A `DoubleEndedIterator` needs to track both a forward position and a reverse position, so that `next_back()` can pop from the back of the sequence.
177 lines
4.2 KiB
Rust
177 lines
4.2 KiB
Rust
//! Densely numbered entity references as mapping keys.
|
|
|
|
use std::marker::PhantomData;
|
|
use std::ops::{Index, IndexMut};
|
|
use std::slice;
|
|
use std::vec::Vec;
|
|
use {EntityRef, Iter, IterMut, Keys};
|
|
|
|
/// A mapping `K -> V` for densely indexed entity references.
|
|
///
|
|
/// The `EntityMap` data structure uses the dense index space to implement a map with a vector.
|
|
/// Unlike `PrimaryMap`, an `EntityMap` can't be used to allocate entity references. It is used to
|
|
/// associate secondary information with entities.
|
|
///
|
|
/// The map does not track if an entry for a key has been inserted or not. Instead it behaves as if
|
|
/// all keys have a default entry from the beginning.
|
|
#[derive(Debug, Clone)]
|
|
pub struct EntityMap<K, V>
|
|
where
|
|
K: EntityRef,
|
|
V: Clone,
|
|
{
|
|
elems: Vec<V>,
|
|
default: V,
|
|
unused: PhantomData<K>,
|
|
}
|
|
|
|
/// Shared `EntityMap` implementation for all value types.
|
|
impl<K, V> EntityMap<K, V>
|
|
where
|
|
K: EntityRef,
|
|
V: Clone,
|
|
{
|
|
/// Create a new empty map.
|
|
pub fn new() -> Self
|
|
where
|
|
V: Default,
|
|
{
|
|
Self {
|
|
elems: Vec::new(),
|
|
default: Default::default(),
|
|
unused: PhantomData,
|
|
}
|
|
}
|
|
|
|
/// Create a new empty map with a specified default value.
|
|
///
|
|
/// This constructor does not require V to implement Default.
|
|
pub fn with_default(default: V) -> Self {
|
|
Self {
|
|
elems: Vec::new(),
|
|
default,
|
|
unused: PhantomData,
|
|
}
|
|
}
|
|
|
|
/// Get the element at `k` if it exists.
|
|
pub fn get(&self, k: K) -> Option<&V> {
|
|
self.elems.get(k.index())
|
|
}
|
|
|
|
/// Is this map completely empty?
|
|
pub fn is_empty(&self) -> bool {
|
|
self.elems.is_empty()
|
|
}
|
|
|
|
/// Remove all entries from this map.
|
|
pub fn clear(&mut self) {
|
|
self.elems.clear()
|
|
}
|
|
|
|
/// Iterate over all the keys and values in this map.
|
|
pub fn iter(&self) -> Iter<K, V> {
|
|
Iter::new(self.elems.iter())
|
|
}
|
|
|
|
/// Iterate over all the keys and values in this map, mutable edition.
|
|
pub fn iter_mut(&mut self) -> IterMut<K, V> {
|
|
IterMut::new(self.elems.iter_mut())
|
|
}
|
|
|
|
/// Iterate over all the keys in this map.
|
|
pub fn keys(&self) -> Keys<K> {
|
|
Keys::with_len(self.elems.len())
|
|
}
|
|
|
|
/// Iterate over all the keys in this map.
|
|
pub fn values(&self) -> slice::Iter<V> {
|
|
self.elems.iter()
|
|
}
|
|
|
|
/// Iterate over all the keys in this map, mutable edition.
|
|
pub fn values_mut(&mut self) -> slice::IterMut<V> {
|
|
self.elems.iter_mut()
|
|
}
|
|
|
|
/// Resize the map to have `n` entries by adding default entries as needed.
|
|
pub fn resize(&mut self, n: usize) {
|
|
self.elems.resize(n, self.default.clone());
|
|
}
|
|
}
|
|
|
|
/// Immutable indexing into an `EntityMap`.
|
|
///
|
|
/// All keys are permitted. Untouched entries have the default value.
|
|
impl<K, V> Index<K> for EntityMap<K, V>
|
|
where
|
|
K: EntityRef,
|
|
V: Clone,
|
|
{
|
|
type Output = V;
|
|
|
|
fn index(&self, k: K) -> &V {
|
|
self.get(k).unwrap_or(&self.default)
|
|
}
|
|
}
|
|
|
|
/// Mutable indexing into an `EntityMap`.
|
|
///
|
|
/// The map grows as needed to accommodate new keys.
|
|
impl<K, V> IndexMut<K> for EntityMap<K, V>
|
|
where
|
|
K: EntityRef,
|
|
V: Clone,
|
|
{
|
|
fn index_mut(&mut self, k: K) -> &mut V {
|
|
let i = k.index();
|
|
if i >= self.elems.len() {
|
|
self.resize(i + 1);
|
|
}
|
|
&mut self.elems[i]
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
// `EntityRef` impl for testing.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
struct E(u32);
|
|
|
|
impl EntityRef for E {
|
|
fn new(i: usize) -> Self {
|
|
E(i as u32)
|
|
}
|
|
fn index(self) -> usize {
|
|
self.0 as usize
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn basic() {
|
|
let r0 = E(0);
|
|
let r1 = E(1);
|
|
let r2 = E(2);
|
|
let mut m = EntityMap::new();
|
|
|
|
let v: Vec<E> = m.keys().collect();
|
|
assert_eq!(v, []);
|
|
|
|
m[r2] = 3;
|
|
m[r1] = 5;
|
|
|
|
assert_eq!(m[r1], 5);
|
|
assert_eq!(m[r2], 3);
|
|
|
|
let v: Vec<E> = m.keys().collect();
|
|
assert_eq!(v, [r0, r1, r2]);
|
|
|
|
let shared = &m;
|
|
assert_eq!(shared[r0], 0);
|
|
assert_eq!(shared[r1], 5);
|
|
assert_eq!(shared[r2], 3);
|
|
}
|
|
}
|