Files
wasmtime/cranelift/simplejit/src/backend.rs
Chris Fallin e39b4aba1c Fix long-range (non-colocated) aarch64 calls to not use Arm64Call reloc, and fix simplejit to use it.
Previously, every call was lowered on AArch64 to a `call` instruction, which
takes a signed 26-bit PC-relative offset. Including the 2-bit left shift, this
gives a range of +/- 128 MB. Longer-distance offsets would cause an impossible
relocation record to be emitted (or rather, a record that a more sophisticated
linker would fix up by inserting a shim/veneer).

This commit adds a notion of "relocation distance" in the MachInst backends,
and provides this information for every call target and symbol reference. The
intent is that backends on architectures like AArch64, where there are different
offset sizes / addressing strategies to choose from, can either emit a regular
call or a load-64-bit-constant / call-indirect sequence, as necessary. This
avoids the need to implement complex linking behavior.

The MachInst driver code provides this information based on the "colocated" bit
in the CLIF symbol references, which appears to have been designed for this
purpose, or at least a similar one. Combined with the `use_colocated_libcalls`
setting, this allows client code to ensure that library calls can link to
library code at any location in the address space.

Separately, the `simplejit` example did not handle `Arm64Call`; rather than doing
so, it appears all that is necessary to get its tests to pass is to set the
`use_colocated_libcalls` flag to false, to make use of the above change. This
fixes the `libcall_function` unit-test in this crate.
2020-05-05 09:55:12 -07:00

694 lines
22 KiB
Rust

//! Defines `SimpleJITBackend`.
use crate::memory::Memory;
use cranelift_codegen::binemit::{
Addend, CodeOffset, Reloc, RelocSink, Stackmap, StackmapSink, TrapSink,
};
use cranelift_codegen::isa::TargetIsa;
use cranelift_codegen::settings::Configurable;
use cranelift_codegen::{self, ir, settings};
use cranelift_module::{
Backend, DataContext, DataDescription, DataId, FuncId, Init, Linkage, ModuleNamespace,
ModuleResult,
};
use cranelift_native;
#[cfg(not(windows))]
use libc;
use std::collections::HashMap;
use std::ffi::CString;
use std::io::Write;
use std::ptr;
use target_lexicon::PointerWidth;
#[cfg(windows)]
use winapi;
const EXECUTABLE_DATA_ALIGNMENT: u8 = 0x10;
const WRITABLE_DATA_ALIGNMENT: u8 = 0x8;
const READONLY_DATA_ALIGNMENT: u8 = 0x1;
/// A builder for `SimpleJITBackend`.
pub struct SimpleJITBuilder {
isa: Box<dyn TargetIsa>,
symbols: HashMap<String, *const u8>,
libcall_names: Box<dyn Fn(ir::LibCall) -> String>,
}
impl SimpleJITBuilder {
/// Create a new `SimpleJITBuilder`.
///
/// The `libcall_names` function provides a way to translate `cranelift_codegen`'s `ir::LibCall`
/// enum to symbols. LibCalls are inserted in the IR as part of the legalization for certain
/// floating point instructions, and for stack probes. If you don't know what to use for this
/// argument, use `cranelift_module::default_libcall_names()`.
pub fn new(libcall_names: Box<dyn Fn(ir::LibCall) -> String>) -> Self {
let mut flag_builder = settings::builder();
// On at least AArch64, "colocated" calls use shorter-range relocations,
// which might not reach all definitions; we can't handle that here, so
// we require long-range relocation types.
flag_builder.set("use_colocated_libcalls", "false").unwrap();
let isa_builder = cranelift_native::builder().unwrap_or_else(|msg| {
panic!("host machine is not supported: {}", msg);
});
let isa = isa_builder.finish(settings::Flags::new(flag_builder));
Self::with_isa(isa, libcall_names)
}
/// Create a new `SimpleJITBuilder` with an arbitrary target. This is mainly
/// useful for testing.
///
/// SimpleJIT requires a `TargetIsa` configured for non-PIC.
///
/// To create a `SimpleJITBuilder` for native use, use the `new` constructor
/// instead.
///
/// The `libcall_names` function provides a way to translate `cranelift_codegen`'s `ir::LibCall`
/// enum to symbols. LibCalls are inserted in the IR as part of the legalization for certain
/// floating point instructions, and for stack probes. If you don't know what to use for this
/// argument, use `cranelift_module::default_libcall_names()`.
pub fn with_isa(
isa: Box<dyn TargetIsa>,
libcall_names: Box<dyn Fn(ir::LibCall) -> String>,
) -> Self {
debug_assert!(!isa.flags().is_pic(), "SimpleJIT requires non-PIC code");
let symbols = HashMap::new();
Self {
isa,
symbols,
libcall_names,
}
}
/// Define a symbol in the internal symbol table.
///
/// The JIT will use the symbol table to resolve names that are declared,
/// but not defined, in the module being compiled. A common example is
/// external functions. With this method, functions and data can be exposed
/// to the code being compiled which are defined by the host.
///
/// If a symbol is defined more than once, the most recent definition will
/// be retained.
///
/// If the JIT fails to find a symbol in its internal table, it will fall
/// back to a platform-specific search (this typically involves searching
/// the current process for public symbols, followed by searching the
/// platform's C runtime).
pub fn symbol<K>(&mut self, name: K, ptr: *const u8) -> &Self
where
K: Into<String>,
{
self.symbols.insert(name.into(), ptr);
self
}
/// Define multiple symbols in the internal symbol table.
///
/// Using this is equivalent to calling `symbol` on each element.
pub fn symbols<It, K>(&mut self, symbols: It) -> &Self
where
It: IntoIterator<Item = (K, *const u8)>,
K: Into<String>,
{
for (name, ptr) in symbols {
self.symbols.insert(name.into(), ptr);
}
self
}
}
/// A `SimpleJITBackend` implements `Backend` and emits code and data into memory where it can be
/// directly called and accessed.
///
/// See the `SimpleJITBuilder` for a convenient way to construct `SimpleJITBackend` instances.
pub struct SimpleJITBackend {
isa: Box<dyn TargetIsa>,
symbols: HashMap<String, *const u8>,
libcall_names: Box<dyn Fn(ir::LibCall) -> String>,
memory: SimpleJITMemoryHandle,
}
/// A record of a relocation to perform.
struct RelocRecord {
offset: CodeOffset,
reloc: Reloc,
name: ir::ExternalName,
addend: Addend,
}
struct StackmapRecord {
#[allow(dead_code)]
offset: CodeOffset,
#[allow(dead_code)]
stackmap: Stackmap,
}
pub struct SimpleJITCompiledFunction {
code: *mut u8,
size: usize,
relocs: Vec<RelocRecord>,
}
pub struct SimpleJITCompiledData {
storage: *mut u8,
size: usize,
relocs: Vec<RelocRecord>,
}
/// A handle to allow freeing memory allocated by the `Backend`.
pub struct SimpleJITMemoryHandle {
code: Memory,
readonly: Memory,
writable: Memory,
}
impl SimpleJITBackend {
fn lookup_symbol(&self, name: &str) -> *const u8 {
match self.symbols.get(name) {
Some(&ptr) => ptr,
None => lookup_with_dlsym(name),
}
}
fn get_definition(
&self,
namespace: &ModuleNamespace<Self>,
name: &ir::ExternalName,
) -> *const u8 {
match *name {
ir::ExternalName::User { .. } => {
if namespace.is_function(name) {
let (def, name_str, _signature) = namespace.get_function_definition(&name);
match def {
Some(compiled) => compiled.code,
None => self.lookup_symbol(name_str),
}
} else {
let (def, name_str, _writable) = namespace.get_data_definition(&name);
match def {
Some(compiled) => compiled.storage,
None => self.lookup_symbol(name_str),
}
}
}
ir::ExternalName::LibCall(ref libcall) => {
let sym = (self.libcall_names)(*libcall);
self.lookup_symbol(&sym)
}
_ => panic!("invalid ExternalName {}", name),
}
}
fn record_function_for_perf(&self, ptr: *mut u8, size: usize, name: &str) {
// The Linux perf tool supports JIT code via a /tmp/perf-$PID.map file,
// which contains memory regions and their associated names. If we
// are profiling with perf and saving binaries to PERF_BUILDID_DIR
// for post-profile analysis, write information about each function
// we define.
if cfg!(target_os = "linux") && ::std::env::var_os("PERF_BUILDID_DIR").is_some() {
let mut map_file = ::std::fs::OpenOptions::new()
.create(true)
.append(true)
.open(format!("/tmp/perf-{}.map", ::std::process::id()))
.unwrap();
let _ = writeln!(map_file, "{:x} {:x} {}", ptr as usize, size, name);
}
}
}
impl<'simple_jit_backend> Backend for SimpleJITBackend {
type Builder = SimpleJITBuilder;
/// SimpleJIT compiled function and data objects may have outstanding
/// relocations that need to be performed before the memory can be used.
/// These relocations are performed within `finalize_function` and
/// `finalize_data`.
type CompiledFunction = SimpleJITCompiledFunction;
type CompiledData = SimpleJITCompiledData;
/// SimpleJIT emits code and data into memory, and provides raw pointers
/// to them. They are valid for the remainder of the program's life, unless
/// [`free_memory`] is used.
///
/// [`free_memory`]: #method.free_memory
type FinalizedFunction = *const u8;
type FinalizedData = (*mut u8, usize);
/// SimpleJIT emits code and data into memory as it processes them, so it
/// doesn't need to provide anything after the `Module` is complete.
/// The handle object that is returned can optionally be used to free
/// allocated memory if required.
type Product = SimpleJITMemoryHandle;
/// Create a new `SimpleJITBackend`.
fn new(builder: SimpleJITBuilder) -> Self {
let memory = SimpleJITMemoryHandle {
code: Memory::new(),
readonly: Memory::new(),
writable: Memory::new(),
};
Self {
isa: builder.isa,
symbols: builder.symbols,
libcall_names: builder.libcall_names,
memory,
}
}
fn isa(&self) -> &dyn TargetIsa {
&*self.isa
}
fn declare_function(&mut self, _id: FuncId, _name: &str, _linkage: Linkage) {
// Nothing to do.
}
fn declare_data(
&mut self,
_id: DataId,
_name: &str,
_linkage: Linkage,
_writable: bool,
tls: bool,
_align: Option<u8>,
) {
assert!(!tls, "SimpleJIT doesn't yet support TLS");
// Nothing to do.
}
fn define_function<TS>(
&mut self,
_id: FuncId,
name: &str,
ctx: &cranelift_codegen::Context,
_namespace: &ModuleNamespace<Self>,
code_size: u32,
trap_sink: &mut TS,
) -> ModuleResult<Self::CompiledFunction>
where
TS: TrapSink,
{
let size = code_size as usize;
let ptr = self
.memory
.code
.allocate(size, EXECUTABLE_DATA_ALIGNMENT)
.expect("TODO: handle OOM etc.");
self.record_function_for_perf(ptr, size, name);
let mut reloc_sink = SimpleJITRelocSink::new();
let mut stackmap_sink = SimpleJITStackmapSink::new();
unsafe {
ctx.emit_to_memory(
&*self.isa,
ptr,
&mut reloc_sink,
trap_sink,
&mut stackmap_sink,
)
};
Ok(Self::CompiledFunction {
code: ptr,
size,
relocs: reloc_sink.relocs,
})
}
fn define_function_bytes(
&mut self,
_id: FuncId,
name: &str,
bytes: &[u8],
_namespace: &ModuleNamespace<Self>,
) -> ModuleResult<Self::CompiledFunction> {
let size = bytes.len();
let ptr = self
.memory
.code
.allocate(size, EXECUTABLE_DATA_ALIGNMENT)
.expect("TODO: handle OOM etc.");
self.record_function_for_perf(ptr, size, name);
unsafe {
ptr::copy_nonoverlapping(bytes.as_ptr(), ptr, size);
}
Ok(Self::CompiledFunction {
code: ptr,
size,
relocs: vec![],
})
}
fn define_data(
&mut self,
_id: DataId,
_name: &str,
writable: bool,
tls: bool,
align: Option<u8>,
data: &DataContext,
_namespace: &ModuleNamespace<Self>,
) -> ModuleResult<Self::CompiledData> {
assert!(!tls, "SimpleJIT doesn't yet support TLS");
let &DataDescription {
ref init,
ref function_decls,
ref data_decls,
ref function_relocs,
ref data_relocs,
} = data.description();
let size = init.size();
let storage = if writable {
self.memory
.writable
.allocate(size, align.unwrap_or(WRITABLE_DATA_ALIGNMENT))
.expect("TODO: handle OOM etc.")
} else {
self.memory
.readonly
.allocate(size, align.unwrap_or(READONLY_DATA_ALIGNMENT))
.expect("TODO: handle OOM etc.")
};
match *init {
Init::Uninitialized => {
panic!("data is not initialized yet");
}
Init::Zeros { .. } => {
unsafe { ptr::write_bytes(storage, 0, size) };
}
Init::Bytes { ref contents } => {
let src = contents.as_ptr();
unsafe { ptr::copy_nonoverlapping(src, storage, size) };
}
}
let reloc = match self.isa.triple().pointer_width().unwrap() {
PointerWidth::U16 => panic!(),
PointerWidth::U32 => Reloc::Abs4,
PointerWidth::U64 => Reloc::Abs8,
};
let mut relocs = Vec::new();
for &(offset, id) in function_relocs {
relocs.push(RelocRecord {
reloc,
offset,
name: function_decls[id].clone(),
addend: 0,
});
}
for &(offset, id, addend) in data_relocs {
relocs.push(RelocRecord {
reloc,
offset,
name: data_decls[id].clone(),
addend,
});
}
Ok(Self::CompiledData {
storage,
size,
relocs,
})
}
fn write_data_funcaddr(
&mut self,
_data: &mut Self::CompiledData,
_offset: usize,
_what: ir::FuncRef,
) {
unimplemented!();
}
fn write_data_dataaddr(
&mut self,
_data: &mut Self::CompiledData,
_offset: usize,
_what: ir::GlobalValue,
_usize: Addend,
) {
unimplemented!();
}
fn finalize_function(
&mut self,
_id: FuncId,
func: &Self::CompiledFunction,
namespace: &ModuleNamespace<Self>,
) -> Self::FinalizedFunction {
use std::ptr::write_unaligned;
for &RelocRecord {
reloc,
offset,
ref name,
addend,
} in &func.relocs
{
let ptr = func.code;
debug_assert!((offset as usize) < func.size);
let at = unsafe { ptr.offset(offset as isize) };
let base = self.get_definition(namespace, name);
// TODO: Handle overflow.
let what = unsafe { base.offset(addend as isize) };
match reloc {
Reloc::Abs4 => {
// TODO: Handle overflow.
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut u32, what as u32)
};
}
Reloc::Abs8 => {
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut u64, what as u64)
};
}
Reloc::X86PCRel4 | Reloc::X86CallPCRel4 => {
// TODO: Handle overflow.
let pcrel = ((what as isize) - (at as isize)) as i32;
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut i32, pcrel)
};
}
Reloc::X86GOTPCRel4 | Reloc::X86CallPLTRel4 => panic!("unexpected PIC relocation"),
_ => unimplemented!(),
}
}
func.code
}
fn get_finalized_function(&self, func: &Self::CompiledFunction) -> Self::FinalizedFunction {
func.code
}
fn finalize_data(
&mut self,
_id: DataId,
data: &Self::CompiledData,
namespace: &ModuleNamespace<Self>,
) -> Self::FinalizedData {
use std::ptr::write_unaligned;
for &RelocRecord {
reloc,
offset,
ref name,
addend,
} in &data.relocs
{
let ptr = data.storage;
debug_assert!((offset as usize) < data.size);
let at = unsafe { ptr.offset(offset as isize) };
let base = self.get_definition(namespace, name);
// TODO: Handle overflow.
let what = unsafe { base.offset(addend as isize) };
match reloc {
Reloc::Abs4 => {
// TODO: Handle overflow.
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut u32, what as u32)
};
}
Reloc::Abs8 => {
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut u64, what as u64)
};
}
Reloc::X86PCRel4
| Reloc::X86CallPCRel4
| Reloc::X86GOTPCRel4
| Reloc::X86CallPLTRel4 => panic!("unexpected text relocation in data"),
_ => unimplemented!(),
}
}
(data.storage, data.size)
}
fn get_finalized_data(&self, data: &Self::CompiledData) -> Self::FinalizedData {
(data.storage, data.size)
}
fn publish(&mut self) {
// Now that we're done patching, prepare the memory for execution!
self.memory.readonly.set_readonly();
self.memory.code.set_readable_and_executable();
}
/// SimpleJIT emits code and data into memory as it processes them. This
/// method performs no additional processing, but returns a handle which
/// allows freeing the allocated memory. Otherwise said memory is leaked
/// to enable safe handling of the resulting pointers.
///
/// This method does not need to be called when access to the memory
/// handle is not required.
fn finish(self, _namespace: &ModuleNamespace<Self>) -> Self::Product {
self.memory
}
}
#[cfg(not(windows))]
fn lookup_with_dlsym(name: &str) -> *const u8 {
let c_str = CString::new(name).unwrap();
let c_str_ptr = c_str.as_ptr();
let sym = unsafe { libc::dlsym(libc::RTLD_DEFAULT, c_str_ptr) };
if sym.is_null() {
panic!("can't resolve symbol {}", name);
}
sym as *const u8
}
#[cfg(windows)]
fn lookup_with_dlsym(name: &str) -> *const u8 {
const MSVCRT_DLL: &[u8] = b"msvcrt.dll\0";
let c_str = CString::new(name).unwrap();
let c_str_ptr = c_str.as_ptr();
unsafe {
let handles = [
// try to find the searched symbol in the currently running executable
ptr::null_mut(),
// try to find the searched symbol in local c runtime
winapi::um::libloaderapi::GetModuleHandleA(MSVCRT_DLL.as_ptr() as *const i8),
];
for handle in &handles {
let addr = winapi::um::libloaderapi::GetProcAddress(*handle, c_str_ptr);
if addr.is_null() {
continue;
}
return addr as *const u8;
}
let msg = if handles[1].is_null() {
"(msvcrt not loaded)"
} else {
""
};
panic!("cannot resolve address of symbol {} {}", name, msg);
}
}
impl SimpleJITMemoryHandle {
/// Free memory allocated for code and data segments of compiled functions.
///
/// # Safety
///
/// Because this function invalidates any pointers retrived from the
/// corresponding module, it should only be used when none of the functions
/// from that module are currently executing and none of the`fn` pointers
/// are called afterwards.
pub unsafe fn free_memory(&mut self) {
self.code.free_memory();
self.readonly.free_memory();
self.writable.free_memory();
}
}
struct SimpleJITRelocSink {
pub relocs: Vec<RelocRecord>,
}
impl SimpleJITRelocSink {
pub fn new() -> Self {
Self { relocs: Vec::new() }
}
}
impl RelocSink for SimpleJITRelocSink {
fn reloc_block(&mut self, _offset: CodeOffset, _reloc: Reloc, _block_offset: CodeOffset) {
unimplemented!();
}
fn reloc_external(
&mut self,
offset: CodeOffset,
_srcloc: ir::SourceLoc,
reloc: Reloc,
name: &ir::ExternalName,
addend: Addend,
) {
self.relocs.push(RelocRecord {
offset,
reloc,
name: name.clone(),
addend,
});
}
fn reloc_jt(&mut self, _offset: CodeOffset, reloc: Reloc, _jt: ir::JumpTable) {
match reloc {
Reloc::X86PCRelRodata4 => {
// Not necessary to record this unless we are going to split apart code and its
// jumptbl/rodata.
}
_ => {
panic!("Unhandled reloc");
}
}
}
fn reloc_constant(&mut self, _offset: CodeOffset, reloc: Reloc, _constant: ir::ConstantOffset) {
match reloc {
Reloc::X86PCRelRodata4 => {
// Not necessary to record this unless we are going to split apart code and its
// jumptbl/rodata.
}
_ => {
panic!("Unhandled reloc");
}
}
}
}
struct SimpleJITStackmapSink {
pub stackmaps: Vec<StackmapRecord>,
}
impl SimpleJITStackmapSink {
pub fn new() -> Self {
Self {
stackmaps: Vec::new(),
}
}
}
impl StackmapSink for SimpleJITStackmapSink {
fn add_stackmap(&mut self, offset: CodeOffset, stackmap: Stackmap) {
self.stackmaps.push(StackmapRecord { offset, stackmap });
}
}