Files
wasmtime/crates/jit/src/compiler.rs
Johnnie Birch 9c6150b103 Adds perf jitdump support (#360)
Patch adds support for the perf jitdump file specification.
With this patch it should be possible to see profile data for code
generated and maped at runtime. Specifically the patch adds support
for the JIT_CODE_LOAD and the JIT_DEBUG_INFO record as described in
the specification. Dumping jitfiles is enabled with the --jitdump
flag. When the -g flag is also used there is an attempt to dump file
and line number information where this option would be most useful
when the WASM file already includes DWARF debug information.

The generation of the jitdump files has been tested on only a few wasm
files. This patch is expected to be useful/serviceable where currently
there is no means for jit profiling, but future patches may benefit
line mapping and add support for additional jitdump record types.

Usage Example:
Record
  sudo perf record -k 1 -e instructions:u target/debug/wasmtime -g
  --jitdump test.wasm
Combine
  sudo perf inject -v -j -i perf.data -o perf.jit.data
Report
  sudo perf report -i perf.jit.data -F+period,srcline
2020-02-21 08:30:21 -06:00

453 lines
15 KiB
Rust

//! JIT compilation.
use crate::code_memory::CodeMemory;
use crate::instantiate::SetupError;
use crate::target_tunables::target_tunables;
use cranelift_codegen::ir::InstBuilder;
use cranelift_codegen::print_errors::pretty_error;
use cranelift_codegen::Context;
use cranelift_codegen::{binemit, ir};
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
use cranelift_wasm::ModuleTranslationState;
use std::collections::HashMap;
use std::convert::TryFrom;
use wasmtime_debug::{emit_debugsections_image, DebugInfoData};
use wasmtime_environ::entity::{EntityRef, PrimaryMap};
use wasmtime_environ::isa::{TargetFrontendConfig, TargetIsa};
use wasmtime_environ::wasm::{DefinedFuncIndex, DefinedMemoryIndex, MemoryIndex};
use wasmtime_environ::{
CacheConfig, Compilation, CompileError, CompiledFunction, CompiledFunctionUnwindInfo,
Compiler as _C, FunctionBodyData, Module, ModuleMemoryOffset, ModuleVmctxInfo, Relocations,
Traps, Tunables, VMOffsets,
};
use wasmtime_profiling::ProfilingAgent;
use wasmtime_runtime::{
InstantiationError, SignatureRegistry, TrapRegistration, TrapRegistry, VMFunctionBody,
VMSharedSignatureIndex,
};
/// Select which kind of compilation to use.
#[derive(Copy, Clone, Debug)]
pub enum CompilationStrategy {
/// Let Wasmtime pick the strategy.
Auto,
/// Compile all functions with Cranelift.
Cranelift,
/// Compile all functions with Lightbeam.
#[cfg(feature = "lightbeam")]
Lightbeam,
}
/// A WebAssembly code JIT compiler.
///
/// A `Compiler` instance owns the executable memory that it allocates.
///
/// TODO: Evolve this to support streaming rather than requiring a `&[u8]`
/// containing a whole wasm module at once.
///
/// TODO: Consider using cranelift-module.
pub struct Compiler {
isa: Box<dyn TargetIsa>,
code_memory: CodeMemory,
trap_registry: TrapRegistry,
trampoline_park: HashMap<VMSharedSignatureIndex, *const VMFunctionBody>,
signatures: SignatureRegistry,
strategy: CompilationStrategy,
cache_config: CacheConfig,
/// The `FunctionBuilderContext`, shared between trampline function compilations.
fn_builder_ctx: FunctionBuilderContext,
}
impl Compiler {
/// Construct a new `Compiler`.
pub fn new(
isa: Box<dyn TargetIsa>,
strategy: CompilationStrategy,
cache_config: CacheConfig,
) -> Self {
Self {
isa,
code_memory: CodeMemory::new(),
trampoline_park: HashMap::new(),
signatures: SignatureRegistry::new(),
fn_builder_ctx: FunctionBuilderContext::new(),
strategy,
trap_registry: TrapRegistry::default(),
cache_config,
}
}
}
impl Compiler {
/// Return the target's frontend configuration settings.
pub fn frontend_config(&self) -> TargetFrontendConfig {
self.isa.frontend_config()
}
/// Return the tunables in use by this engine.
pub fn tunables(&self) -> Tunables {
target_tunables(self.isa.triple())
}
/// Compile the given function bodies.
pub(crate) fn compile<'data>(
&mut self,
module: &Module,
module_translation: &ModuleTranslationState,
function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
debug_data: Option<DebugInfoData>,
) -> Result<
(
PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
PrimaryMap<DefinedFuncIndex, ir::JumpTableOffsets>,
Relocations,
Option<Vec<u8>>,
TrapRegistration,
),
SetupError,
> {
let (compilation, relocations, address_transform, value_ranges, stack_slots, traps) =
match self.strategy {
// For now, interpret `Auto` as `Cranelift` since that's the most stable
// implementation.
CompilationStrategy::Auto | CompilationStrategy::Cranelift => {
wasmtime_environ::cranelift::Cranelift::compile_module(
module,
module_translation,
function_body_inputs,
&*self.isa,
debug_data.is_some(),
&self.cache_config,
)
}
#[cfg(feature = "lightbeam")]
CompilationStrategy::Lightbeam => {
wasmtime_environ::lightbeam::Lightbeam::compile_module(
module,
module_translation,
function_body_inputs,
&*self.isa,
debug_data.is_some(),
&self.cache_config,
)
}
}
.map_err(SetupError::Compile)?;
let allocated_functions =
allocate_functions(&mut self.code_memory, &compilation).map_err(|message| {
SetupError::Instantiate(InstantiationError::Resource(format!(
"failed to allocate memory for functions: {}",
message
)))
})?;
let trap_registration = register_traps(&allocated_functions, &traps, &self.trap_registry);
// Translate debug info (DWARF) only if at least one function is present.
let dbg = if debug_data.is_some() && !allocated_functions.is_empty() {
let target_config = self.isa.frontend_config();
let ofs = VMOffsets::new(target_config.pointer_bytes(), &module);
let mut funcs = Vec::new();
for (i, allocated) in allocated_functions.into_iter() {
let ptr = (*allocated) as *const u8;
let body_len = compilation.get(i).body.len();
funcs.push((ptr, body_len));
}
let module_vmctx_info = {
ModuleVmctxInfo {
memory_offset: if ofs.num_imported_memories > 0 {
ModuleMemoryOffset::Imported(ofs.vmctx_vmmemory_import(MemoryIndex::new(0)))
} else if ofs.num_defined_memories > 0 {
ModuleMemoryOffset::Defined(
ofs.vmctx_vmmemory_definition_base(DefinedMemoryIndex::new(0)),
)
} else {
ModuleMemoryOffset::None
},
stack_slots,
}
};
let bytes = emit_debugsections_image(
self.isa.triple().clone(),
target_config,
debug_data.as_ref().unwrap(),
&module_vmctx_info,
&address_transform,
&value_ranges,
&funcs,
)
.map_err(SetupError::DebugInfo)?;
Some(bytes)
} else {
None
};
let jt_offsets = compilation.get_jt_offsets();
Ok((
allocated_functions,
jt_offsets,
relocations,
dbg,
trap_registration,
))
}
/// Create a trampoline for invoking a function.
pub(crate) fn get_trampoline(
&mut self,
signature: &ir::Signature,
value_size: usize,
) -> Result<*const VMFunctionBody, SetupError> {
let index = self.signatures.register(signature);
if let Some(trampoline) = self.trampoline_park.get(&index) {
return Ok(*trampoline);
}
let body = make_trampoline(
&*self.isa,
&mut self.code_memory,
&mut self.fn_builder_ctx,
signature,
value_size,
)?;
self.trampoline_park.insert(index, body);
return Ok(body);
}
/// Create and publish a trampoline for invoking a function.
pub fn get_published_trampoline(
&mut self,
signature: &ir::Signature,
value_size: usize,
) -> Result<*const VMFunctionBody, SetupError> {
let result = self.get_trampoline(signature, value_size)?;
self.publish_compiled_code();
Ok(result)
}
/// Make memory containing compiled code executable.
pub(crate) fn publish_compiled_code(&mut self) {
self.code_memory.publish();
}
pub(crate) fn profiler_module_load(
&mut self,
profiler: &mut Box<dyn ProfilingAgent + Send>,
module_name: &str,
dbg_image: Option<&[u8]>,
) -> () {
self.code_memory
.profiler_module_load(profiler, module_name, dbg_image);
}
/// Shared signature registry.
pub fn signatures(&self) -> &SignatureRegistry {
&self.signatures
}
/// Shared registration of trap information
pub fn trap_registry(&self) -> &TrapRegistry {
&self.trap_registry
}
}
/// Create a trampoline for invoking a function.
fn make_trampoline(
isa: &dyn TargetIsa,
code_memory: &mut CodeMemory,
fn_builder_ctx: &mut FunctionBuilderContext,
signature: &ir::Signature,
value_size: usize,
) -> Result<*const VMFunctionBody, SetupError> {
let pointer_type = isa.pointer_type();
let mut wrapper_sig = ir::Signature::new(isa.frontend_config().default_call_conv);
// Add the callee `vmctx` parameter.
wrapper_sig.params.push(ir::AbiParam::special(
pointer_type,
ir::ArgumentPurpose::VMContext,
));
// Add the caller `vmctx` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
// Add the `callee_address` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
// Add the `values_vec` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
let mut context = Context::new();
context.func = ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wrapper_sig);
context.func.collect_frame_layout_info();
{
let mut builder = FunctionBuilder::new(&mut context.func, fn_builder_ctx);
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
let (vmctx_ptr_val, caller_vmctx_ptr_val, callee_value, values_vec_ptr_val) = {
let params = builder.func.dfg.block_params(block0);
(params[0], params[1], params[2], params[3])
};
// Load the argument values out of `values_vec`.
let mflags = ir::MemFlags::trusted();
let callee_args = signature
.params
.iter()
.enumerate()
.map(|(i, r)| {
match i {
0 => vmctx_ptr_val,
1 => caller_vmctx_ptr_val,
_ =>
// i - 2 because vmctx and caller vmctx aren't passed through `values_vec`.
{
builder.ins().load(
r.value_type,
mflags,
values_vec_ptr_val,
((i - 2) * value_size) as i32,
)
}
}
})
.collect::<Vec<_>>();
let new_sig = builder.import_signature(signature.clone());
let call = builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
let results = builder.func.dfg.inst_results(call).to_vec();
// Store the return values into `values_vec`.
let mflags = ir::MemFlags::trusted();
for (i, r) in results.iter().enumerate() {
builder
.ins()
.store(mflags, *r, values_vec_ptr_val, (i * value_size) as i32);
}
builder.ins().return_(&[]);
builder.finalize()
}
let mut code_buf = Vec::new();
let mut reloc_sink = RelocSink {};
let mut trap_sink = binemit::NullTrapSink {};
let mut stackmap_sink = binemit::NullStackmapSink {};
context
.compile_and_emit(
isa,
&mut code_buf,
&mut reloc_sink,
&mut trap_sink,
&mut stackmap_sink,
)
.map_err(|error| {
SetupError::Compile(CompileError::Codegen(pretty_error(
&context.func,
Some(isa),
error,
)))
})?;
let unwind_info = CompiledFunctionUnwindInfo::new(isa, &context);
Ok(code_memory
.allocate_for_function(&CompiledFunction {
body: code_buf,
jt_offsets: context.func.jt_offsets,
unwind_info,
})
.map_err(|message| SetupError::Instantiate(InstantiationError::Resource(message)))?
.as_ptr())
}
fn allocate_functions(
code_memory: &mut CodeMemory,
compilation: &Compilation,
) -> Result<PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>, String> {
let fat_ptrs = code_memory.allocate_for_compilation(compilation)?;
// Second, create a PrimaryMap from result vector of pointers.
let mut result = PrimaryMap::with_capacity(compilation.len());
for i in 0..fat_ptrs.len() {
let fat_ptr: *mut [VMFunctionBody] = fat_ptrs[i];
result.push(fat_ptr);
}
Ok(result)
}
fn register_traps(
allocated_functions: &PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
traps: &Traps,
registry: &TrapRegistry,
) -> TrapRegistration {
let traps =
allocated_functions
.values()
.zip(traps.values())
.flat_map(|(func_addr, func_traps)| {
func_traps.iter().map(move |trap_desc| {
let func_addr = *func_addr as *const u8 as usize;
let offset = usize::try_from(trap_desc.code_offset).unwrap();
let trap_addr = func_addr + offset;
(trap_addr, trap_desc.source_loc, trap_desc.trap_code)
})
});
registry.register_traps(traps)
}
/// We don't expect trampoline compilation to produce any relocations, so
/// this `RelocSink` just asserts that it doesn't recieve any.
struct RelocSink {}
impl binemit::RelocSink for RelocSink {
fn reloc_block(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_block_offset: binemit::CodeOffset,
) {
panic!("trampoline compilation should not produce block relocs");
}
fn reloc_external(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_name: &ir::ExternalName,
_addend: binemit::Addend,
) {
panic!("trampoline compilation should not produce external symbol relocs");
}
fn reloc_constant(
&mut self,
_code_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_constant_offset: ir::ConstantOffset,
) {
panic!("trampoline compilation should not produce constant relocs");
}
fn reloc_jt(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_jt: ir::JumpTable,
) {
panic!("trampoline compilation should not produce jump table relocs");
}
}