Files
wasmtime/crates/runtime/src/libcalls.rs
Alex Crichton 3f9bff17c8 Support disabling backtraces at compile time (#3932)
* Support disabling backtraces at compile time

This commit adds support to Wasmtime to disable, at compile time, the
gathering of backtraces on traps. The `wasmtime` crate now sports a
`wasm-backtrace` feature which, when disabled, will mean that backtraces
are never collected at compile time nor are unwinding tables inserted
into compiled objects.

The motivation for this commit stems from the fact that generating a
backtrace is quite a slow operation. Currently backtrace generation is
done with libunwind and `_Unwind_Backtrace` typically found in glibc or
other system libraries. When thousands of modules are loaded into the
same process though this means that the initial backtrace can take
nearly half a second and all subsequent backtraces can take upwards of
hundreds of milliseconds. Relative to all other operations in Wasmtime
this is extremely expensive at this time. In the future we'd like to
implement a more performant backtrace scheme but such an implementation
would require coordination with Cranelift and is a big chunk of work
that may take some time, so in the meantime if embedders don't need a
backtrace they can still use this option to disable backtraces at
compile time and avoid the performance pitfalls of collecting
backtraces.

In general I tried to originally make this a runtime configuration
option but ended up opting for a compile-time option because `Trap::new`
otherwise has no arguments and always captures a backtrace. By making
this a compile-time option it was possible to configure, statically, the
behavior of `Trap::new`. Additionally I also tried to minimize the
amount of `#[cfg]` necessary by largely only having it at the producer
and consumer sites.

Also a noteworthy restriction of this implementation is that if
backtrace support is disabled at compile time then reference types
support will be unconditionally disabled at runtime. With backtrace
support disabled there's no way to trace the stack of wasm frames which
means that GC can't happen given our current implementation.

* Always enable backtraces for the C API
2022-03-16 09:18:16 -05:00

610 lines
20 KiB
Rust

//! Runtime library calls.
//!
//! Note that Wasm compilers may sometimes perform these inline rather than
//! calling them, particularly when CPUs have special instructions which compute
//! them directly.
//!
//! These functions are called by compiled Wasm code, and therefore must take
//! certain care about some things:
//!
//! * They must always be `pub extern "C"` and should only contain basic, raw
//! i32/i64/f32/f64/pointer parameters that are safe to pass across the system
//! ABI!
//!
//! * If any nested function propagates an `Err(trap)` out to the library
//! function frame, we need to raise it. This involves some nasty and quite
//! unsafe code under the covers! Notable, after raising the trap, drops
//! **will not** be run for local variables! This can lead to things like
//! leaking `InstanceHandle`s which leads to never deallocating JIT code,
//! instances, and modules! Therefore, always use nested blocks to ensure
//! drops run before raising a trap:
//!
//! ```ignore
//! pub extern "C" fn my_lib_function(...) {
//! let result = {
//! // Do everything in here so drops run at the end of the block.
//! ...
//! };
//! if let Err(trap) = result {
//! // Now we can safely raise the trap without leaking!
//! raise_lib_trap(trap);
//! }
//! }
//! ```
//!
//! * When receiving a raw `*mut u8` that is actually a `VMExternRef` reference,
//! convert it into a proper `VMExternRef` with `VMExternRef::clone_from_raw`
//! as soon as apossible. Any GC before raw pointer is converted into a
//! reference can potentially collect the referenced object, which could lead
//! to use after free. Avoid this by eagerly converting into a proper
//! `VMExternRef`!
//!
//! ```ignore
//! pub unsafe extern "C" my_lib_takes_ref(raw_extern_ref: *mut u8) {
//! // Before `clone_from_raw`, `raw_extern_ref` is potentially unrooted,
//! // and doing GC here could lead to use after free!
//!
//! let my_extern_ref = if raw_extern_ref.is_null() {
//! None
//! } else {
//! Some(VMExternRef::clone_from_raw(raw_extern_ref))
//! };
//!
//! // Now that we did `clone_from_raw`, it is safe to do a GC (or do
//! // anything else that might transitively GC, like call back into
//! // Wasm!)
//! }
//! ```
use crate::externref::VMExternRef;
use crate::instance::Instance;
use crate::table::{Table, TableElementType};
use crate::traphandlers::{raise_lib_trap, resume_panic, Trap};
use crate::vmcontext::{VMCallerCheckedAnyfunc, VMContext};
use std::mem;
use std::ptr::{self, NonNull};
use wasmtime_environ::{
DataIndex, ElemIndex, FuncIndex, GlobalIndex, MemoryIndex, TableIndex, TrapCode,
};
const TOINT_32: f32 = 1.0 / f32::EPSILON;
const TOINT_64: f64 = 1.0 / f64::EPSILON;
/// Implementation of f32.ceil
pub extern "C" fn wasmtime_f32_ceil(x: f32) -> f32 {
x.ceil()
}
/// Implementation of f32.floor
pub extern "C" fn wasmtime_f32_floor(x: f32) -> f32 {
x.floor()
}
/// Implementation of f32.trunc
pub extern "C" fn wasmtime_f32_trunc(x: f32) -> f32 {
x.trunc()
}
/// Implementation of f32.nearest
#[allow(clippy::float_arithmetic, clippy::float_cmp)]
pub extern "C" fn wasmtime_f32_nearest(x: f32) -> f32 {
// Rust doesn't have a nearest function; there's nearbyint, but it's not
// stabilized, so do it manually.
// Nearest is either ceil or floor depending on which is nearest or even.
// This approach exploited round half to even default mode.
let i = x.to_bits();
let e = i >> 23 & 0xff;
if e >= 0x7f_u32 + 23 {
// Check for NaNs.
if e == 0xff {
// Read the 23-bits significand.
if i & 0x7fffff != 0 {
// Ensure it's arithmetic by setting the significand's most
// significant bit to 1; it also works for canonical NaNs.
return f32::from_bits(i | (1 << 22));
}
}
x
} else {
(x.abs() + TOINT_32 - TOINT_32).copysign(x)
}
}
/// Implementation of i64.udiv
pub extern "C" fn wasmtime_i64_udiv(x: u64, y: u64) -> u64 {
x / y
}
/// Implementation of i64.sdiv
pub extern "C" fn wasmtime_i64_sdiv(x: i64, y: i64) -> i64 {
x / y
}
/// Implementation of i64.urem
pub extern "C" fn wasmtime_i64_urem(x: u64, y: u64) -> u64 {
x % y
}
/// Implementation of i64.srem
pub extern "C" fn wasmtime_i64_srem(x: i64, y: i64) -> i64 {
x % y
}
/// Implementation of i64.ishl
pub extern "C" fn wasmtime_i64_ishl(x: i64, y: i64) -> i64 {
x << y
}
/// Implementation of i64.ushr
pub extern "C" fn wasmtime_i64_ushr(x: u64, y: i64) -> u64 {
x >> y
}
/// Implementation of i64.sshr
pub extern "C" fn wasmtime_i64_sshr(x: i64, y: i64) -> i64 {
x >> y
}
/// Implementation of f64.ceil
pub extern "C" fn wasmtime_f64_ceil(x: f64) -> f64 {
x.ceil()
}
/// Implementation of f64.floor
pub extern "C" fn wasmtime_f64_floor(x: f64) -> f64 {
x.floor()
}
/// Implementation of f64.trunc
pub extern "C" fn wasmtime_f64_trunc(x: f64) -> f64 {
x.trunc()
}
/// Implementation of f64.nearest
#[allow(clippy::float_arithmetic, clippy::float_cmp)]
pub extern "C" fn wasmtime_f64_nearest(x: f64) -> f64 {
// Rust doesn't have a nearest function; there's nearbyint, but it's not
// stabilized, so do it manually.
// Nearest is either ceil or floor depending on which is nearest or even.
// This approach exploited round half to even default mode.
let i = x.to_bits();
let e = i >> 52 & 0x7ff;
if e >= 0x3ff_u64 + 52 {
// Check for NaNs.
if e == 0x7ff {
// Read the 52-bits significand.
if i & 0xfffffffffffff != 0 {
// Ensure it's arithmetic by setting the significand's most
// significant bit to 1; it also works for canonical NaNs.
return f64::from_bits(i | (1 << 51));
}
}
x
} else {
(x.abs() + TOINT_64 - TOINT_64).copysign(x)
}
}
/// Implementation of memory.grow for locally-defined 32-bit memories.
pub unsafe extern "C" fn memory32_grow(
vmctx: *mut VMContext,
delta: u64,
memory_index: u32,
) -> *mut u8 {
// Memory grow can invoke user code provided in a ResourceLimiter{,Async},
// so we need to catch a possible panic
let ret = match std::panic::catch_unwind(|| {
let instance = (*vmctx).instance_mut();
let memory_index = MemoryIndex::from_u32(memory_index);
instance.memory_grow(memory_index, delta)
}) {
Ok(Ok(Some(size_in_bytes))) => size_in_bytes / (wasmtime_environ::WASM_PAGE_SIZE as usize),
Ok(Ok(None)) => usize::max_value(),
Ok(Err(err)) => crate::traphandlers::raise_user_trap(err),
Err(p) => resume_panic(p),
};
ret as *mut u8
}
/// Implementation of `table.grow`.
pub unsafe extern "C" fn table_grow(
vmctx: *mut VMContext,
table_index: u32,
delta: u32,
// NB: we don't know whether this is a pointer to a `VMCallerCheckedAnyfunc`
// or is a `VMExternRef` until we look at the table type.
init_value: *mut u8,
) -> u32 {
// Table grow can invoke user code provided in a ResourceLimiter{,Async},
// so we need to catch a possible panic
match std::panic::catch_unwind(|| {
let instance = (*vmctx).instance_mut();
let table_index = TableIndex::from_u32(table_index);
let element = match instance.table_element_type(table_index) {
TableElementType::Func => (init_value as *mut VMCallerCheckedAnyfunc).into(),
TableElementType::Extern => {
let init_value = if init_value.is_null() {
None
} else {
Some(VMExternRef::clone_from_raw(init_value))
};
init_value.into()
}
};
instance.table_grow(table_index, delta, element)
}) {
Ok(Ok(Some(r))) => r,
Ok(Ok(None)) => -1_i32 as u32,
Ok(Err(err)) => crate::traphandlers::raise_user_trap(err),
Err(p) => resume_panic(p),
}
}
pub use table_grow as table_grow_funcref;
pub use table_grow as table_grow_externref;
/// Implementation of `table.fill`.
pub unsafe extern "C" fn table_fill(
vmctx: *mut VMContext,
table_index: u32,
dst: u32,
// NB: we don't know whether this is a `VMExternRef` or a pointer to a
// `VMCallerCheckedAnyfunc` until we look at the table's element type.
val: *mut u8,
len: u32,
) {
let result = {
let instance = (*vmctx).instance_mut();
let table_index = TableIndex::from_u32(table_index);
let table = &mut *instance.get_table(table_index);
match table.element_type() {
TableElementType::Func => {
let val = val as *mut VMCallerCheckedAnyfunc;
table.fill(dst, val.into(), len)
}
TableElementType::Extern => {
let val = if val.is_null() {
None
} else {
Some(VMExternRef::clone_from_raw(val))
};
table.fill(dst, val.into(), len)
}
}
};
if let Err(trap) = result {
raise_lib_trap(trap);
}
}
pub use table_fill as table_fill_funcref;
pub use table_fill as table_fill_externref;
/// Implementation of `table.copy`.
pub unsafe extern "C" fn table_copy(
vmctx: *mut VMContext,
dst_table_index: u32,
src_table_index: u32,
dst: u32,
src: u32,
len: u32,
) {
let result = {
let dst_table_index = TableIndex::from_u32(dst_table_index);
let src_table_index = TableIndex::from_u32(src_table_index);
let instance = (*vmctx).instance_mut();
let dst_table = instance.get_table(dst_table_index);
// Lazy-initialize the whole range in the source table first.
let src_range = src..(src.checked_add(len).unwrap_or(u32::MAX));
let src_table = instance.get_table_with_lazy_init(src_table_index, src_range);
Table::copy(dst_table, src_table, dst, src, len)
};
if let Err(trap) = result {
raise_lib_trap(trap);
}
}
/// Implementation of `table.init`.
pub unsafe extern "C" fn table_init(
vmctx: *mut VMContext,
table_index: u32,
elem_index: u32,
dst: u32,
src: u32,
len: u32,
) {
let result = {
let table_index = TableIndex::from_u32(table_index);
let elem_index = ElemIndex::from_u32(elem_index);
let instance = (*vmctx).instance_mut();
instance.table_init(table_index, elem_index, dst, src, len)
};
if let Err(trap) = result {
raise_lib_trap(trap);
}
}
/// Implementation of `elem.drop`.
pub unsafe extern "C" fn elem_drop(vmctx: *mut VMContext, elem_index: u32) {
let elem_index = ElemIndex::from_u32(elem_index);
let instance = (*vmctx).instance_mut();
instance.elem_drop(elem_index);
}
/// Implementation of `memory.copy` for locally defined memories.
pub unsafe extern "C" fn memory_copy(
vmctx: *mut VMContext,
dst_index: u32,
dst: u64,
src_index: u32,
src: u64,
len: u64,
) {
let result = {
let src_index = MemoryIndex::from_u32(src_index);
let dst_index = MemoryIndex::from_u32(dst_index);
let instance = (*vmctx).instance_mut();
instance.memory_copy(dst_index, dst, src_index, src, len)
};
if let Err(trap) = result {
raise_lib_trap(trap);
}
}
/// Implementation of `memory.fill` for locally defined memories.
pub unsafe extern "C" fn memory_fill(
vmctx: *mut VMContext,
memory_index: u32,
dst: u64,
val: u32,
len: u64,
) {
let result = {
let memory_index = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance_mut();
instance.memory_fill(memory_index, dst, val as u8, len)
};
if let Err(trap) = result {
raise_lib_trap(trap);
}
}
/// Implementation of `memory.init`.
pub unsafe extern "C" fn memory_init(
vmctx: *mut VMContext,
memory_index: u32,
data_index: u32,
dst: u64,
src: u32,
len: u32,
) {
let result = {
let memory_index = MemoryIndex::from_u32(memory_index);
let data_index = DataIndex::from_u32(data_index);
let instance = (*vmctx).instance_mut();
instance.memory_init(memory_index, data_index, dst, src, len)
};
if let Err(trap) = result {
raise_lib_trap(trap);
}
}
/// Implementation of `ref.func`.
pub unsafe extern "C" fn ref_func(vmctx: *mut VMContext, func_index: u32) -> *mut u8 {
let instance = (*vmctx).instance_mut();
let anyfunc = instance
.get_caller_checked_anyfunc(FuncIndex::from_u32(func_index))
.expect("ref_func: caller_checked_anyfunc should always be available for given func index");
anyfunc as *mut _
}
/// Implementation of `data.drop`.
pub unsafe extern "C" fn data_drop(vmctx: *mut VMContext, data_index: u32) {
let data_index = DataIndex::from_u32(data_index);
let instance = (*vmctx).instance_mut();
instance.data_drop(data_index)
}
/// Returns a table entry after lazily initializing it.
pub unsafe extern "C" fn table_get_lazy_init_funcref(
vmctx: *mut VMContext,
table_index: u32,
index: u32,
) -> *mut u8 {
let instance = (*vmctx).instance_mut();
let table_index = TableIndex::from_u32(table_index);
let table = instance.get_table_with_lazy_init(table_index, std::iter::once(index));
let elem = (*table)
.get(index)
.expect("table access already bounds-checked");
elem.into_ref_asserting_initialized() as *mut _
}
/// Drop a `VMExternRef`.
pub unsafe extern "C" fn drop_externref(externref: *mut u8) {
let externref = externref as *mut crate::externref::VMExternData;
let externref = NonNull::new(externref).unwrap();
crate::externref::VMExternData::drop_and_dealloc(externref);
}
/// Do a GC and insert the given `externref` into the
/// `VMExternRefActivationsTable`.
pub unsafe extern "C" fn activations_table_insert_with_gc(
vmctx: *mut VMContext,
externref: *mut u8,
) {
let externref = VMExternRef::clone_from_raw(externref);
let instance = (*vmctx).instance();
let (activations_table, module_info_lookup) = (*instance.store()).externref_activations_table();
// Invariant: all `externref`s on the stack have an entry in the activations
// table. So we need to ensure that this `externref` is in the table
// *before* we GC, even though `insert_with_gc` will ensure that it is in
// the table *after* the GC. This technically results in one more hash table
// look up than is strictly necessary -- which we could avoid by having an
// additional GC method that is aware of these GC-triggering references --
// but it isn't really a concern because this is already a slow path.
activations_table.insert_without_gc(externref.clone());
activations_table.insert_with_gc(externref, module_info_lookup);
}
/// Perform a Wasm `global.get` for `externref` globals.
pub unsafe extern "C" fn externref_global_get(vmctx: *mut VMContext, index: u32) -> *mut u8 {
let index = GlobalIndex::from_u32(index);
let instance = (*vmctx).instance();
let global = instance.defined_or_imported_global_ptr(index);
match (*global).as_externref().clone() {
None => ptr::null_mut(),
Some(externref) => {
let raw = externref.as_raw();
let (activations_table, module_info_lookup) =
(*instance.store()).externref_activations_table();
activations_table.insert_with_gc(externref, module_info_lookup);
raw
}
}
}
/// Perform a Wasm `global.set` for `externref` globals.
pub unsafe extern "C" fn externref_global_set(
vmctx: *mut VMContext,
index: u32,
externref: *mut u8,
) {
let externref = if externref.is_null() {
None
} else {
Some(VMExternRef::clone_from_raw(externref))
};
let index = GlobalIndex::from_u32(index);
let instance = (*vmctx).instance();
let global = instance.defined_or_imported_global_ptr(index);
// Swap the new `externref` value into the global before we drop the old
// value. This protects against an `externref` with a `Drop` implementation
// that calls back into Wasm and touches this global again (we want to avoid
// it observing a halfway-deinitialized value).
let old = mem::replace((*global).as_externref_mut(), externref);
drop(old);
}
/// Implementation of `memory.atomic.notify` for locally defined memories.
pub unsafe extern "C" fn memory_atomic_notify(
vmctx: *mut VMContext,
memory_index: u32,
addr: *mut u8,
_count: u32,
) -> u32 {
let result = {
let addr = addr as usize;
let memory = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance();
// this should never overflow since addr + 4 either hits a guard page
// or it's been validated to be in-bounds already. Double-check for now
// just to be sure.
let addr_to_check = addr.checked_add(4).unwrap();
validate_atomic_addr(instance, memory, addr_to_check).and_then(|()| {
Err(Trap::User(anyhow::anyhow!(
"unimplemented: wasm atomics (fn memory_atomic_notify) unsupported",
)))
})
};
match result {
Ok(n) => n,
Err(e) => raise_lib_trap(e),
}
}
/// Implementation of `memory.atomic.wait32` for locally defined memories.
pub unsafe extern "C" fn memory_atomic_wait32(
vmctx: *mut VMContext,
memory_index: u32,
addr: *mut u8,
_expected: u32,
_timeout: u64,
) -> u32 {
let result = {
let addr = addr as usize;
let memory = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance();
// see wasmtime_memory_atomic_notify for why this shouldn't overflow
// but we still double-check
let addr_to_check = addr.checked_add(4).unwrap();
validate_atomic_addr(instance, memory, addr_to_check).and_then(|()| {
Err(Trap::User(anyhow::anyhow!(
"unimplemented: wasm atomics (fn memory_atomic_wait32) unsupported",
)))
})
};
match result {
Ok(n) => n,
Err(e) => raise_lib_trap(e),
}
}
/// Implementation of `memory.atomic.wait64` for locally defined memories.
pub unsafe extern "C" fn memory_atomic_wait64(
vmctx: *mut VMContext,
memory_index: u32,
addr: *mut u8,
_expected: u64,
_timeout: u64,
) -> u32 {
let result = {
let addr = addr as usize;
let memory = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance();
// see wasmtime_memory_atomic_notify for why this shouldn't overflow
// but we still double-check
let addr_to_check = addr.checked_add(8).unwrap();
validate_atomic_addr(instance, memory, addr_to_check).and_then(|()| {
Err(Trap::User(anyhow::anyhow!(
"unimplemented: wasm atomics (fn memory_atomic_wait64) unsupported",
)))
})
};
match result {
Ok(n) => n,
Err(e) => raise_lib_trap(e),
}
}
/// For atomic operations we still check the actual address despite this also
/// being checked via the `heap_addr` instruction in cranelift. The reason for
/// that is because the `heap_addr` instruction can defer to a later segfault to
/// actually recognize the out-of-bounds whereas once we're running Rust code
/// here we don't want to segfault.
///
/// In the situations where bounds checks were elided in JIT code (because oob
/// would then be later guaranteed to segfault) this manual check is here
/// so we don't segfault from Rust.
unsafe fn validate_atomic_addr(
instance: &Instance,
memory: MemoryIndex,
addr: usize,
) -> Result<(), Trap> {
if addr > instance.get_memory(memory).current_length {
return Err(Trap::wasm(TrapCode::HeapOutOfBounds));
}
Ok(())
}
/// Hook for when an instance runs out of fuel.
pub unsafe extern "C" fn out_of_gas(vmctx: *mut VMContext) {
match (*(*vmctx).instance().store()).out_of_gas() {
Ok(()) => {}
Err(err) => crate::traphandlers::raise_user_trap(err),
}
}
/// Hook for when an instance observes that the epoch has changed.
pub unsafe extern "C" fn new_epoch(vmctx: *mut VMContext) -> u64 {
match (*(*vmctx).instance().store()).new_epoch() {
Ok(new_deadline) => new_deadline,
Err(err) => crate::traphandlers::raise_user_trap(err),
}
}