Files
wasmtime/cranelift/wasm/src/func_translator.rs
Benjamin Bouvier 8a9b1a9025 Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. 

After the suggestion of Chris, `Function` has been split into mostly two parts:

- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.

Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:

- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
  - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
  - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.

The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.

A basic fuzz target has been introduced that tries to do the bare minimum:

- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
  - This last check is less efficient and less likely to happen, so probably should be rethought a bit.

Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.

Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. 

Fixes #4155.
2022-08-12 16:47:43 +00:00

416 lines
15 KiB
Rust

//! Stand-alone WebAssembly to Cranelift IR translator.
//!
//! This module defines the `FuncTranslator` type which can translate a single WebAssembly
//! function to Cranelift IR guided by a `FuncEnvironment` which provides information about the
//! WebAssembly module and the runtime environment.
use crate::code_translator::{bitcast_wasm_returns, translate_operator};
use crate::environ::FuncEnvironment;
use crate::state::FuncTranslationState;
use crate::translation_utils::get_vmctx_value_label;
use crate::WasmResult;
use core::convert::TryInto;
use cranelift_codegen::entity::EntityRef;
use cranelift_codegen::ir::{self, Block, InstBuilder, ValueLabel};
use cranelift_codegen::timing;
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext, Variable};
use wasmparser::{self, BinaryReader, FuncValidator, FunctionBody, WasmModuleResources};
/// WebAssembly to Cranelift IR function translator.
///
/// A `FuncTranslator` is used to translate a binary WebAssembly function into Cranelift IR guided
/// by a `FuncEnvironment` object. A single translator instance can be reused to translate multiple
/// functions which will reduce heap allocation traffic.
pub struct FuncTranslator {
func_ctx: FunctionBuilderContext,
state: FuncTranslationState,
}
impl FuncTranslator {
/// Create a new translator.
pub fn new() -> Self {
Self {
func_ctx: FunctionBuilderContext::new(),
state: FuncTranslationState::new(),
}
}
/// Returns the underlying `FunctionBuilderContext` that this translator
/// uses.
pub fn context(&mut self) -> &mut FunctionBuilderContext {
&mut self.func_ctx
}
/// Translate a binary WebAssembly function.
///
/// The `code` slice contains the binary WebAssembly *function code* as it appears in the code
/// section of a WebAssembly module, not including the initial size of the function code. The
/// slice is expected to contain two parts:
///
/// - The declaration of *locals*, and
/// - The function *body* as an expression.
///
/// See [the WebAssembly specification][wasm].
///
/// [wasm]: https://webassembly.github.io/spec/core/binary/modules.html#code-section
///
/// The Cranelift IR function `func` should be completely empty except for the `func.signature`
/// and `func.name` fields. The signature may contain special-purpose arguments which are not
/// regarded as WebAssembly local variables. Any signature arguments marked as
/// `ArgumentPurpose::Normal` are made accessible as WebAssembly local variables.
///
pub fn translate<FE: FuncEnvironment + ?Sized>(
&mut self,
validator: &mut FuncValidator<impl WasmModuleResources>,
code: &[u8],
code_offset: usize,
func: &mut ir::Function,
environ: &mut FE,
) -> WasmResult<()> {
self.translate_body(
validator,
FunctionBody::new(code_offset, code),
func,
environ,
)
}
/// Translate a binary WebAssembly function from a `FunctionBody`.
pub fn translate_body<FE: FuncEnvironment + ?Sized>(
&mut self,
validator: &mut FuncValidator<impl WasmModuleResources>,
body: FunctionBody<'_>,
func: &mut ir::Function,
environ: &mut FE,
) -> WasmResult<()> {
let _tt = timing::wasm_translate_function();
let mut reader = body.get_binary_reader();
log::trace!(
"translate({} bytes, {}{})",
reader.bytes_remaining(),
func.name,
func.signature
);
debug_assert_eq!(func.dfg.num_blocks(), 0, "Function must be empty");
debug_assert_eq!(func.dfg.num_insts(), 0, "Function must be empty");
// This clears the `FunctionBuilderContext`.
let mut builder = FunctionBuilder::new(func, &mut self.func_ctx);
builder.set_srcloc(cur_srcloc(&reader));
let entry_block = builder.create_block();
builder.append_block_params_for_function_params(entry_block);
builder.switch_to_block(entry_block); // This also creates values for the arguments.
builder.seal_block(entry_block); // Declare all predecessors known.
// Make sure the entry block is inserted in the layout before we make any callbacks to
// `environ`. The callback functions may need to insert things in the entry block.
builder.ensure_inserted_block();
let num_params = declare_wasm_parameters(&mut builder, entry_block, environ);
// Set up the translation state with a single pushed control block representing the whole
// function and its return values.
let exit_block = builder.create_block();
builder.append_block_params_for_function_returns(exit_block);
self.state.initialize(&builder.func.signature, exit_block);
parse_local_decls(&mut reader, &mut builder, num_params, environ, validator)?;
parse_function_body(validator, reader, &mut builder, &mut self.state, environ)?;
builder.finalize();
Ok(())
}
}
/// Declare local variables for the signature parameters that correspond to WebAssembly locals.
///
/// Return the number of local variables declared.
fn declare_wasm_parameters<FE: FuncEnvironment + ?Sized>(
builder: &mut FunctionBuilder,
entry_block: Block,
environ: &FE,
) -> usize {
let sig_len = builder.func.signature.params.len();
let mut next_local = 0;
for i in 0..sig_len {
let param_type = builder.func.signature.params[i];
// There may be additional special-purpose parameters in addition to the normal WebAssembly
// signature parameters. For example, a `vmctx` pointer.
if environ.is_wasm_parameter(&builder.func.signature, i) {
// This is a normal WebAssembly signature parameter, so create a local for it.
let local = Variable::new(next_local);
builder.declare_var(local, param_type.value_type);
next_local += 1;
let param_value = builder.block_params(entry_block)[i];
builder.def_var(local, param_value);
}
if param_type.purpose == ir::ArgumentPurpose::VMContext {
let param_value = builder.block_params(entry_block)[i];
builder.set_val_label(param_value, get_vmctx_value_label());
}
}
next_local
}
/// Parse the local variable declarations that precede the function body.
///
/// Declare local variables, starting from `num_params`.
fn parse_local_decls<FE: FuncEnvironment + ?Sized>(
reader: &mut BinaryReader,
builder: &mut FunctionBuilder,
num_params: usize,
environ: &mut FE,
validator: &mut FuncValidator<impl WasmModuleResources>,
) -> WasmResult<()> {
let mut next_local = num_params;
let local_count = reader.read_var_u32()?;
for _ in 0..local_count {
builder.set_srcloc(cur_srcloc(reader));
let pos = reader.original_position();
let count = reader.read_var_u32()?;
let ty = reader.read_val_type()?;
validator.define_locals(pos, count, ty)?;
declare_locals(builder, count, ty, &mut next_local, environ)?;
}
environ.after_locals(next_local);
Ok(())
}
/// Declare `count` local variables of the same type, starting from `next_local`.
///
/// Fail of too many locals are declared in the function, or if the type is not valid for a local.
fn declare_locals<FE: FuncEnvironment + ?Sized>(
builder: &mut FunctionBuilder,
count: u32,
wasm_type: wasmparser::ValType,
next_local: &mut usize,
environ: &mut FE,
) -> WasmResult<()> {
// All locals are initialized to 0.
use wasmparser::ValType::*;
let zeroval = match wasm_type {
I32 => builder.ins().iconst(ir::types::I32, 0),
I64 => builder.ins().iconst(ir::types::I64, 0),
F32 => builder.ins().f32const(ir::immediates::Ieee32::with_bits(0)),
F64 => builder.ins().f64const(ir::immediates::Ieee64::with_bits(0)),
V128 => {
let constant_handle = builder.func.dfg.constants.insert([0; 16].to_vec().into());
builder.ins().vconst(ir::types::I8X16, constant_handle)
}
ExternRef | FuncRef => {
environ.translate_ref_null(builder.cursor(), wasm_type.try_into()?)?
}
};
let ty = builder.func.dfg.value_type(zeroval);
for _ in 0..count {
let local = Variable::new(*next_local);
builder.declare_var(local, ty);
builder.def_var(local, zeroval);
builder.set_val_label(zeroval, ValueLabel::new(*next_local));
*next_local += 1;
}
Ok(())
}
/// Parse the function body in `reader`.
///
/// This assumes that the local variable declarations have already been parsed and function
/// arguments and locals are declared in the builder.
fn parse_function_body<FE: FuncEnvironment + ?Sized>(
validator: &mut FuncValidator<impl WasmModuleResources>,
mut reader: BinaryReader,
builder: &mut FunctionBuilder,
state: &mut FuncTranslationState,
environ: &mut FE,
) -> WasmResult<()> {
// The control stack is initialized with a single block representing the whole function.
debug_assert_eq!(state.control_stack.len(), 1, "State not initialized");
environ.before_translate_function(builder, state)?;
while !reader.eof() {
let pos = reader.original_position();
builder.set_srcloc(cur_srcloc(&reader));
let op = reader.read_operator()?;
validator.op(pos, &op)?;
environ.before_translate_operator(&op, builder, state)?;
translate_operator(validator, &op, builder, state, environ)?;
environ.after_translate_operator(&op, builder, state)?;
}
environ.after_translate_function(builder, state)?;
let pos = reader.original_position();
validator.finish(pos)?;
// The final `End` operator left us in the exit block where we need to manually add a return
// instruction.
//
// If the exit block is unreachable, it may not have the correct arguments, so we would
// generate a return instruction that doesn't match the signature.
if state.reachable {
if !builder.is_unreachable() {
bitcast_wasm_returns(environ, &mut state.stack, builder);
builder.ins().return_(&state.stack);
}
}
// Discard any remaining values on the stack. Either we just returned them,
// or the end of the function is unreachable.
state.stack.clear();
Ok(())
}
/// Get the current source location from a reader.
fn cur_srcloc(reader: &BinaryReader) -> ir::SourceLoc {
// We record source locations as byte code offsets relative to the beginning of the file.
// This will wrap around if byte code is larger than 4 GB.
ir::SourceLoc::new(reader.original_position() as u32)
}
#[cfg(test)]
mod tests {
use super::FuncTranslator;
use crate::environ::DummyEnvironment;
use cranelift_codegen::ir::types::I32;
use cranelift_codegen::{ir, isa, settings, Context};
use log::debug;
use target_lexicon::PointerWidth;
use wasmparser::{
FuncValidator, FunctionBody, Parser, ValidPayload, Validator, ValidatorResources,
};
#[test]
fn small1() {
// Implicit return.
let wasm = wat::parse_str(
"
(module
(func $small2 (param i32) (result i32)
(i32.add (get_local 0) (i32.const 1))
)
)
",
)
.unwrap();
let mut trans = FuncTranslator::new();
let flags = settings::Flags::new(settings::builder());
let runtime = DummyEnvironment::new(
isa::TargetFrontendConfig {
default_call_conv: isa::CallConv::Fast,
pointer_width: PointerWidth::U64,
},
false,
);
let mut ctx = Context::new();
ctx.func.name = ir::UserFuncName::testcase("small1");
ctx.func.signature.params.push(ir::AbiParam::new(I32));
ctx.func.signature.returns.push(ir::AbiParam::new(I32));
let (body, mut validator) = extract_func(&wasm);
trans
.translate_body(&mut validator, body, &mut ctx.func, &mut runtime.func_env())
.unwrap();
debug!("{}", ctx.func.display());
ctx.verify(&flags).unwrap();
}
#[test]
fn small2() {
// Same as above, but with an explicit return instruction.
let wasm = wat::parse_str(
"
(module
(func $small2 (param i32) (result i32)
(return (i32.add (get_local 0) (i32.const 1)))
)
)
",
)
.unwrap();
let mut trans = FuncTranslator::new();
let flags = settings::Flags::new(settings::builder());
let runtime = DummyEnvironment::new(
isa::TargetFrontendConfig {
default_call_conv: isa::CallConv::Fast,
pointer_width: PointerWidth::U64,
},
false,
);
let mut ctx = Context::new();
ctx.func.name = ir::UserFuncName::testcase("small2");
ctx.func.signature.params.push(ir::AbiParam::new(I32));
ctx.func.signature.returns.push(ir::AbiParam::new(I32));
let (body, mut validator) = extract_func(&wasm);
trans
.translate_body(&mut validator, body, &mut ctx.func, &mut runtime.func_env())
.unwrap();
debug!("{}", ctx.func.display());
ctx.verify(&flags).unwrap();
}
#[test]
fn infloop() {
// An infinite loop, no return instructions.
let wasm = wat::parse_str(
"
(module
(func $infloop (result i32)
(local i32)
(loop (result i32)
(i32.add (get_local 0) (i32.const 1))
(set_local 0)
(br 0)
)
)
)
",
)
.unwrap();
let mut trans = FuncTranslator::new();
let flags = settings::Flags::new(settings::builder());
let runtime = DummyEnvironment::new(
isa::TargetFrontendConfig {
default_call_conv: isa::CallConv::Fast,
pointer_width: PointerWidth::U64,
},
false,
);
let mut ctx = Context::new();
ctx.func.name = ir::UserFuncName::testcase("infloop");
ctx.func.signature.returns.push(ir::AbiParam::new(I32));
let (body, mut validator) = extract_func(&wasm);
trans
.translate_body(&mut validator, body, &mut ctx.func, &mut runtime.func_env())
.unwrap();
debug!("{}", ctx.func.display());
ctx.verify(&flags).unwrap();
}
fn extract_func(wat: &[u8]) -> (FunctionBody<'_>, FuncValidator<ValidatorResources>) {
let mut validator = Validator::new();
for payload in Parser::new(0).parse_all(wat) {
match validator.payload(&payload.unwrap()).unwrap() {
ValidPayload::Func(validator, body) => return (body, validator),
_ => {}
}
}
panic!("failed to find function");
}
}