This PR updates the AArch64 ABI implementation so that it (i) properly respects that v8-v15 inclusive have callee-save lower halves, and caller-save upper halves, by conservatively approximating (to full registers) in the appropriate directions when generating prologue caller-saves and when informing the regalloc of clobbered regs across callsites. In order to prevent saving all of these vector registers in the prologue of every non-leaf function due to the above approximation, this also makes use of a new regalloc.rs feature to exclude call instructions' writes from the clobber set returned by register allocation. This is safe whenever the caller and callee have the same ABI (because anything the callee could clobber, the caller is allowed to clobber as well without saving it in the prologue). Fixes #2254.
1290 lines
49 KiB
Rust
1290 lines
49 KiB
Rust
//! Implementation of a vanilla ABI, shared between several machines. The
|
|
//! implementation here assumes that arguments will be passed in registers
|
|
//! first, then additional args on the stack; that the stack grows downward,
|
|
//! contains a standard frame (return address and frame pointer), and the
|
|
//! compiler is otherwise free to allocate space below that with its choice of
|
|
//! layout; and that the machine has some notion of caller- and callee-save
|
|
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
|
|
//! mold and thus both of these backends use this shared implementation.
|
|
//!
|
|
//! See the documentation in specific machine backends for the "instantiation"
|
|
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
|
|
//! and return values, and any other special requirements.
|
|
//!
|
|
//! For now the implementation here assumes a 64-bit machine, but we intend to
|
|
//! make this 32/64-bit-generic shortly.
|
|
//!
|
|
//! # Vanilla ABI
|
|
//!
|
|
//! First, arguments and return values are passed in registers up to a certain
|
|
//! fixed count, after which they overflow onto the stack. Multiple return
|
|
//! values either fit in registers, or are returned in a separate return-value
|
|
//! area on the stack, given by a hidden extra parameter.
|
|
//!
|
|
//! Note that the exact stack layout is up to us. We settled on the
|
|
//! below design based on several requirements. In particular, we need to be
|
|
//! able to generate instructions (or instruction sequences) to access
|
|
//! arguments, stack slots, and spill slots before we know how many spill slots
|
|
//! or clobber-saves there will be, because of our pass structure. We also
|
|
//! prefer positive offsets to negative offsets because of an asymmetry in
|
|
//! some machines' addressing modes (e.g., on AArch64, positive offsets have a
|
|
//! larger possible range without a long-form sequence to synthesize an
|
|
//! arbitrary offset). Finally, it is not allowed to access memory below the
|
|
//! current SP value.
|
|
//!
|
|
//! We assume that a prologue first pushes the frame pointer (and return address
|
|
//! above that, if the machine does not do that in hardware). We set FP to point
|
|
//! to this two-word frame record. We store all other frame slots below this
|
|
//! two-word frame record, with the stack pointer remaining at or below this
|
|
//! fixed frame storage for the rest of the function. We can then access frame
|
|
//! storage slots using positive offsets from SP. In order to allow codegen for
|
|
//! the latter before knowing how many clobber-saves we have, and also allow it
|
|
//! while SP is being adjusted to set up a call, we implement a "nominal SP"
|
|
//! tracking feature by which a fixup (distance between actual SP and a
|
|
//! "nominal" SP) is known at each instruction.
|
|
//!
|
|
//! # Stack Layout
|
|
//!
|
|
//! The stack looks like:
|
|
//!
|
|
//! ```plain
|
|
//! (high address)
|
|
//!
|
|
//! +---------------------------+
|
|
//! | ... |
|
|
//! | stack args |
|
|
//! | (accessed via FP) |
|
|
//! +---------------------------+
|
|
//! SP at function entry -----> | return address |
|
|
//! +---------------------------+
|
|
//! FP after prologue --------> | FP (pushed by prologue) |
|
|
//! +---------------------------+
|
|
//! | ... |
|
|
//! | spill slots |
|
|
//! | (accessed via nominal SP) |
|
|
//! | ... |
|
|
//! | stack slots |
|
|
//! | (accessed via nominal SP) |
|
|
//! nominal SP ---------------> | (alloc'd by prologue) |
|
|
//! +---------------------------+
|
|
//! | ... |
|
|
//! | clobbered callee-saves |
|
|
//! SP at end of prologue ----> | (pushed by prologue) |
|
|
//! +---------------------------+
|
|
//! | [alignment as needed] |
|
|
//! | ... |
|
|
//! | args for call |
|
|
//! SP before making a call --> | (pushed at callsite) |
|
|
//! +---------------------------+
|
|
//!
|
|
//! (low address)
|
|
//! ```
|
|
//!
|
|
//! # Multi-value Returns
|
|
//!
|
|
//! Note that we support multi-value returns in two ways. First, we allow for
|
|
//! multiple return-value registers. Second, if teh appropriate flag is set, we
|
|
//! support the SpiderMonkey Wasm ABI. For details of the multi-value return
|
|
//! ABI, see:
|
|
//!
|
|
//! https://searchfox.org/mozilla-central/rev/bc3600def806859c31b2c7ac06e3d69271052a89/js/src/wasm/WasmStubs.h#134
|
|
//!
|
|
//! In brief:
|
|
//! - Return values are processed in *reverse* order.
|
|
//! - The first return value in this order (so the last return) goes into the
|
|
//! ordinary return register.
|
|
//! - Any further returns go in a struct-return area, allocated upwards (in
|
|
//! address order) during the reverse traversal.
|
|
//! - This struct-return area is provided by the caller, and a pointer to its
|
|
//! start is passed as an invisible last (extra) argument. Normally the caller
|
|
//! will allocate this area on the stack. When we generate calls, we place it
|
|
//! just above the on-stack argument area.
|
|
//! - So, for example, a function returning 4 i64's (v0, v1, v2, v3), with no
|
|
//! formal arguments, would:
|
|
//! - Accept a pointer `P` to the struct return area as a hidden argument in the
|
|
//! first argument register on entry.
|
|
//! - Return v3 in the one and only return-value register.
|
|
//! - Return v2 in memory at `[P]`.
|
|
//! - Return v1 in memory at `[P+8]`.
|
|
//! - Return v0 in memory at `[P+16]`.
|
|
|
|
use super::abi::*;
|
|
use crate::binemit::StackMap;
|
|
use crate::ir::types::*;
|
|
use crate::ir::{ArgumentExtension, SourceLoc, StackSlot};
|
|
use crate::machinst::*;
|
|
use crate::settings;
|
|
use crate::CodegenResult;
|
|
use crate::{ir, isa};
|
|
use alloc::vec::Vec;
|
|
use log::{debug, trace};
|
|
use regalloc::{RealReg, Reg, RegClass, Set, SpillSlot, Writable};
|
|
use std::convert::TryFrom;
|
|
use std::marker::PhantomData;
|
|
use std::mem;
|
|
|
|
/// A location for an argument or return value.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum ABIArg {
|
|
/// In a real register.
|
|
Reg(
|
|
RealReg,
|
|
ir::Type,
|
|
ir::ArgumentExtension,
|
|
ir::ArgumentPurpose,
|
|
),
|
|
/// Arguments only: on stack, at given offset from SP at entry.
|
|
Stack(i64, ir::Type, ir::ArgumentExtension, ir::ArgumentPurpose),
|
|
}
|
|
|
|
impl ABIArg {
|
|
/// Get the purpose of this arg.
|
|
fn get_purpose(self) -> ir::ArgumentPurpose {
|
|
match self {
|
|
ABIArg::Reg(_, _, _, purpose) => purpose,
|
|
ABIArg::Stack(_, _, _, purpose) => purpose,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Are we computing information about arguments or return values? Much of the
|
|
/// handling is factored out into common routines; this enum allows us to
|
|
/// distinguish which case we're handling.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub enum ArgsOrRets {
|
|
/// Arguments.
|
|
Args,
|
|
/// Return values.
|
|
Rets,
|
|
}
|
|
|
|
/// Is an instruction returned by an ABI machine-specific backend a safepoint,
|
|
/// or not?
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub enum InstIsSafepoint {
|
|
/// The instruction is a safepoint.
|
|
Yes,
|
|
/// The instruction is not a safepoint.
|
|
No,
|
|
}
|
|
|
|
/// Abstract location for a machine-specific ABI impl to translate into the
|
|
/// appropriate addressing mode.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum StackAMode {
|
|
/// Offset from the frame pointer, possibly making use of a specific type
|
|
/// for a scaled indexing operation.
|
|
FPOffset(i64, ir::Type),
|
|
/// Offset from the nominal stack pointer, possibly making use of a specific
|
|
/// type for a scaled indexing operation.
|
|
NominalSPOffset(i64, ir::Type),
|
|
/// Offset from the real stack pointer, possibly making use of a specific
|
|
/// type for a scaled indexing operation.
|
|
SPOffset(i64, ir::Type),
|
|
}
|
|
|
|
/// Trait implemented by machine-specific backend to provide information about
|
|
/// register assignments and to allow generating the specific instructions for
|
|
/// stack loads/saves, prologues/epilogues, etc.
|
|
pub trait ABIMachineSpec {
|
|
/// The instruction type.
|
|
type I: VCodeInst;
|
|
|
|
/// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
|
|
fn word_bits() -> u32;
|
|
|
|
/// Returns the number of bytes in a word.
|
|
fn word_bytes() -> u32 {
|
|
return Self::word_bits() / 8;
|
|
}
|
|
|
|
/// Returns word-size integer type.
|
|
fn word_type() -> Type {
|
|
match Self::word_bits() {
|
|
32 => I32,
|
|
64 => I64,
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Returns word register class.
|
|
fn word_reg_class() -> RegClass {
|
|
match Self::word_bits() {
|
|
32 => RegClass::I32,
|
|
64 => RegClass::I64,
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Process a list of parameters or return values and allocate them to registers
|
|
/// and stack slots.
|
|
///
|
|
/// Returns the list of argument locations, the stack-space used (rounded up
|
|
/// to as alignment requires), and if `add_ret_area_ptr` was passed, the
|
|
/// index of the extra synthetic arg that was added.
|
|
fn compute_arg_locs(
|
|
call_conv: isa::CallConv,
|
|
params: &[ir::AbiParam],
|
|
args_or_rets: ArgsOrRets,
|
|
add_ret_area_ptr: bool,
|
|
) -> CodegenResult<(Vec<ABIArg>, i64, Option<usize>)>;
|
|
|
|
/// Returns the offset from FP to the argument area, i.e., jumping over the saved FP, return
|
|
/// address, and maybe other standard elements depending on ABI (e.g. Wasm TLS reg).
|
|
fn fp_to_arg_offset(call_conv: isa::CallConv, flags: &settings::Flags) -> i64;
|
|
|
|
/// Generate a load from the stack.
|
|
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
|
|
|
|
/// Generate a store to the stack.
|
|
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
|
|
|
|
/// Generate a move.
|
|
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
|
|
|
|
/// Generate an integer-extend operation.
|
|
fn gen_extend(
|
|
to_reg: Writable<Reg>,
|
|
from_reg: Reg,
|
|
is_signed: bool,
|
|
from_bits: u8,
|
|
to_bits: u8,
|
|
) -> Self::I;
|
|
|
|
/// Generate a return instruction.
|
|
fn gen_ret() -> Self::I;
|
|
|
|
/// Generate an "epilogue placeholder" instruction, recognized by lowering
|
|
/// when using the Baldrdash ABI.
|
|
fn gen_epilogue_placeholder() -> Self::I;
|
|
|
|
/// Generate an add-with-immediate. Note that even if this uses a scratch
|
|
/// register, it must satisfy two requirements:
|
|
///
|
|
/// - The add-imm sequence must only clobber caller-save registers, because
|
|
/// it will be placed in the prologue before the clobbered callee-save
|
|
/// registers are saved.
|
|
///
|
|
/// - The add-imm sequence must work correctly when `from_reg` and/or
|
|
/// `into_reg` are the register returned by `get_stacklimit_reg()`.
|
|
fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallVec<[Self::I; 4]>;
|
|
|
|
/// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
|
|
/// the stack pointer is less than the given limit register (assuming the
|
|
/// stack grows downward).
|
|
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallVec<[Self::I; 2]>;
|
|
|
|
/// Generate an instruction to compute an address of a stack slot (FP- or
|
|
/// SP-based offset).
|
|
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
|
|
|
|
/// Get a fixed register to use to compute a stack limit. This is needed for
|
|
/// certain sequences generated after the register allocator has already
|
|
/// run. This must satisfy two requirements:
|
|
///
|
|
/// - It must be a caller-save register, because it will be clobbered in the
|
|
/// prologue before the clobbered callee-save registers are saved.
|
|
///
|
|
/// - It must be safe to pass as an argument and/or destination to
|
|
/// `gen_add_imm()`. This is relevant when an addition with a large
|
|
/// immediate needs its own temporary; it cannot use the same fixed
|
|
/// temporary as this one.
|
|
fn get_stacklimit_reg() -> Reg;
|
|
|
|
/// Generate a store to the given [base+offset] address.
|
|
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
|
|
|
|
/// Generate a load from the given [base+offset] address.
|
|
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
|
|
|
|
/// Adjust the stack pointer up or down.
|
|
fn gen_sp_reg_adjust(amount: i32) -> SmallVec<[Self::I; 2]>;
|
|
|
|
/// Generate a meta-instruction that adjusts the nominal SP offset.
|
|
fn gen_nominal_sp_adj(amount: i32) -> Self::I;
|
|
|
|
/// Generate the usual frame-setup sequence for this architecture: e.g.,
|
|
/// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
|
|
/// AArch64.
|
|
fn gen_prologue_frame_setup() -> SmallVec<[Self::I; 2]>;
|
|
|
|
/// Generate the usual frame-restore sequence for this architecture.
|
|
fn gen_epilogue_frame_restore() -> SmallVec<[Self::I; 2]>;
|
|
|
|
/// Generate a clobber-save sequence. This takes the list of *all* registers
|
|
/// written/modified by the function body. The implementation here is
|
|
/// responsible for determining which of these are callee-saved according to
|
|
/// the ABI. It should return a sequence of instructions that "push" or
|
|
/// otherwise save these values to the stack. The sequence of instructions
|
|
/// should adjust the stack pointer downward, and should align as necessary
|
|
/// according to ABI requirements.
|
|
///
|
|
/// Returns stack bytes used as well as instructions. Does not adjust
|
|
/// nominal SP offset; caller will do that.
|
|
fn gen_clobber_save(
|
|
call_conv: isa::CallConv,
|
|
flags: &settings::Flags,
|
|
clobbers: &Set<Writable<RealReg>>,
|
|
fixed_frame_storage_size: u32,
|
|
) -> (u64, SmallVec<[Self::I; 16]>);
|
|
|
|
/// Generate a clobber-restore sequence. This sequence should perform the
|
|
/// opposite of the clobber-save sequence generated above, assuming that SP
|
|
/// going into the sequence is at the same point that it was left when the
|
|
/// clobber-save sequence finished.
|
|
fn gen_clobber_restore(
|
|
call_conv: isa::CallConv,
|
|
flags: &settings::Flags,
|
|
clobbers: &Set<Writable<RealReg>>,
|
|
) -> SmallVec<[Self::I; 16]>;
|
|
|
|
/// Generate a call instruction/sequence. This method is provided one
|
|
/// temporary register to use to synthesize the called address, if needed.
|
|
fn gen_call(
|
|
dest: &CallDest,
|
|
uses: Vec<Reg>,
|
|
defs: Vec<Writable<Reg>>,
|
|
loc: SourceLoc,
|
|
opcode: ir::Opcode,
|
|
tmp: Writable<Reg>,
|
|
callee_conv: isa::CallConv,
|
|
callee_conv: isa::CallConv,
|
|
) -> SmallVec<[(InstIsSafepoint, Self::I); 2]>;
|
|
|
|
/// Get the number of spillslots required for the given register-class and
|
|
/// type.
|
|
fn get_number_of_spillslots_for_value(rc: RegClass, ty: Type) -> u32;
|
|
|
|
/// Get the current virtual-SP offset from an instruction-emission state.
|
|
fn get_virtual_sp_offset_from_state(s: &<Self::I as MachInstEmit>::State) -> i64;
|
|
|
|
/// Get the "nominal SP to FP" offset from an instruction-emission state.
|
|
fn get_nominal_sp_to_fp(s: &<Self::I as MachInstEmit>::State) -> i64;
|
|
|
|
/// Get all caller-save registers, that is, registers that we expect
|
|
/// not to be saved across a call to a callee with the given ABI.
|
|
fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> Vec<Writable<Reg>>;
|
|
}
|
|
|
|
/// ABI information shared between body (callee) and caller.
|
|
struct ABISig {
|
|
/// Argument locations (regs or stack slots). Stack offsets are relative to
|
|
/// SP on entry to function.
|
|
args: Vec<ABIArg>,
|
|
/// Return-value locations. Stack offsets are relative to the return-area
|
|
/// pointer.
|
|
rets: Vec<ABIArg>,
|
|
/// Space on stack used to store arguments.
|
|
stack_arg_space: i64,
|
|
/// Space on stack used to store return values.
|
|
stack_ret_space: i64,
|
|
/// Index in `args` of the stack-return-value-area argument.
|
|
stack_ret_arg: Option<usize>,
|
|
/// Calling convention used.
|
|
call_conv: isa::CallConv,
|
|
}
|
|
|
|
impl ABISig {
|
|
fn from_func_sig<M: ABIMachineSpec>(sig: &ir::Signature) -> CodegenResult<ABISig> {
|
|
// Compute args and retvals from signature. Handle retvals first,
|
|
// because we may need to add a return-area arg to the args.
|
|
let (rets, stack_ret_space, _) = M::compute_arg_locs(
|
|
sig.call_conv,
|
|
&sig.returns,
|
|
ArgsOrRets::Rets,
|
|
/* extra ret-area ptr = */ false,
|
|
)?;
|
|
let need_stack_return_area = stack_ret_space > 0;
|
|
let (args, stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
|
|
sig.call_conv,
|
|
&sig.params,
|
|
ArgsOrRets::Args,
|
|
need_stack_return_area,
|
|
)?;
|
|
|
|
trace!(
|
|
"ABISig: sig {:?} => args = {:?} rets = {:?} arg stack = {} ret stack = {} stack_ret_arg = {:?}",
|
|
sig,
|
|
args,
|
|
rets,
|
|
stack_arg_space,
|
|
stack_ret_space,
|
|
stack_ret_arg
|
|
);
|
|
|
|
Ok(ABISig {
|
|
args,
|
|
rets,
|
|
stack_arg_space,
|
|
stack_ret_space,
|
|
stack_ret_arg,
|
|
call_conv: sig.call_conv,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// ABI object for a function body.
|
|
pub struct ABICalleeImpl<M: ABIMachineSpec> {
|
|
/// Signature: arg and retval regs.
|
|
sig: ABISig,
|
|
/// Offsets to each stackslot.
|
|
stackslots: Vec<u32>,
|
|
/// Total stack size of all stackslots.
|
|
stackslots_size: u32,
|
|
/// Clobbered registers, from regalloc.
|
|
clobbered: Set<Writable<RealReg>>,
|
|
/// Total number of spillslots, from regalloc.
|
|
spillslots: Option<usize>,
|
|
/// "Total frame size", as defined by "distance between FP and nominal SP".
|
|
/// Some items are pushed below nominal SP, so the function may actually use
|
|
/// more stack than this would otherwise imply. It is simply the initial
|
|
/// frame/allocation size needed for stackslots and spillslots.
|
|
total_frame_size: Option<u32>,
|
|
/// The register holding the return-area pointer, if needed.
|
|
ret_area_ptr: Option<Writable<Reg>>,
|
|
/// Calling convention this function expects.
|
|
call_conv: isa::CallConv,
|
|
/// The settings controlling this function's compilation.
|
|
flags: settings::Flags,
|
|
/// Whether or not this function is a "leaf", meaning it calls no other
|
|
/// functions
|
|
is_leaf: bool,
|
|
/// If this function has a stack limit specified, then `Reg` is where the
|
|
/// stack limit will be located after the instructions specified have been
|
|
/// executed.
|
|
///
|
|
/// Note that this is intended for insertion into the prologue, if
|
|
/// present. Also note that because the instructions here execute in the
|
|
/// prologue this happens after legalization/register allocation/etc so we
|
|
/// need to be extremely careful with each instruction. The instructions are
|
|
/// manually register-allocated and carefully only use caller-saved
|
|
/// registers and keep nothing live after this sequence of instructions.
|
|
stack_limit: Option<(Reg, Vec<M::I>)>,
|
|
|
|
_mach: PhantomData<M>,
|
|
}
|
|
|
|
fn get_special_purpose_param_register(
|
|
f: &ir::Function,
|
|
abi: &ABISig,
|
|
purpose: ir::ArgumentPurpose,
|
|
) -> Option<Reg> {
|
|
let idx = f.signature.special_param_index(purpose)?;
|
|
match abi.args[idx] {
|
|
ABIArg::Reg(reg, ..) => Some(reg.to_reg()),
|
|
ABIArg::Stack(..) => None,
|
|
}
|
|
}
|
|
|
|
impl<M: ABIMachineSpec> ABICalleeImpl<M> {
|
|
/// Create a new body ABI instance.
|
|
pub fn new(f: &ir::Function, flags: settings::Flags) -> CodegenResult<Self> {
|
|
debug!("ABI: func signature {:?}", f.signature);
|
|
|
|
let sig = ABISig::from_func_sig::<M>(&f.signature)?;
|
|
|
|
let call_conv = f.signature.call_conv;
|
|
// Only these calling conventions are supported.
|
|
debug_assert!(
|
|
call_conv == isa::CallConv::SystemV
|
|
|| call_conv == isa::CallConv::Fast
|
|
|| call_conv == isa::CallConv::Cold
|
|
|| call_conv.extends_baldrdash(),
|
|
"Unsupported calling convention: {:?}",
|
|
call_conv
|
|
);
|
|
|
|
// Compute stackslot locations and total stackslot size.
|
|
let mut stack_offset: u32 = 0;
|
|
let mut stackslots = vec![];
|
|
for (stackslot, data) in f.stack_slots.iter() {
|
|
let off = stack_offset;
|
|
stack_offset += data.size;
|
|
let mask = M::word_bytes() - 1;
|
|
stack_offset = (stack_offset + mask) & !mask;
|
|
debug_assert_eq!(stackslot.as_u32() as usize, stackslots.len());
|
|
stackslots.push(off);
|
|
}
|
|
|
|
// Figure out what instructions, if any, will be needed to check the
|
|
// stack limit. This can either be specified as a special-purpose
|
|
// argument or as a global value which often calculates the stack limit
|
|
// from the arguments.
|
|
let stack_limit =
|
|
get_special_purpose_param_register(f, &sig, ir::ArgumentPurpose::StackLimit)
|
|
.map(|reg| (reg, Vec::new()))
|
|
.or_else(|| f.stack_limit.map(|gv| gen_stack_limit::<M>(f, &sig, gv)));
|
|
|
|
Ok(Self {
|
|
sig,
|
|
stackslots,
|
|
stackslots_size: stack_offset,
|
|
clobbered: Set::empty(),
|
|
spillslots: None,
|
|
total_frame_size: None,
|
|
ret_area_ptr: None,
|
|
call_conv,
|
|
flags,
|
|
is_leaf: f.is_leaf(),
|
|
stack_limit,
|
|
_mach: PhantomData,
|
|
})
|
|
}
|
|
|
|
/// Inserts instructions necessary for checking the stack limit into the
|
|
/// prologue.
|
|
///
|
|
/// This function will generate instructions necessary for perform a stack
|
|
/// check at the header of a function. The stack check is intended to trap
|
|
/// if the stack pointer goes below a particular threshold, preventing stack
|
|
/// overflow in wasm or other code. The `stack_limit` argument here is the
|
|
/// register which holds the threshold below which we're supposed to trap.
|
|
/// This function is known to allocate `stack_size` bytes and we'll push
|
|
/// instructions onto `insts`.
|
|
///
|
|
/// Note that the instructions generated here are special because this is
|
|
/// happening so late in the pipeline (e.g. after register allocation). This
|
|
/// means that we need to do manual register allocation here and also be
|
|
/// careful to not clobber any callee-saved or argument registers. For now
|
|
/// this routine makes do with the `spilltmp_reg` as one temporary
|
|
/// register, and a second register of `tmp2` which is caller-saved. This
|
|
/// should be fine for us since no spills should happen in this sequence of
|
|
/// instructions, so our register won't get accidentally clobbered.
|
|
///
|
|
/// No values can be live after the prologue, but in this case that's ok
|
|
/// because we just need to perform a stack check before progressing with
|
|
/// the rest of the function.
|
|
fn insert_stack_check(&self, stack_limit: Reg, stack_size: u32, insts: &mut Vec<M::I>) {
|
|
// With no explicit stack allocated we can just emit the simple check of
|
|
// the stack registers against the stack limit register, and trap if
|
|
// it's out of bounds.
|
|
if stack_size == 0 {
|
|
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
|
|
return;
|
|
}
|
|
|
|
// Note that the 32k stack size here is pretty special. See the
|
|
// documentation in x86/abi.rs for why this is here. The general idea is
|
|
// that we're protecting against overflow in the addition that happens
|
|
// below.
|
|
if stack_size >= 32 * 1024 {
|
|
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
|
|
}
|
|
|
|
// Add the `stack_size` to `stack_limit`, placing the result in
|
|
// `scratch`.
|
|
//
|
|
// Note though that `stack_limit`'s register may be the same as
|
|
// `scratch`. If our stack size doesn't fit into an immediate this
|
|
// means we need a second scratch register for loading the stack size
|
|
// into a register.
|
|
let scratch = Writable::from_reg(M::get_stacklimit_reg());
|
|
insts.extend(M::gen_add_imm(scratch, stack_limit, stack_size).into_iter());
|
|
insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
|
|
}
|
|
}
|
|
|
|
/// Generates the instructions necessary for the `gv` to be materialized into a
|
|
/// register.
|
|
///
|
|
/// This function will return a register that will contain the result of
|
|
/// evaluating `gv`. It will also return any instructions necessary to calculate
|
|
/// the value of the register.
|
|
///
|
|
/// Note that global values are typically lowered to instructions via the
|
|
/// standard legalization pass. Unfortunately though prologue generation happens
|
|
/// so late in the pipeline that we can't use these legalization passes to
|
|
/// generate the instructions for `gv`. As a result we duplicate some lowering
|
|
/// of `gv` here and support only some global values. This is similar to what
|
|
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
|
|
/// in the future too!
|
|
///
|
|
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
|
|
/// temporary register to store values in if necessary. Currently after we write
|
|
/// to this register there's guaranteed to be no spilled values between where
|
|
/// it's used, because we're not participating in register allocation anyway!
|
|
fn gen_stack_limit<M: ABIMachineSpec>(
|
|
f: &ir::Function,
|
|
abi: &ABISig,
|
|
gv: ir::GlobalValue,
|
|
) -> (Reg, Vec<M::I>) {
|
|
let mut insts = Vec::new();
|
|
let reg = generate_gv::<M>(f, abi, gv, &mut insts);
|
|
return (reg, insts);
|
|
}
|
|
|
|
fn generate_gv<M: ABIMachineSpec>(
|
|
f: &ir::Function,
|
|
abi: &ABISig,
|
|
gv: ir::GlobalValue,
|
|
insts: &mut Vec<M::I>,
|
|
) -> Reg {
|
|
match f.global_values[gv] {
|
|
// Return the direct register the vmcontext is in
|
|
ir::GlobalValueData::VMContext => {
|
|
get_special_purpose_param_register(f, abi, ir::ArgumentPurpose::VMContext)
|
|
.expect("no vmcontext parameter found")
|
|
}
|
|
// Load our base value into a register, then load from that register
|
|
// in to a temporary register.
|
|
ir::GlobalValueData::Load {
|
|
base,
|
|
offset,
|
|
global_type: _,
|
|
readonly: _,
|
|
} => {
|
|
let base = generate_gv::<M>(f, abi, base, insts);
|
|
let into_reg = Writable::from_reg(M::get_stacklimit_reg());
|
|
insts.push(M::gen_load_base_offset(
|
|
into_reg,
|
|
base,
|
|
offset.into(),
|
|
M::word_type(),
|
|
));
|
|
return into_reg.to_reg();
|
|
}
|
|
ref other => panic!("global value for stack limit not supported: {}", other),
|
|
}
|
|
}
|
|
|
|
/// Return a type either from an optional type hint, or if not, from the default
|
|
/// type associated with the given register's class. This is used to generate
|
|
/// loads/spills appropriately given the type of value loaded/stored (which may
|
|
/// be narrower than the spillslot). We usually have the type because the
|
|
/// regalloc usually provides the vreg being spilled/reloaded, and we know every
|
|
/// vreg's type. However, the regalloc *can* request a spill/reload without an
|
|
/// associated vreg when needed to satisfy a safepoint (which requires all
|
|
/// ref-typed values, even those in real registers in the original vcode, to be
|
|
/// in spillslots).
|
|
fn ty_from_ty_hint_or_reg_class<M: ABIMachineSpec>(r: Reg, ty: Option<Type>) -> Type {
|
|
match (ty, r.get_class()) {
|
|
// If the type is provided
|
|
(Some(t), _) => t,
|
|
// If no type is provided, this should be a register spill for a
|
|
// safepoint, so we only expect I32/I64 (integer) registers.
|
|
(None, rc) if rc == M::word_reg_class() => M::word_type(),
|
|
_ => panic!("Unexpected register class!"),
|
|
}
|
|
}
|
|
|
|
impl<M: ABIMachineSpec> ABICallee for ABICalleeImpl<M> {
|
|
type I = M::I;
|
|
|
|
fn temp_needed(&self) -> bool {
|
|
self.sig.stack_ret_arg.is_some()
|
|
}
|
|
|
|
fn init(&mut self, maybe_tmp: Option<Writable<Reg>>) {
|
|
if self.sig.stack_ret_arg.is_some() {
|
|
assert!(maybe_tmp.is_some());
|
|
self.ret_area_ptr = maybe_tmp;
|
|
}
|
|
}
|
|
|
|
fn flags(&self) -> &settings::Flags {
|
|
&self.flags
|
|
}
|
|
|
|
fn call_conv(&self) -> isa::CallConv {
|
|
self.sig.call_conv
|
|
}
|
|
|
|
fn liveins(&self) -> Set<RealReg> {
|
|
let mut set: Set<RealReg> = Set::empty();
|
|
for &arg in &self.sig.args {
|
|
if let ABIArg::Reg(r, ..) = arg {
|
|
set.insert(r);
|
|
}
|
|
}
|
|
set
|
|
}
|
|
|
|
fn liveouts(&self) -> Set<RealReg> {
|
|
let mut set: Set<RealReg> = Set::empty();
|
|
for &ret in &self.sig.rets {
|
|
if let ABIArg::Reg(r, ..) = ret {
|
|
set.insert(r);
|
|
}
|
|
}
|
|
set
|
|
}
|
|
|
|
fn num_args(&self) -> usize {
|
|
self.sig.args.len()
|
|
}
|
|
|
|
fn num_retvals(&self) -> usize {
|
|
self.sig.rets.len()
|
|
}
|
|
|
|
fn num_stackslots(&self) -> usize {
|
|
self.stackslots.len()
|
|
}
|
|
|
|
fn gen_copy_arg_to_reg(&self, idx: usize, into_reg: Writable<Reg>) -> Self::I {
|
|
match &self.sig.args[idx] {
|
|
// Extension mode doesn't matter (we're copying out, not in; we
|
|
// ignore high bits by convention).
|
|
&ABIArg::Reg(r, ty, ..) => M::gen_move(into_reg, r.to_reg(), ty),
|
|
&ABIArg::Stack(off, ty, ..) => M::gen_load_stack(
|
|
StackAMode::FPOffset(M::fp_to_arg_offset(self.call_conv, &self.flags) + off, ty),
|
|
into_reg,
|
|
ty,
|
|
),
|
|
}
|
|
}
|
|
|
|
fn arg_is_needed_in_body(&self, idx: usize) -> bool {
|
|
match self.sig.args[idx].get_purpose() {
|
|
// Special Baldrdash-specific pseudo-args that are present only to
|
|
// fill stack slots. Won't ever be used as ordinary values in the
|
|
// body.
|
|
ir::ArgumentPurpose::CalleeTLS | ir::ArgumentPurpose::CallerTLS => false,
|
|
_ => true,
|
|
}
|
|
}
|
|
|
|
fn gen_copy_reg_to_retval(&self, idx: usize, from_reg: Writable<Reg>) -> Vec<Self::I> {
|
|
let mut ret = Vec::new();
|
|
let word_bits = M::word_bits() as u8;
|
|
match &self.sig.rets[idx] {
|
|
&ABIArg::Reg(r, ty, ext, ..) => {
|
|
let from_bits = ty_bits(ty) as u8;
|
|
let dest_reg = Writable::from_reg(r.to_reg());
|
|
match (ext, from_bits) {
|
|
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
|
|
if n < word_bits =>
|
|
{
|
|
let signed = ext == ArgumentExtension::Sext;
|
|
ret.push(M::gen_extend(
|
|
dest_reg,
|
|
from_reg.to_reg(),
|
|
signed,
|
|
from_bits,
|
|
/* to_bits = */ word_bits,
|
|
));
|
|
}
|
|
_ => ret.push(M::gen_move(dest_reg, from_reg.to_reg(), ty)),
|
|
};
|
|
}
|
|
&ABIArg::Stack(off, mut ty, ext, ..) => {
|
|
let from_bits = ty_bits(ty) as u8;
|
|
// A machine ABI implementation should ensure that stack frames
|
|
// have "reasonable" size. All current ABIs for machinst
|
|
// backends (aarch64 and x64) enforce a 128MB limit.
|
|
let off = i32::try_from(off)
|
|
.expect("Argument stack offset greater than 2GB; should hit impl limit first");
|
|
// Trash the from_reg; it should be its last use.
|
|
match (ext, from_bits) {
|
|
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
|
|
if n < word_bits =>
|
|
{
|
|
assert_eq!(M::word_reg_class(), from_reg.to_reg().get_class());
|
|
let signed = ext == ArgumentExtension::Sext;
|
|
ret.push(M::gen_extend(
|
|
from_reg,
|
|
from_reg.to_reg(),
|
|
signed,
|
|
from_bits,
|
|
/* to_bits = */ word_bits,
|
|
));
|
|
// Store the extended version.
|
|
ty = M::word_type();
|
|
}
|
|
_ => {}
|
|
};
|
|
ret.push(M::gen_store_base_offset(
|
|
self.ret_area_ptr.unwrap().to_reg(),
|
|
off,
|
|
from_reg.to_reg(),
|
|
ty,
|
|
));
|
|
}
|
|
}
|
|
ret
|
|
}
|
|
|
|
fn gen_retval_area_setup(&self) -> Option<Self::I> {
|
|
if let Some(i) = self.sig.stack_ret_arg {
|
|
let inst = self.gen_copy_arg_to_reg(i, self.ret_area_ptr.unwrap());
|
|
trace!(
|
|
"gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
|
|
inst,
|
|
self.ret_area_ptr.unwrap().to_reg()
|
|
);
|
|
Some(inst)
|
|
} else {
|
|
trace!("gen_retval_area_setup: not needed");
|
|
None
|
|
}
|
|
}
|
|
|
|
fn gen_ret(&self) -> Self::I {
|
|
M::gen_ret()
|
|
}
|
|
|
|
fn gen_epilogue_placeholder(&self) -> Self::I {
|
|
M::gen_epilogue_placeholder()
|
|
}
|
|
|
|
fn set_num_spillslots(&mut self, slots: usize) {
|
|
self.spillslots = Some(slots);
|
|
}
|
|
|
|
fn set_clobbered(&mut self, clobbered: Set<Writable<RealReg>>) {
|
|
self.clobbered = clobbered;
|
|
}
|
|
|
|
/// Load from a stackslot.
|
|
fn load_stackslot(
|
|
&self,
|
|
slot: StackSlot,
|
|
offset: u32,
|
|
ty: Type,
|
|
into_reg: Writable<Reg>,
|
|
) -> Self::I {
|
|
// Offset from beginning of stackslot area, which is at nominal SP (see
|
|
// [MemArg::NominalSPOffset] for more details on nominal SP tracking).
|
|
let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
|
|
let sp_off: i64 = stack_off + (offset as i64);
|
|
trace!("load_stackslot: slot {} -> sp_off {}", slot, sp_off);
|
|
M::gen_load_stack(StackAMode::NominalSPOffset(sp_off, ty), into_reg, ty)
|
|
}
|
|
|
|
/// Store to a stackslot.
|
|
fn store_stackslot(&self, slot: StackSlot, offset: u32, ty: Type, from_reg: Reg) -> Self::I {
|
|
// Offset from beginning of stackslot area, which is at nominal SP (see
|
|
// [MemArg::NominalSPOffset] for more details on nominal SP tracking).
|
|
let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
|
|
let sp_off: i64 = stack_off + (offset as i64);
|
|
trace!("store_stackslot: slot {} -> sp_off {}", slot, sp_off);
|
|
M::gen_store_stack(StackAMode::NominalSPOffset(sp_off, ty), from_reg, ty)
|
|
}
|
|
|
|
/// Produce an instruction that computes a stackslot address.
|
|
fn stackslot_addr(&self, slot: StackSlot, offset: u32, into_reg: Writable<Reg>) -> Self::I {
|
|
// Offset from beginning of stackslot area, which is at nominal SP (see
|
|
// [MemArg::NominalSPOffset] for more details on nominal SP tracking).
|
|
let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
|
|
let sp_off: i64 = stack_off + (offset as i64);
|
|
M::gen_get_stack_addr(StackAMode::NominalSPOffset(sp_off, I8), into_reg, I8)
|
|
}
|
|
|
|
/// Load from a spillslot.
|
|
fn load_spillslot(&self, slot: SpillSlot, ty: Type, into_reg: Writable<Reg>) -> Self::I {
|
|
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
|
|
let islot = slot.get() as i64;
|
|
let spill_off = islot * M::word_bytes() as i64;
|
|
let sp_off = self.stackslots_size as i64 + spill_off;
|
|
trace!("load_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
|
|
M::gen_load_stack(StackAMode::NominalSPOffset(sp_off, ty), into_reg, ty)
|
|
}
|
|
|
|
/// Store to a spillslot.
|
|
fn store_spillslot(&self, slot: SpillSlot, ty: Type, from_reg: Reg) -> Self::I {
|
|
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
|
|
let islot = slot.get() as i64;
|
|
let spill_off = islot * M::word_bytes() as i64;
|
|
let sp_off = self.stackslots_size as i64 + spill_off;
|
|
trace!("store_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
|
|
M::gen_store_stack(StackAMode::NominalSPOffset(sp_off, ty), from_reg, ty)
|
|
}
|
|
|
|
fn spillslots_to_stack_map(
|
|
&self,
|
|
slots: &[SpillSlot],
|
|
state: &<Self::I as MachInstEmit>::State,
|
|
) -> StackMap {
|
|
let virtual_sp_offset = M::get_virtual_sp_offset_from_state(state);
|
|
let nominal_sp_to_fp = M::get_nominal_sp_to_fp(state);
|
|
assert!(virtual_sp_offset >= 0);
|
|
trace!(
|
|
"spillslots_to_stackmap: slots = {:?}, state = {:?}",
|
|
slots,
|
|
state
|
|
);
|
|
let map_size = (virtual_sp_offset + nominal_sp_to_fp) as u32;
|
|
let bytes = M::word_bytes();
|
|
let map_words = (map_size + bytes - 1) / bytes;
|
|
let mut bits = std::iter::repeat(false)
|
|
.take(map_words as usize)
|
|
.collect::<Vec<bool>>();
|
|
|
|
let first_spillslot_word =
|
|
((self.stackslots_size + virtual_sp_offset as u32) / bytes) as usize;
|
|
for &slot in slots {
|
|
let slot = slot.get() as usize;
|
|
bits[first_spillslot_word + slot] = true;
|
|
}
|
|
|
|
StackMap::from_slice(&bits[..])
|
|
}
|
|
|
|
fn gen_prologue(&mut self) -> Vec<Self::I> {
|
|
let mut insts = vec![];
|
|
if !self.call_conv.extends_baldrdash() {
|
|
// set up frame
|
|
insts.extend(M::gen_prologue_frame_setup().into_iter());
|
|
}
|
|
|
|
let bytes = M::word_bytes();
|
|
let mut total_stacksize = self.stackslots_size + bytes * self.spillslots.unwrap() as u32;
|
|
if self.call_conv.extends_baldrdash() {
|
|
debug_assert!(
|
|
!self.flags.enable_probestack(),
|
|
"baldrdash does not expect cranelift to emit stack probes"
|
|
);
|
|
total_stacksize += self.flags.baldrdash_prologue_words() as u32 * bytes;
|
|
}
|
|
let mask = 2 * bytes - 1;
|
|
let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
|
|
|
|
let mut fixed_frame_storage_size = 0;
|
|
|
|
if !self.call_conv.extends_baldrdash() {
|
|
// Leaf functions with zero stack don't need a stack check if one's
|
|
// specified, otherwise always insert the stack check.
|
|
if total_stacksize > 0 || !self.is_leaf {
|
|
if let Some((reg, stack_limit_load)) = &self.stack_limit {
|
|
insts.extend_from_slice(stack_limit_load);
|
|
self.insert_stack_check(*reg, total_stacksize, &mut insts);
|
|
}
|
|
}
|
|
if total_stacksize > 0 {
|
|
fixed_frame_storage_size += total_stacksize;
|
|
}
|
|
}
|
|
|
|
// N.B.: "nominal SP", which we use to refer to stackslots and
|
|
// spillslots, is defined to be equal to the stack pointer at this point
|
|
// in the prologue.
|
|
//
|
|
// If we push any clobbers below, we emit a virtual-SP adjustment
|
|
// meta-instruction so that the nominal SP references behave as if SP
|
|
// were still at this point. See documentation for
|
|
// [crate::machinst::abi_impl](this module) for more details on
|
|
// stackframe layout and nominal SP maintenance.
|
|
|
|
// Save clobbered registers.
|
|
let (clobber_size, clobber_insts) = M::gen_clobber_save(
|
|
self.call_conv,
|
|
&self.flags,
|
|
&self.clobbered,
|
|
fixed_frame_storage_size,
|
|
);
|
|
insts.extend(clobber_insts);
|
|
|
|
if clobber_size > 0 {
|
|
insts.push(M::gen_nominal_sp_adj(clobber_size as i32));
|
|
}
|
|
|
|
self.total_frame_size = Some(total_stacksize);
|
|
insts
|
|
}
|
|
|
|
fn gen_epilogue(&self) -> Vec<M::I> {
|
|
let mut insts = vec![];
|
|
|
|
// Restore clobbered registers.
|
|
insts.extend(M::gen_clobber_restore(
|
|
self.call_conv,
|
|
&self.flags,
|
|
&self.clobbered,
|
|
));
|
|
|
|
// N.B.: we do *not* emit a nominal SP adjustment here, because (i) there will be no
|
|
// references to nominal SP offsets before the return below, and (ii) the instruction
|
|
// emission tracks running SP offset linearly (in straight-line order), not according to
|
|
// the CFG, so early returns in the middle of function bodies would cause an incorrect
|
|
// offset for the rest of the body.
|
|
|
|
if !self.call_conv.extends_baldrdash() {
|
|
insts.extend(M::gen_epilogue_frame_restore());
|
|
insts.push(M::gen_ret());
|
|
}
|
|
|
|
debug!("Epilogue: {:?}", insts);
|
|
insts
|
|
}
|
|
|
|
fn frame_size(&self) -> u32 {
|
|
self.total_frame_size
|
|
.expect("frame size not computed before prologue generation")
|
|
}
|
|
|
|
fn stack_args_size(&self) -> u32 {
|
|
self.sig.stack_arg_space as u32
|
|
}
|
|
|
|
fn get_spillslot_size(&self, rc: RegClass, ty: Type) -> u32 {
|
|
M::get_number_of_spillslots_for_value(rc, ty)
|
|
}
|
|
|
|
fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg, ty: Option<Type>) -> Self::I {
|
|
let ty = ty_from_ty_hint_or_reg_class::<M>(from_reg.to_reg(), ty);
|
|
self.store_spillslot(to_slot, ty, from_reg.to_reg())
|
|
}
|
|
|
|
fn gen_reload(
|
|
&self,
|
|
to_reg: Writable<RealReg>,
|
|
from_slot: SpillSlot,
|
|
ty: Option<Type>,
|
|
) -> Self::I {
|
|
let ty = ty_from_ty_hint_or_reg_class::<M>(to_reg.to_reg().to_reg(), ty);
|
|
self.load_spillslot(from_slot, ty, to_reg.map(|r| r.to_reg()))
|
|
}
|
|
}
|
|
|
|
fn abisig_to_uses_and_defs<M: ABIMachineSpec>(sig: &ABISig) -> (Vec<Reg>, Vec<Writable<Reg>>) {
|
|
// Compute uses: all arg regs.
|
|
let mut uses = Vec::new();
|
|
for arg in &sig.args {
|
|
match arg {
|
|
&ABIArg::Reg(reg, ..) => uses.push(reg.to_reg()),
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
// Compute defs: all retval regs, and all caller-save (clobbered) regs.
|
|
let mut defs = M::get_regs_clobbered_by_call(sig.call_conv);
|
|
for ret in &sig.rets {
|
|
match ret {
|
|
&ABIArg::Reg(reg, ..) => defs.push(Writable::from_reg(reg.to_reg())),
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
(uses, defs)
|
|
}
|
|
|
|
/// ABI object for a callsite.
|
|
pub struct ABICallerImpl<M: ABIMachineSpec> {
|
|
/// The called function's signature.
|
|
sig: ABISig,
|
|
/// All uses for the callsite, i.e., function args.
|
|
uses: Vec<Reg>,
|
|
/// All defs for the callsite, i.e., return values and caller-saves.
|
|
defs: Vec<Writable<Reg>>,
|
|
/// Call destination.
|
|
dest: CallDest,
|
|
/// Location of callsite.
|
|
loc: ir::SourceLoc,
|
|
/// Actual call opcode; used to distinguish various types of calls.
|
|
opcode: ir::Opcode,
|
|
/// Caller's calling convention.
|
|
caller_conv: isa::CallConv,
|
|
|
|
_mach: PhantomData<M>,
|
|
}
|
|
|
|
/// Destination for a call.
|
|
#[derive(Debug, Clone)]
|
|
pub enum CallDest {
|
|
/// Call to an ExtName (named function symbol).
|
|
ExtName(ir::ExternalName, RelocDistance),
|
|
/// Indirect call to a function pointer in a register.
|
|
Reg(Reg),
|
|
}
|
|
|
|
impl<M: ABIMachineSpec> ABICallerImpl<M> {
|
|
/// Create a callsite ABI object for a call directly to the specified function.
|
|
pub fn from_func(
|
|
sig: &ir::Signature,
|
|
extname: &ir::ExternalName,
|
|
dist: RelocDistance,
|
|
loc: ir::SourceLoc,
|
|
caller_conv: isa::CallConv,
|
|
) -> CodegenResult<ABICallerImpl<M>> {
|
|
let sig = ABISig::from_func_sig::<M>(sig)?;
|
|
let (uses, defs) = abisig_to_uses_and_defs::<M>(&sig);
|
|
Ok(ABICallerImpl {
|
|
sig,
|
|
uses,
|
|
defs,
|
|
dest: CallDest::ExtName(extname.clone(), dist),
|
|
loc,
|
|
opcode: ir::Opcode::Call,
|
|
caller_conv,
|
|
_mach: PhantomData,
|
|
})
|
|
}
|
|
|
|
/// Create a callsite ABI object for a call to a function pointer with the
|
|
/// given signature.
|
|
pub fn from_ptr(
|
|
sig: &ir::Signature,
|
|
ptr: Reg,
|
|
loc: ir::SourceLoc,
|
|
opcode: ir::Opcode,
|
|
caller_conv: isa::CallConv,
|
|
) -> CodegenResult<ABICallerImpl<M>> {
|
|
let sig = ABISig::from_func_sig::<M>(sig)?;
|
|
let (uses, defs) = abisig_to_uses_and_defs::<M>(&sig);
|
|
Ok(ABICallerImpl {
|
|
sig,
|
|
uses,
|
|
defs,
|
|
dest: CallDest::Reg(ptr),
|
|
loc,
|
|
opcode,
|
|
caller_conv,
|
|
_mach: PhantomData,
|
|
})
|
|
}
|
|
}
|
|
|
|
fn adjust_stack_and_nominal_sp<M: ABIMachineSpec, C: LowerCtx<I = M::I>>(
|
|
ctx: &mut C,
|
|
off: i32,
|
|
is_sub: bool,
|
|
) {
|
|
if off == 0 {
|
|
return;
|
|
}
|
|
let amt = if is_sub { -off } else { off };
|
|
for inst in M::gen_sp_reg_adjust(amt) {
|
|
ctx.emit(inst);
|
|
}
|
|
ctx.emit(M::gen_nominal_sp_adj(-amt));
|
|
}
|
|
|
|
impl<M: ABIMachineSpec> ABICaller for ABICallerImpl<M> {
|
|
type I = M::I;
|
|
|
|
fn num_args(&self) -> usize {
|
|
if self.sig.stack_ret_arg.is_some() {
|
|
self.sig.args.len() - 1
|
|
} else {
|
|
self.sig.args.len()
|
|
}
|
|
}
|
|
|
|
fn emit_stack_pre_adjust<C: LowerCtx<I = Self::I>>(&self, ctx: &mut C) {
|
|
let off = self.sig.stack_arg_space + self.sig.stack_ret_space;
|
|
adjust_stack_and_nominal_sp::<M, C>(ctx, off as i32, /* is_sub = */ true)
|
|
}
|
|
|
|
fn emit_stack_post_adjust<C: LowerCtx<I = Self::I>>(&self, ctx: &mut C) {
|
|
let off = self.sig.stack_arg_space + self.sig.stack_ret_space;
|
|
adjust_stack_and_nominal_sp::<M, C>(ctx, off as i32, /* is_sub = */ false)
|
|
}
|
|
|
|
fn emit_copy_reg_to_arg<C: LowerCtx<I = Self::I>>(
|
|
&self,
|
|
ctx: &mut C,
|
|
idx: usize,
|
|
from_reg: Reg,
|
|
) {
|
|
let word_rc = M::word_reg_class();
|
|
let word_bits = M::word_bits() as usize;
|
|
match &self.sig.args[idx] {
|
|
&ABIArg::Reg(reg, ty, ext, _)
|
|
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits =>
|
|
{
|
|
assert_eq!(word_rc, reg.get_class());
|
|
let signed = match ext {
|
|
ir::ArgumentExtension::Uext => false,
|
|
ir::ArgumentExtension::Sext => true,
|
|
_ => unreachable!(),
|
|
};
|
|
ctx.emit(M::gen_extend(
|
|
Writable::from_reg(reg.to_reg()),
|
|
from_reg,
|
|
signed,
|
|
ty_bits(ty) as u8,
|
|
word_bits as u8,
|
|
));
|
|
}
|
|
&ABIArg::Reg(reg, ty, _, _) => {
|
|
ctx.emit(M::gen_move(Writable::from_reg(reg.to_reg()), from_reg, ty));
|
|
}
|
|
&ABIArg::Stack(off, mut ty, ext, _) => {
|
|
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
|
|
assert_eq!(word_rc, from_reg.get_class());
|
|
let signed = match ext {
|
|
ir::ArgumentExtension::Uext => false,
|
|
ir::ArgumentExtension::Sext => true,
|
|
_ => unreachable!(),
|
|
};
|
|
// Extend in place in the source register. Our convention is to
|
|
// treat high bits as undefined for values in registers, so this
|
|
// is safe, even for an argument that is nominally read-only.
|
|
ctx.emit(M::gen_extend(
|
|
Writable::from_reg(from_reg),
|
|
from_reg,
|
|
signed,
|
|
ty_bits(ty) as u8,
|
|
word_bits as u8,
|
|
));
|
|
// Store the extended version.
|
|
ty = M::word_type();
|
|
}
|
|
ctx.emit(M::gen_store_stack(
|
|
StackAMode::SPOffset(off, ty),
|
|
from_reg,
|
|
ty,
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn emit_copy_retval_to_reg<C: LowerCtx<I = Self::I>>(
|
|
&self,
|
|
ctx: &mut C,
|
|
idx: usize,
|
|
into_reg: Writable<Reg>,
|
|
) {
|
|
match &self.sig.rets[idx] {
|
|
// Extension mode doesn't matter because we're copying out, not in,
|
|
// and we ignore high bits in our own registers by convention.
|
|
&ABIArg::Reg(reg, ty, _, _) => ctx.emit(M::gen_move(into_reg, reg.to_reg(), ty)),
|
|
&ABIArg::Stack(off, ty, _, _) => {
|
|
let ret_area_base = self.sig.stack_arg_space;
|
|
ctx.emit(M::gen_load_stack(
|
|
StackAMode::SPOffset(off + ret_area_base, ty),
|
|
into_reg,
|
|
ty,
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn emit_call<C: LowerCtx<I = Self::I>>(&mut self, ctx: &mut C) {
|
|
let (uses, defs) = (
|
|
mem::replace(&mut self.uses, Default::default()),
|
|
mem::replace(&mut self.defs, Default::default()),
|
|
);
|
|
let word_rc = M::word_reg_class();
|
|
let word_type = M::word_type();
|
|
if let Some(i) = self.sig.stack_ret_arg {
|
|
let rd = ctx.alloc_tmp(word_rc, word_type);
|
|
let ret_area_base = self.sig.stack_arg_space;
|
|
ctx.emit(M::gen_get_stack_addr(
|
|
StackAMode::SPOffset(ret_area_base, I8),
|
|
rd,
|
|
I8,
|
|
));
|
|
self.emit_copy_reg_to_arg(ctx, i, rd.to_reg());
|
|
}
|
|
let tmp = ctx.alloc_tmp(word_rc, word_type);
|
|
for (is_safepoint, inst) in M::gen_call(
|
|
&self.dest,
|
|
uses,
|
|
defs,
|
|
self.loc,
|
|
self.opcode,
|
|
tmp,
|
|
self.sig.call_conv,
|
|
self.caller_conv,
|
|
)
|
|
.into_iter()
|
|
{
|
|
match is_safepoint {
|
|
InstIsSafepoint::Yes => ctx.emit_safepoint(inst),
|
|
InstIsSafepoint::No => ctx.emit(inst),
|
|
}
|
|
}
|
|
}
|
|
}
|