00000000", "0x8000_0000_0000_0000");
parse_err::<Imm64>("-0x80000000_00000001", "Negative number too small");
parse_ok::<Imm64>("18446744073709551615", "-1");
parse_ok::<Imm64>("-9223372036854775808", "0x8000_0000_0000_0000");
// Overflow both the `checked_add` and `checked_mul`.
parse_err::<Imm64>("18446744073709551616", "Too large decimal number");
parse_err::<Imm64>("184467440737095516100", "Too large decimal number");
parse_err::<Imm64>("-9223372036854775809", "Negative number too small");
// Underscores are allowed where digits go.
parse_ok::<Imm64>("0_0", "0");
parse_ok::<Imm64>("-_10_0", "-100");
parse_ok::<Imm64>("_10_", "10");
parse_ok::<Imm64>("0x97_88_bb", "0x0097_88bb");
parse_ok::<Imm64>("0x_97_", "151");
parse_err::<Imm64>("", "No digits in number");
parse_err::<Imm64>("-", "No digits in number");
parse_err::<Imm64>("_", "No digits in number");
parse_err::<Imm64>("0x", "No digits in number");
parse_err::<Imm64>("0x_", "No digits in number");
parse_err::<Imm64>("-0x", "No digits in number");
parse_err::<Imm64>(" ", "Invalid character in decimal number");
parse_err::<Imm64>("0 ", "Invalid character in decimal number");
parse_err::<Imm64>(" 0", "Invalid character in decimal number");
parse_err::<Imm64>("--", "Invalid character in decimal number");
parse_err::<Imm64>("-0x-", "Invalid character in hexadecimal number");
// Hex count overflow.
parse_err::<Imm64>("0x0_0000_0000_0000_0000", "Too many hexadecimal digits");
}
#[test]
fn format_offset32() {
assert_eq!(Offset32(0).to_string(), "");
assert_eq!(Offset32(1).to_string(), "+1");
assert_eq!(Offset32(-1).to_string(), "-1");
assert_eq!(Offset32(9999).to_string(), "+9999");
assert_eq!(Offset32(10000).to_string(), "+0x2710");
assert_eq!(Offset32(-9999).to_string(), "-9999");
assert_eq!(Offset32(-10000).to_string(), "-0x2710");
assert_eq!(Offset32(0xffff).to_string(), "+0xffff");
assert_eq!(Offset32(0x10000).to_string(), "+0x0001_0000");
}
#[test]
fn parse_offset32() {
parse_ok::<Offset32>("+0", "");
parse_ok::<Offset32>("+1", "+1");
parse_ok::<Offset32>("-0", "");
parse_ok::<Offset32>("-1", "-1");
parse_ok::<Offset32>("+0x0", "");
parse_ok::<Offset32>("+0xf", "+15");
parse_ok::<Offset32>("-0x9", "-9");
parse_ok::<Offset32>("-0x8000_0000", "-0x8000_0000");
parse_err::<Offset32>("+0x8000_0000", "Offset out of range");
}
#[test]
fn format_uoffset32() {
assert_eq!(Uoffset32(0).to_string(), "");
assert_eq!(Uoffset32(1).to_string(), "+1");
assert_eq!(Uoffset32(9999).to_string(), "+9999");
assert_eq!(Uoffset32(10000).to_string(), "+0x2710");
assert_eq!(Uoffset32(0xffff).to_string(), "+0xffff");
assert_eq!(Uoffset32(0x10000).to_string(), "+0x0001_0000");
}
#[test]
fn parse_uoffset32() {
parse_ok::<Uoffset32>("+0", "");
parse_ok::<Uoffset32>("+1", "+1");
parse_ok::<Uoffset32>("+0x0", "");
parse_ok::<Uoffset32>("+0xf", "+15");
parse_ok::<Uoffset32>("+0x8000_0000", "+0x8000_0000");
parse_ok::<Uoffset32>("+0xffff_ffff", "+0xffff_ffff");
parse_err::<Uoffset32>("+0x1_0000_0000", "Offset out of range");
}
#[test]
fn format_ieee32() {
assert_eq!(Ieee32::new(0.0).to_string(), "0.0");
assert_eq!(Ieee32::new(-0.0).to_string(), "-0.0");
assert_eq!(Ieee32::new(1.0).to_string(), "0x1.000000p0");
assert_eq!(Ieee32::new(1.5).to_string(), "0x1.800000p0");
assert_eq!(Ieee32::new(0.5).to_string(), "0x1.000000p-1");
assert_eq!(Ieee32::new(f32::EPSILON).to_string(), "0x1.000000p-23");
assert_eq!(Ieee32::new(f32::MIN).to_string(), "-0x1.fffffep127");
assert_eq!(Ieee32::new(f32::MAX).to_string(), "0x1.fffffep127");
// Smallest positive normal number.
assert_eq!(Ieee32::new(f32::MIN_POSITIVE).to_string(),
"0x1.000000p-126");
// Subnormals.
assert_eq!(Ieee32::new(f32::MIN_POSITIVE / 2.0).to_string(),
"0x0.800000p-126");
assert_eq!(Ieee32::new(f32::MIN_POSITIVE * f32::EPSILON).to_string(),
"0x0.000002p-126");
assert_eq!(Ieee32::new(f32::INFINITY).to_string(), "+Inf");
assert_eq!(Ieee32::new(f32::NEG_INFINITY).to_string(), "-Inf");
assert_eq!(Ieee32::new(f32::NAN).to_string(), "+NaN");
assert_eq!(Ieee32::new(-f32::NAN).to_string(), "-NaN");
// Construct some qNaNs with payloads.
assert_eq!(Ieee32::from_bits(0x7fc00001).to_string(), "+NaN:0x1");
assert_eq!(Ieee32::from_bits(0x7ff00001).to_string(), "+NaN:0x300001");
// Signaling NaNs.
assert_eq!(Ieee32::from_bits(0x7f800001).to_string(), "+sNaN:0x1");
assert_eq!(Ieee32::from_bits(0x7fa00001).to_string(), "+sNaN:0x200001");
}
#[test]
fn parse_ieee32() {
parse_ok::<Ieee32>("0.0", "0.0");
parse_ok::<Ieee32>("+0.0", "0.0");
parse_ok::<Ieee32>("-0.0", "-0.0");
parse_ok::<Ieee32>("0x0", "0.0");
parse_ok::<Ieee32>("0x0.0", "0.0");
parse_ok::<Ieee32>("0x.0", "0.0");
parse_ok::<Ieee32>("0x0.", "0.0");
parse_ok::<Ieee32>("0x1", "0x1.000000p0");
parse_ok::<Ieee32>("+0x1", "0x1.000000p0");
parse_ok::<Ieee32>("-0x1", "-0x1.000000p0");
parse_ok::<Ieee32>("0x10", "0x1.000000p4");
parse_ok::<Ieee32>("0x10.0", "0x1.000000p4");
parse_err::<Ieee32>("0.", "Float must be hexadecimal");
parse_err::<Ieee32>(".0", "Float must be hexadecimal");
parse_err::<Ieee32>("0", "Float must be hexadecimal");
parse_err::<Ieee32>("-0", "Float must be hexadecimal");
parse_err::<Ieee32>(".", "Float must be hexadecimal");
parse_err::<Ieee32>("", "Float must be hexadecimal");
parse_err::<Ieee32>("-", "Float must be hexadecimal");
parse_err::<Ieee32>("0x", "No digits");
parse_err::<Ieee32>("0x..", "Multiple radix points");
// Check significant bits.
parse_ok::<Ieee32>("0x0.ffffff", "0x1.fffffep-1");
parse_ok::<Ieee32>("0x1.fffffe", "0x1.fffffep0");
parse_ok::<Ieee32>("0x3.fffffc", "0x1.fffffep1");
parse_ok::<Ieee32>("0x7.fffff8", "0x1.fffffep2");
parse_ok::<Ieee32>("0xf.fffff0", "0x1.fffffep3");
parse_err::<Ieee32>("0x1.ffffff", "Too many significant bits");
parse_err::<Ieee32>("0x1.fffffe0000000000", "Too many digits");
// Exponents.
parse_ok::<Ieee32>("0x1p3", "0x1.000000p3");
parse_ok::<Ieee32>("0x1p-3", "0x1.000000p-3");
parse_ok::<Ieee32>("0x1.0p3", "0x1.000000p3");
parse_ok::<Ieee32>("0x2.0p3", "0x1.000000p4");
parse_ok::<Ieee32>("0x1.0p127", "0x1.000000p127");
parse_ok::<Ieee32>("0x1.0p-126", "0x1.000000p-126");
parse_ok::<Ieee32>("0x0.1p-122", "0x1.000000p-126");
parse_err::<Ieee32>("0x2.0p127", "Magnitude too large");
// Subnormals.
parse_ok::<Ieee32>("0x1.0p-127", "0x0.800000p-126");
parse_ok::<Ieee32>("0x1.0p-149", "0x0.000002p-126");
parse_ok::<Ieee32>("0x0.000002p-126", "0x0.000002p-126");
parse_err::<Ieee32>("0x0.100001p-126", "Subnormal underflow");
parse_err::<Ieee32>("0x1.8p-149", "Subnormal underflow");
parse_err::<Ieee32>("0x1.0p-150", "Magnitude too small");
// NaNs and Infs.
parse_ok::<Ieee32>("Inf", "+Inf");
parse_ok::<Ieee32>("+Inf", "+Inf");
parse_ok::<Ieee32>("-Inf", "-Inf");
parse_ok::<Ieee32>("NaN", "+NaN");
parse_ok::<Ieee32>("+NaN", "+NaN");
parse_ok::<Ieee32>("-NaN", "-NaN");
parse_ok::<Ieee32>("NaN:0x0", "+NaN");
parse_err::<Ieee32>("NaN:", "Float must be hexadecimal");
parse_err::<Ieee32>("NaN:0", "Float must be hexadecimal");
parse_err::<Ieee32>("NaN:0x", "Invalid NaN payload");
parse_ok::<Ieee32>("NaN:0x000001", "+NaN:0x1");
parse_ok::<Ieee32>("NaN:0x300001", "+NaN:0x300001");
parse_err::<Ieee32>("NaN:0x400001", "Invalid NaN payload");
parse_ok::<Ieee32>("sNaN:0x1", "+sNaN:0x1");
parse_err::<Ieee32>("sNaN:0x0", "Invalid sNaN payload");
parse_ok::<Ieee32>("sNaN:0x200001", "+sNaN:0x200001");
parse_err::<Ieee32>("sNaN:0x400001", "Invalid sNaN payload");
}
#[test]
fn format_ieee64() {
assert_eq!(Ieee64::new(0.0).to_string(), "0.0");
assert_eq!(Ieee64::new(-0.0).to_string(), "-0.0");
assert_eq!(Ieee64::new(1.0).to_string(), "0x1.0000000000000p0");
assert_eq!(Ieee64::new(1.5).to_string(), "0x1.8000000000000p0");
assert_eq!(Ieee64::new(0.5).to_string(), "0x1.0000000000000p-1");
assert_eq!(Ieee64::new(f64::EPSILON).to_string(),
"0x1.0000000000000p-52");
assert_eq!(Ieee64::new(f64::MIN).to_string(), "-0x1.fffffffffffffp1023");
assert_eq!(Ieee64::new(f64::MAX).to_string(), "0x1.fffffffffffffp1023");
// Smallest positive normal number.
assert_eq!(Ieee64::new(f64::MIN_POSITIVE).to_string(),
"0x1.0000000000000p-1022");
// Subnormals.
assert_eq!(Ieee64::new(f64::MIN_POSITIVE / 2.0).to_string(),
"0x0.8000000000000p-1022");
assert_eq!(Ieee64::new(f64::MIN_POSITIVE * f64::EPSILON).to_string(),
"0x0.0000000000001p-1022");
assert_eq!(Ieee64::new(f64::INFINITY).to_string(), "+Inf");
assert_eq!(Ieee64::new(f64::NEG_INFINITY).to_string(), "-Inf");
assert_eq!(Ieee64::new(f64::NAN).to_string(), "+NaN");
assert_eq!(Ieee64::new(-f64::NAN).to_string(), "-NaN");
// Construct some qNaNs with payloads.
assert_eq!(Ieee64::from_bits(0x7ff8000000000001).to_string(),
"+NaN:0x1");
assert_eq!(Ieee64::from_bits(0x7ffc000000000001).to_string(),
"+NaN:0x4000000000001");
// Signaling NaNs.
assert_eq!(Ieee64::from_bits(0x7ff0000000000001).to_string(),
"+sNaN:0x1");
assert_eq!(Ieee64::from_bits(0x7ff4000000000001).to_string(),
"+sNaN:0x4000000000001");
}
#[test]
fn parse_ieee64() {
parse_ok::<Ieee64>("0.0", "0.0");
parse_ok::<Ieee64>("-0.0", "-0.0");
parse_ok::<Ieee64>("0x0", "0.0");
parse_ok::<Ieee64>("0x0.0", "0.0");
parse_ok::<Ieee64>("0x.0", "0.0");
parse_ok::<Ieee64>("0x0.", "0.0");
parse_ok::<Ieee64>("0x1", "0x1.0000000000000p0");
parse_ok::<Ieee64>("-0x1", "-0x1.0000000000000p0");
parse_ok::<Ieee64>("0x10", "0x1.0000000000000p4");
parse_ok::<Ieee64>("0x10.0", "0x1.0000000000000p4");
parse_err::<Ieee64>("0.", "Float must be hexadecimal");
parse_err::<Ieee64>(".0", "Float must be hexadecimal");
parse_err::<Ieee64>("0", "Float must be hexadecimal");
parse_err::<Ieee64>("-0", "Float must be hexadecimal");
parse_err::<Ieee64>(".", "Float must be hexadecimal");
parse_err::<Ieee64>("", "Float must be hexadecimal");
parse_err::<Ieee64>("-", "Float must be hexadecimal");
parse_err::<Ieee64>("0x", "No digits");
parse_err::<Ieee64>("0x..", "Multiple radix points");
// Check significant bits.
parse_ok::<Ieee64>("0x0.fffffffffffff8", "0x1.fffffffffffffp-1");
parse_ok::<Ieee64>("0x1.fffffffffffff", "0x1.fffffffffffffp0");
parse_ok::<Ieee64>("0x3.ffffffffffffe", "0x1.fffffffffffffp1");
parse_ok::<Ieee64>("0x7.ffffffffffffc", "0x1.fffffffffffffp2");
parse_ok::<Ieee64>("0xf.ffffffffffff8", "0x1.fffffffffffffp3");
parse_err::<Ieee64>("0x3.fffffffffffff", "Too many significant bits");
parse_err::<Ieee64>("0x001.fffffe00000000", "Too many digits");
// Exponents.
parse_ok::<Ieee64>("0x1p3", "0x1.0000000000000p3");
parse_ok::<Ieee64>("0x1p-3", "0x1.0000000000000p-3");
parse_ok::<Ieee64>("0x1.0p3", "0x1.0000000000000p3");
parse_ok::<Ieee64>("0x2.0p3", "0x1.0000000000000p4");
parse_ok::<Ieee64>("0x1.0p1023", "0x1.0000000000000p1023");
parse_ok::<Ieee64>("0x1.0p-1022", "0x1.0000000000000p-1022");
parse_ok::<Ieee64>("0x0.1p-1018", "0x1.0000000000000p-1022");
parse_err::<Ieee64>("0x2.0p1023", "Magnitude too large");
// Subnormals.
parse_ok::<Ieee64>("0x1.0p-1023", "0x0.8000000000000p-1022");
parse_ok::<Ieee64>("0x1.0p-1074", "0x0.0000000000001p-1022");
parse_ok::<Ieee64>("0x0.0000000000001p-1022", "0x0.0000000000001p-1022");
parse_err::<Ieee64>("0x0.10000000000008p-1022", "Subnormal underflow");
parse_err::<Ieee64>("0x1.8p-1074", "Subnormal underflow");
parse_err::<Ieee64>("0x1.0p-1075", "Magnitude too small");
// NaNs and Infs.
parse_ok::<Ieee64>("Inf", "+Inf");
parse_ok::<Ieee64>("-Inf", "-Inf");
parse_ok::<Ieee64>("NaN", "+NaN");
parse_ok::<Ieee64>("-NaN", "-NaN");
parse_ok::<Ieee64>("NaN:0x0", "+NaN");
parse_err::<Ieee64>("NaN:", "Float must be hexadecimal");
parse_err::<Ieee64>("NaN:0", "Float must be hexadecimal");
parse_err::<Ieee64>("NaN:0x", "Invalid NaN payload");
parse_ok::<Ieee64>("NaN:0x000001", "+NaN:0x1");
parse_ok::<Ieee64>("NaN:0x4000000000001", "+NaN:0x4000000000001");
parse_err::<Ieee64>("NaN:0x8000000000001", "Invalid NaN payload");
parse_ok::<Ieee64>("sNaN:0x1", "+sNaN:0x1");
parse_err::<Ieee64>("sNaN:0x0", "Invalid sNaN payload");
parse_ok::<Ieee64>("sNaN:0x4000000000001", "+sNaN:0x4000000000001");
parse_err::<Ieee64>("sNaN:0x8000000000001", "Invalid sNaN payload");
}
}