Files
wasmtime/crates/runtime/src/mmap.rs
Anton Kirilov d8b290898c Initial forward-edge CFI implementation (#3693)
* Initial forward-edge CFI implementation

Give the user the option to start all basic blocks that are targets
of indirect branches with the BTI instruction introduced by the
Branch Target Identification extension to the Arm instruction set
architecture.

Copyright (c) 2022, Arm Limited.

* Refactor `from_artifacts` to avoid second `make_executable` (#1)

This involves "parsing" twice but this is parsing just the header of an
ELF file so it's not a very intensive operation and should be ok to do
twice.

* Address the code review feedback

Copyright (c) 2022, Arm Limited.

Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-09-08 09:35:58 -05:00

510 lines
17 KiB
Rust

//! Low-level abstraction for allocating and managing zero-filled pages
//! of memory.
use anyhow::anyhow;
use anyhow::{Context, Result};
use std::convert::TryFrom;
use std::fs::File;
use std::ops::Range;
use std::path::Path;
use std::ptr;
use std::slice;
use std::sync::Arc;
/// A simple struct consisting of a page-aligned pointer to page-aligned
/// and initially-zeroed memory and a length.
#[derive(Debug)]
pub struct Mmap {
// Note that this is stored as a `usize` instead of a `*const` or `*mut`
// pointer to allow this structure to be natively `Send` and `Sync` without
// `unsafe impl`. This type is sendable across threads and shareable since
// the coordination all happens at the OS layer.
ptr: usize,
len: usize,
file: Option<Arc<File>>,
}
impl Mmap {
/// Construct a new empty instance of `Mmap`.
pub fn new() -> Self {
// Rust's slices require non-null pointers, even when empty. `Vec`
// contains code to create a non-null dangling pointer value when
// constructed empty, so we reuse that here.
let empty = Vec::<u8>::new();
Self {
ptr: empty.as_ptr() as usize,
len: 0,
file: None,
}
}
/// Create a new `Mmap` pointing to at least `size` bytes of page-aligned accessible memory.
pub fn with_at_least(size: usize) -> Result<Self> {
let page_size = crate::page_size();
let rounded_size = (size + (page_size - 1)) & !(page_size - 1);
Self::accessible_reserved(rounded_size, rounded_size)
}
/// Creates a new `Mmap` by opening the file located at `path` and mapping
/// it into memory.
///
/// The memory is mapped in read-only mode for the entire file. If portions
/// of the file need to be modified then the `region` crate can be use to
/// alter permissions of each page.
///
/// The memory mapping and the length of the file within the mapping are
/// returned.
pub fn from_file(path: &Path) -> Result<Self> {
#[cfg(unix)]
{
let file = File::open(path).context("failed to open file")?;
let len = file
.metadata()
.context("failed to get file metadata")?
.len();
let len = usize::try_from(len).map_err(|_| anyhow!("file too large to map"))?;
let ptr = unsafe {
rustix::mm::mmap(
ptr::null_mut(),
len,
rustix::mm::ProtFlags::READ,
rustix::mm::MapFlags::PRIVATE,
&file,
0,
)
.context(format!("mmap failed to allocate {:#x} bytes", len))?
};
Ok(Self {
ptr: ptr as usize,
len,
file: Some(Arc::new(file)),
})
}
#[cfg(windows)]
{
use std::fs::OpenOptions;
use std::io;
use std::os::windows::prelude::*;
use windows_sys::Win32::Foundation::*;
use windows_sys::Win32::Storage::FileSystem::*;
use windows_sys::Win32::System::Memory::*;
unsafe {
// Open the file with read/execute access and only share for
// read. This will enable us to perform the proper mmap below
// while also disallowing other processes modifying the file
// and having those modifications show up in our address space.
let file = OpenOptions::new()
.read(true)
.access_mode(FILE_GENERIC_READ | FILE_GENERIC_EXECUTE)
.share_mode(FILE_SHARE_READ)
.open(path)
.context("failed to open file")?;
let len = file
.metadata()
.context("failed to get file metadata")?
.len();
let len = usize::try_from(len).map_err(|_| anyhow!("file too large to map"))?;
// Create a file mapping that allows PAGE_EXECUTE_READ which
// we'll be using for mapped text sections in ELF images later.
let mapping = CreateFileMappingW(
file.as_raw_handle() as isize,
ptr::null_mut(),
PAGE_EXECUTE_READ,
0,
0,
ptr::null(),
);
if mapping == 0 {
return Err(io::Error::last_os_error())
.context("failed to create file mapping");
}
// Create a view for the entire file using `FILE_MAP_EXECUTE`
// here so that we can later change the text section to execute.
let ptr = MapViewOfFile(mapping, FILE_MAP_READ | FILE_MAP_EXECUTE, 0, 0, len);
let err = io::Error::last_os_error();
CloseHandle(mapping);
if ptr.is_null() {
return Err(err)
.context(format!("failed to create map view of {:#x} bytes", len));
}
let ret = Self {
ptr: ptr as usize,
len,
file: Some(Arc::new(file)),
};
// Protect the entire file as PAGE_READONLY to start (i.e.
// remove the execute bit)
let mut old = 0;
if VirtualProtect(ret.ptr as *mut _, ret.len, PAGE_READONLY, &mut old) == 0 {
return Err(io::Error::last_os_error())
.context("failed change pages to `PAGE_READONLY`");
}
Ok(ret)
}
}
}
/// Create a new `Mmap` pointing to `accessible_size` bytes of page-aligned accessible memory,
/// within a reserved mapping of `mapping_size` bytes. `accessible_size` and `mapping_size`
/// must be native page-size multiples.
#[cfg(not(target_os = "windows"))]
pub fn accessible_reserved(accessible_size: usize, mapping_size: usize) -> Result<Self> {
let page_size = crate::page_size();
assert!(accessible_size <= mapping_size);
assert_eq!(mapping_size & (page_size - 1), 0);
assert_eq!(accessible_size & (page_size - 1), 0);
// Mmap may return EINVAL if the size is zero, so just
// special-case that.
if mapping_size == 0 {
return Ok(Self::new());
}
Ok(if accessible_size == mapping_size {
// Allocate a single read-write region at once.
let ptr = unsafe {
rustix::mm::mmap_anonymous(
ptr::null_mut(),
mapping_size,
rustix::mm::ProtFlags::READ | rustix::mm::ProtFlags::WRITE,
rustix::mm::MapFlags::PRIVATE,
)
.context(format!("mmap failed to allocate {:#x} bytes", mapping_size))?
};
Self {
ptr: ptr as usize,
len: mapping_size,
file: None,
}
} else {
// Reserve the mapping size.
let ptr = unsafe {
rustix::mm::mmap_anonymous(
ptr::null_mut(),
mapping_size,
rustix::mm::ProtFlags::empty(),
rustix::mm::MapFlags::PRIVATE,
)
.context(format!("mmap failed to allocate {:#x} bytes", mapping_size))?
};
let mut result = Self {
ptr: ptr as usize,
len: mapping_size,
file: None,
};
if accessible_size != 0 {
// Commit the accessible size.
result.make_accessible(0, accessible_size)?;
}
result
})
}
/// Create a new `Mmap` pointing to `accessible_size` bytes of page-aligned accessible memory,
/// within a reserved mapping of `mapping_size` bytes. `accessible_size` and `mapping_size`
/// must be native page-size multiples.
#[cfg(target_os = "windows")]
pub fn accessible_reserved(accessible_size: usize, mapping_size: usize) -> Result<Self> {
use anyhow::bail;
use std::io;
use windows_sys::Win32::System::Memory::*;
if mapping_size == 0 {
return Ok(Self::new());
}
let page_size = crate::page_size();
assert!(accessible_size <= mapping_size);
assert_eq!(mapping_size & (page_size - 1), 0);
assert_eq!(accessible_size & (page_size - 1), 0);
Ok(if accessible_size == mapping_size {
// Allocate a single read-write region at once.
let ptr = unsafe {
VirtualAlloc(
ptr::null_mut(),
mapping_size,
MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE,
)
};
if ptr.is_null() {
bail!("VirtualAlloc failed: {}", io::Error::last_os_error());
}
Self {
ptr: ptr as usize,
len: mapping_size,
file: None,
}
} else {
// Reserve the mapping size.
let ptr =
unsafe { VirtualAlloc(ptr::null_mut(), mapping_size, MEM_RESERVE, PAGE_NOACCESS) };
if ptr.is_null() {
bail!("VirtualAlloc failed: {}", io::Error::last_os_error());
}
let mut result = Self {
ptr: ptr as usize,
len: mapping_size,
file: None,
};
if accessible_size != 0 {
// Commit the accessible size.
result.make_accessible(0, accessible_size)?;
}
result
})
}
/// Make the memory starting at `start` and extending for `len` bytes accessible.
/// `start` and `len` must be native page-size multiples and describe a range within
/// `self`'s reserved memory.
#[cfg(not(target_os = "windows"))]
pub fn make_accessible(&mut self, start: usize, len: usize) -> Result<()> {
use rustix::mm::{mprotect, MprotectFlags};
let page_size = crate::page_size();
assert_eq!(start & (page_size - 1), 0);
assert_eq!(len & (page_size - 1), 0);
assert!(len <= self.len);
assert!(start <= self.len - len);
// Commit the accessible size.
let ptr = self.ptr as *mut u8;
unsafe {
mprotect(
ptr.add(start).cast(),
len,
MprotectFlags::READ | MprotectFlags::WRITE,
)?;
}
Ok(())
}
/// Make the memory starting at `start` and extending for `len` bytes accessible.
/// `start` and `len` must be native page-size multiples and describe a range within
/// `self`'s reserved memory.
#[cfg(target_os = "windows")]
pub fn make_accessible(&mut self, start: usize, len: usize) -> Result<()> {
use anyhow::bail;
use std::ffi::c_void;
use std::io;
use windows_sys::Win32::System::Memory::*;
let page_size = crate::page_size();
assert_eq!(start & (page_size - 1), 0);
assert_eq!(len & (page_size - 1), 0);
assert!(len <= self.len);
assert!(start <= self.len - len);
// Commit the accessible size.
let ptr = self.ptr as *const u8;
if unsafe {
VirtualAlloc(
ptr.add(start) as *mut c_void,
len,
MEM_COMMIT,
PAGE_READWRITE,
)
}
.is_null()
{
bail!("VirtualAlloc failed: {}", io::Error::last_os_error());
}
Ok(())
}
/// Return the allocated memory as a slice of u8.
pub fn as_slice(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.ptr as *const u8, self.len) }
}
/// Return the allocated memory as a mutable slice of u8.
pub fn as_mut_slice(&mut self) -> &mut [u8] {
debug_assert!(!self.is_readonly());
unsafe { slice::from_raw_parts_mut(self.ptr as *mut u8, self.len) }
}
/// Return the allocated memory as a pointer to u8.
pub fn as_ptr(&self) -> *const u8 {
self.ptr as *const u8
}
/// Return the allocated memory as a mutable pointer to u8.
pub fn as_mut_ptr(&self) -> *mut u8 {
self.ptr as *mut u8
}
/// Return the length of the allocated memory.
pub fn len(&self) -> usize {
self.len
}
/// Return whether any memory has been allocated.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns whether the underlying mapping is readonly, meaning that
/// attempts to write will fault.
pub fn is_readonly(&self) -> bool {
self.file.is_some()
}
/// Makes the specified `range` within this `Mmap` to be read/write.
pub unsafe fn make_writable(&self, range: Range<usize>) -> Result<()> {
assert!(range.start <= self.len());
assert!(range.end <= self.len());
assert!(range.start <= range.end);
assert!(
range.start % crate::page_size() == 0,
"changing of protections isn't page-aligned",
);
let base = self.as_ptr().add(range.start) as *mut _;
let len = range.end - range.start;
// On Windows when we have a file mapping we need to specifically use
// `PAGE_WRITECOPY` to ensure that pages are COW'd into place because
// we don't want our modifications to go back to the original file.
#[cfg(windows)]
{
use std::io;
use windows_sys::Win32::System::Memory::*;
let mut old = 0;
let result = if self.file.is_some() {
VirtualProtect(base, len, PAGE_WRITECOPY, &mut old)
} else {
VirtualProtect(base, len, PAGE_READWRITE, &mut old)
};
if result == 0 {
return Err(io::Error::last_os_error().into());
}
}
#[cfg(not(windows))]
{
use rustix::mm::{mprotect, MprotectFlags};
mprotect(base, len, MprotectFlags::READ | MprotectFlags::WRITE)?;
}
Ok(())
}
/// Makes the specified `range` within this `Mmap` to be read/execute.
pub unsafe fn make_executable(
&self,
range: Range<usize>,
enable_branch_protection: bool,
) -> Result<()> {
assert!(range.start <= self.len());
assert!(range.end <= self.len());
assert!(range.start <= range.end);
assert!(
range.start % crate::page_size() == 0,
"changing of protections isn't page-aligned",
);
let base = self.as_ptr().add(range.start) as *mut _;
let len = range.end - range.start;
#[cfg(windows)]
{
use std::io;
use windows_sys::Win32::System::Memory::*;
let flags = if enable_branch_protection {
// TODO: We use this check to avoid an unused variable warning,
// but some of the CFG-related flags might be applicable
PAGE_EXECUTE_READ
} else {
PAGE_EXECUTE_READ
};
let mut old = 0;
let result = VirtualProtect(base, len, flags, &mut old);
if result == 0 {
return Err(io::Error::last_os_error().into());
}
}
#[cfg(not(windows))]
{
use rustix::mm::{mprotect, MprotectFlags};
let flags = MprotectFlags::READ | MprotectFlags::EXEC;
let flags = if enable_branch_protection {
#[cfg(all(target_arch = "aarch64", target_os = "linux"))]
if std::arch::is_aarch64_feature_detected!("bti") {
MprotectFlags::from_bits_unchecked(flags.bits() | /* PROT_BTI */ 0x10)
} else {
flags
}
#[cfg(not(all(target_arch = "aarch64", target_os = "linux")))]
flags
} else {
flags
};
mprotect(base, len, flags)?;
}
Ok(())
}
/// Returns the underlying file that this mmap is mapping, if present.
pub fn original_file(&self) -> Option<&Arc<File>> {
self.file.as_ref()
}
}
impl Drop for Mmap {
#[cfg(not(target_os = "windows"))]
fn drop(&mut self) {
if self.len != 0 {
unsafe { rustix::mm::munmap(self.ptr as *mut std::ffi::c_void, self.len) }
.expect("munmap failed");
}
}
#[cfg(target_os = "windows")]
fn drop(&mut self) {
if self.len != 0 {
use std::ffi::c_void;
use windows_sys::Win32::System::Memory::*;
if self.file.is_none() {
let r = unsafe { VirtualFree(self.ptr as *mut c_void, 0, MEM_RELEASE) };
assert_ne!(r, 0);
} else {
let r = unsafe { UnmapViewOfFile(self.ptr as *mut c_void) };
assert_ne!(r, 0);
}
}
}
}
fn _assert() {
fn _assert_send_sync<T: Send + Sync>() {}
_assert_send_sync::<Mmap>();
}