Files
wasmtime/crates/wast/src/wast.rs

562 lines
23 KiB
Rust

use crate::spectest::instantiate_spectest;
use anyhow::{anyhow, bail, Context as _, Result};
use std::collections::HashMap;
use std::path::Path;
use std::str;
use wasmtime::*;
/// Translate from a `script::Value` to a `RuntimeValue`.
fn runtime_value(v: &wast::Expression<'_>) -> Result<Val> {
use wast::Instruction::*;
if v.instrs.len() != 1 {
bail!("too many instructions in {:?}", v);
}
Ok(match &v.instrs[0] {
I32Const(x) => Val::I32(*x),
I64Const(x) => Val::I64(*x),
F32Const(x) => Val::F32(x.bits),
F64Const(x) => Val::F64(x.bits),
V128Const(x) => Val::V128(u128::from_le_bytes(x.to_le_bytes())),
other => bail!("couldn't convert {:?} to a runtime value", other),
})
}
/// The wast test script language allows modules to be defined and actions
/// to be performed on them.
pub struct WastContext {
/// Wast files have a concept of a "current" module, which is the most
/// recently defined.
current: Option<HostRef<Instance>>,
instances: HashMap<String, HostRef<Instance>>,
store: HostRef<Store>,
spectest: Option<HashMap<&'static str, Extern>>,
}
enum Outcome<T = Vec<Val>> {
Ok(T),
Trap(Trap),
}
impl WastContext {
/// Construct a new instance of `WastContext`.
pub fn new(store: HostRef<Store>) -> Self {
Self {
current: None,
store,
spectest: None,
instances: HashMap::new(),
}
}
fn get_instance(&self, instance_name: Option<&str>) -> Result<HostRef<Instance>> {
match instance_name {
Some(name) => self
.instances
.get(name)
.cloned()
.ok_or_else(|| anyhow!("failed to find instance named `{}`", name)),
None => self
.current
.clone()
.ok_or_else(|| anyhow!("no previous instance found")),
}
}
fn instantiate(&self, module: &[u8]) -> Result<Outcome<HostRef<Instance>>> {
let module = HostRef::new(Module::new(&self.store, module)?);
let mut imports = Vec::new();
for import in module.borrow().imports() {
if import.module() == "spectest" {
let spectest = self
.spectest
.as_ref()
.ok_or_else(|| anyhow!("spectest module isn't instantiated"))?;
let export = spectest
.get(import.name())
.ok_or_else(|| anyhow!("unknown import `spectest::{}`", import.name()))?;
imports.push(export.clone());
continue;
}
let instance = self
.instances
.get(import.module())
.ok_or_else(|| anyhow!("no module named `{}`", import.module()))?;
let export = instance
.borrow()
.find_export_by_name(import.name())
.ok_or_else(|| anyhow!("unknown import `{}::{}`", import.name(), import.module()))?
.clone();
imports.push(export);
}
let instance = match Instance::new(&self.store, &module, &imports) {
Ok(i) => i,
// FIXME(#683) shouldn't have to reach into runtime crate
Err(e) => {
use wasmtime_runtime::InstantiationError;
let err = e
.chain()
.filter_map(|e| e.downcast_ref::<InstantiationError>())
.next();
if let Some(InstantiationError::StartTrap(msg)) = err {
return Ok(Outcome::Trap(Trap::new(msg.clone())));
}
return Err(e);
}
};
Ok(Outcome::Ok(HostRef::new(instance)))
}
/// Register "spectest" which is used by the spec testsuite.
pub fn register_spectest(&mut self) -> Result<()> {
self.spectest = Some(instantiate_spectest(&self.store));
Ok(())
}
/// Perform the action portion of a command.
fn perform_execute(&mut self, exec: wast::WastExecute<'_>) -> Result<Outcome> {
match exec {
wast::WastExecute::Invoke(invoke) => self.perform_invoke(invoke),
wast::WastExecute::Module(mut module) => {
let binary = module.encode()?;
let result = self.instantiate(&binary)?;
Ok(match result {
Outcome::Ok(_) => Outcome::Ok(Vec::new()),
Outcome::Trap(e) => Outcome::Trap(e),
})
}
wast::WastExecute::Get { module, global } => self.get(module.map(|s| s.name()), global),
}
}
fn perform_invoke(&mut self, exec: wast::WastInvoke<'_>) -> Result<Outcome> {
self.invoke(exec.module.map(|i| i.name()), exec.name, &exec.args)
}
/// Define a module and register it.
fn module(&mut self, instance_name: Option<&str>, module: &[u8]) -> Result<()> {
let instance = match self.instantiate(module)? {
Outcome::Ok(i) => i,
Outcome::Trap(e) => bail!("instantiation failed with: {}", e.message()),
};
if let Some(name) = instance_name {
self.instances.insert(name.to_string(), instance.clone());
}
self.current = Some(instance);
Ok(())
}
/// Register an instance to make it available for performing actions.
fn register(&mut self, name: Option<&str>, as_name: &str) -> Result<()> {
let instance = self.get_instance(name)?.clone();
self.instances.insert(as_name.to_string(), instance);
Ok(())
}
/// Invoke an exported function from an instance.
fn invoke(
&mut self,
instance_name: Option<&str>,
field: &str,
args: &[wast::Expression],
) -> Result<Outcome> {
let values = args.iter().map(runtime_value).collect::<Result<Vec<_>>>()?;
let instance = self.get_instance(instance_name.as_ref().map(|x| &**x))?;
let instance = instance.borrow();
let export = instance
.find_export_by_name(field)
.ok_or_else(|| anyhow!("no global named `{}`", field))?;
let func = match export {
Extern::Func(f) => f.borrow(),
_ => bail!("export of `{}` wasn't a global", field),
};
Ok(match func.call(&values) {
Ok(result) => Outcome::Ok(result.into()),
Err(e) => Outcome::Trap(e),
})
}
/// Get the value of an exported global from an instance.
fn get(&mut self, instance_name: Option<&str>, field: &str) -> Result<Outcome> {
let instance = self.get_instance(instance_name.as_ref().map(|x| &**x))?;
let instance = instance.borrow();
let export = instance
.find_export_by_name(field)
.ok_or_else(|| anyhow!("no global named `{}`", field))?;
let global = match export {
Extern::Global(g) => g.borrow(),
_ => bail!("export of `{}` wasn't a global", field),
};
Ok(Outcome::Ok(vec![global.get()]))
}
/// Run a wast script from a byte buffer.
pub fn run_buffer(&mut self, filename: &str, wast: &[u8]) -> Result<()> {
use wast::WastDirective::*;
let wast = str::from_utf8(wast)?;
let adjust_wast = |mut err: wast::Error| {
err.set_path(filename.as_ref());
err.set_text(wast);
err
};
let context = |sp: wast::Span| {
let (line, col) = sp.linecol_in(wast);
format!("for directive on {}:{}:{}", filename, line + 1, col)
};
let buf = wast::parser::ParseBuffer::new(wast).map_err(adjust_wast)?;
let wast = wast::parser::parse::<wast::Wast>(&buf).map_err(adjust_wast)?;
for directive in wast.directives {
match directive {
Module(mut module) => {
let binary = module.encode().map_err(adjust_wast)?;
self.module(module.name.map(|s| s.name()), &binary)
.with_context(|| context(module.span))?;
}
Register { span, name, module } => {
self.register(module.map(|s| s.name()), name)
.with_context(|| context(span))?;
}
Invoke(i) => {
let span = i.span;
self.perform_invoke(i).with_context(|| context(span))?;
}
AssertReturn {
span,
exec,
results,
} => match self.perform_execute(exec).with_context(|| context(span))? {
Outcome::Ok(values) => {
for (v, e) in values.iter().zip(results.iter().map(runtime_value)) {
let e = e?;
if values_equal(v, &e)? {
continue;
}
bail!("{}\nexpected {:?}, got {:?}", context(span), e, v)
}
}
Outcome::Trap(t) => {
bail!("{}\nunexpected trap: {}", context(span), t.message())
}
},
AssertTrap {
span,
exec,
message,
} => match self.perform_execute(exec).with_context(|| context(span))? {
Outcome::Ok(values) => {
bail!("{}\nexpected trap, got {:?}", context(span), values)
}
Outcome::Trap(t) => {
if t.message().contains(message) {
continue;
}
if cfg!(feature = "lightbeam") {
println!(
"{}\nTODO: Check the assert_trap message: {}",
context(span),
message
);
continue;
}
bail!(
"{}\nexpected {}, got {}",
context(span),
message,
t.message(),
)
}
},
AssertExhaustion {
span,
call,
message,
} => match self.perform_invoke(call).with_context(|| context(span))? {
Outcome::Ok(values) => {
bail!("{}\nexpected trap, got {:?}", context(span), values)
}
Outcome::Trap(t) => {
if t.message().contains(message) {
continue;
}
bail!(
"{}\nexpected exhaustion with {}, got {}",
context(span),
message,
t.message(),
)
}
},
AssertReturnCanonicalNan { span, invoke } => {
match self.perform_invoke(invoke).with_context(|| context(span))? {
Outcome::Ok(values) => {
for v in values.iter() {
match v {
Val::F32(x) => {
if !is_canonical_f32_nan(*x) {
bail!("{}\nexpected canonical NaN", context(span))
}
}
Val::F64(x) => {
if !is_canonical_f64_nan(*x) {
bail!("{}\nexpected canonical NaN", context(span))
}
}
other => bail!("expected float, got {:?}", other),
};
}
}
Outcome::Trap(t) => {
bail!("{}\nunexpected trap: {}", context(span), t.message())
}
}
}
AssertReturnCanonicalNanF32x4 { span, invoke } => {
match self.perform_invoke(invoke).with_context(|| context(span))? {
Outcome::Ok(values) => {
for v in values.iter() {
let val = match v {
Val::V128(x) => x,
other => bail!("expected v128, got {:?}", other),
};
for l in 0..4 {
if !is_canonical_f32_nan(extract_lane_as_u32(val, l)?) {
bail!(
"{}\nexpected f32x4 canonical NaN in lane {}",
context(span),
l
)
}
}
}
}
Outcome::Trap(t) => {
bail!("{}\nunexpected trap: {}", context(span), t.message())
}
}
}
AssertReturnCanonicalNanF64x2 { span, invoke } => {
match self.perform_invoke(invoke).with_context(|| context(span))? {
Outcome::Ok(values) => {
for v in values.iter() {
let val = match v {
Val::V128(x) => x,
other => bail!("expected v128, got {:?}", other),
};
for l in 0..2 {
if !is_canonical_f64_nan(extract_lane_as_u64(val, l)?) {
bail!(
"{}\nexpected f64x2 canonical NaN in lane {}",
context(span),
l
)
}
}
}
}
Outcome::Trap(t) => {
bail!("{}\nunexpected trap: {}", context(span), t.message())
}
}
}
AssertReturnArithmeticNan { span, invoke } => {
match self.perform_invoke(invoke).with_context(|| context(span))? {
Outcome::Ok(values) => {
for v in values.iter() {
match v {
Val::F32(x) => {
if !is_arithmetic_f32_nan(*x) {
bail!("{}\nexpected arithmetic NaN", context(span))
}
}
Val::F64(x) => {
if !is_arithmetic_f64_nan(*x) {
bail!("{}\nexpected arithmetic NaN", context(span))
}
}
other => bail!("expected float, got {:?}", other),
};
}
}
Outcome::Trap(t) => {
bail!("{}\nunexpected trap: {}", context(span), t.message())
}
}
}
AssertReturnArithmeticNanF32x4 { span, invoke } => {
match self.perform_invoke(invoke).with_context(|| context(span))? {
Outcome::Ok(values) => {
for v in values.iter() {
let val = match v {
Val::V128(x) => x,
other => bail!("expected v128, got {:?}", other),
};
for l in 0..4 {
if !is_arithmetic_f32_nan(extract_lane_as_u32(val, l)?) {
bail!(
"{}\nexpected f32x4 arithmetic NaN in lane {}",
context(span),
l
)
}
}
}
}
Outcome::Trap(t) => {
bail!("{}\nunexpected trap: {}", context(span), t.message())
}
}
}
AssertReturnArithmeticNanF64x2 { span, invoke } => {
match self.perform_invoke(invoke).with_context(|| context(span))? {
Outcome::Ok(values) => {
for v in values.iter() {
let val = match v {
Val::V128(x) => x,
other => bail!("expected v128, got {:?}", other),
};
for l in 0..2 {
if !is_arithmetic_f64_nan(extract_lane_as_u64(val, l)?) {
bail!(
"{}\nexpected f64x2 arithmetic NaN in lane {}",
context(span),
l
)
}
}
}
}
Outcome::Trap(t) => {
bail!("{}\nunexpected trap: {}", context(span), t.message())
}
}
}
AssertInvalid {
span,
mut module,
message,
} => {
let bytes = module.encode().map_err(adjust_wast)?;
let err = match self.module(None, &bytes) {
Ok(()) => bail!("{}\nexpected module to fail to build", context(span)),
Err(e) => e,
};
let error_message = format!("{:?}", err);
if !error_message.contains(&message) {
// TODO: change to bail!
println!(
"{}\nassert_invalid: expected {}, got {}",
context(span),
message,
error_message
)
}
}
AssertMalformed {
span,
module,
message,
} => {
let mut module = match module {
wast::QuoteModule::Module(m) => m,
// this is a `*.wat` parser test which we're not
// interested in
wast::QuoteModule::Quote(_) => return Ok(()),
};
let bytes = module.encode().map_err(adjust_wast)?;
let err = match self.module(None, &bytes) {
Ok(()) => {
bail!("{}\nexpected module to fail to instantiate", context(span))
}
Err(e) => e,
};
let error_message = format!("{:?}", err);
if !error_message.contains(&message) {
// TODO: change to bail!
println!(
"{}\nassert_malformed: expected {}, got {}",
context(span),
message,
error_message
)
}
}
AssertUnlinkable {
span,
mut module,
message,
} => {
let bytes = module.encode().map_err(adjust_wast)?;
let err = match self.module(None, &bytes) {
Ok(()) => bail!("{}\nexpected module to fail to link", context(span)),
Err(e) => e,
};
let error_message = format!("{:?}", err);
if !error_message.contains(&message) {
bail!(
"{}\nassert_unlinkable: expected {}, got {}",
context(span),
message,
error_message
)
}
}
AssertReturnFunc { .. } => bail!("need to implement assert_return_func"),
}
}
Ok(())
}
/// Run a wast script from a file.
pub fn run_file(&mut self, path: &Path) -> Result<()> {
let bytes =
std::fs::read(path).with_context(|| format!("failed to read `{}`", path.display()))?;
self.run_buffer(path.to_str().unwrap(), &bytes)
}
}
fn extract_lane_as_u32(bytes: &u128, lane: usize) -> Result<u32> {
Ok((*bytes >> (lane * 32)) as u32)
}
fn extract_lane_as_u64(bytes: &u128, lane: usize) -> Result<u64> {
Ok((*bytes >> (lane * 64)) as u64)
}
fn is_canonical_f32_nan(bits: u32) -> bool {
(bits & 0x7fff_ffff) == 0x7fc0_0000
}
fn is_canonical_f64_nan(bits: u64) -> bool {
(bits & 0x7fff_ffff_ffff_ffff) == 0x7ff8_0000_0000_0000
}
fn is_arithmetic_f32_nan(bits: u32) -> bool {
const AF32_NAN: u32 = 0x0040_0000;
(bits & AF32_NAN) == AF32_NAN
}
fn is_arithmetic_f64_nan(bits: u64) -> bool {
const AF64_NAN: u64 = 0x0008_0000_0000_0000;
(bits & AF64_NAN) == AF64_NAN
}
fn values_equal(v1: &Val, v2: &Val) -> Result<bool> {
Ok(match (v1, v2) {
(Val::I32(a), Val::I32(b)) => a == b,
(Val::I64(a), Val::I64(b)) => a == b,
// Note that these float comparisons are comparing bits, not float
// values, so we're testing for bit-for-bit equivalence
(Val::F32(a), Val::F32(b)) => a == b,
(Val::F64(a), Val::F64(b)) => a == b,
(Val::V128(a), Val::V128(b)) => a == b,
_ => bail!("don't know how to compare {:?} and {:?} yet", v1, v2),
})
}