Files
wasmtime/lib/cretonne/src/entity_map.rs
Jakob Stoklund Olesen f8e4d4e839 Speling.
2017-02-03 12:49:40 -08:00

258 lines
6.9 KiB
Rust

//! Densely numbered entity references as mapping keys.
//!
//! This module defines an `EntityRef` trait that should be implemented by reference types wrapping
//! a small integer index. The `EntityMap` data structure uses the dense index space to implement a
//! map with a vector. There are primary and secondary entity maps:
//!
//! - A *primary* `EntityMap` contains the main definition of an entity, and it can be used to
//! allocate new entity references with the `push` method. The values stores in a primary map
//! must implement the `PrimaryEntityData` marker trait.
//! - A *secondary* `EntityMap` contains additional data about entities kept in a primary map. The
//! values need to implement `Clone + Default` traits so the map can be grown with `ensure`.
use std::vec::Vec;
use std::default::Default;
use std::marker::PhantomData;
use std::ops::{Index, IndexMut};
/// A type wrapping a small integer index should implement `EntityRef` so it can be used as the key
/// of an `EntityMap`.
pub trait EntityRef: Copy + Eq {
/// Create a new entity reference from a small integer.
/// This should crash if the requested index is not representable.
fn new(usize) -> Self;
/// Get the index that was used to create this entity reference.
fn index(self) -> usize;
}
/// A mapping `K -> V` for densely indexed entity references.
#[derive(Debug, Clone)]
pub struct EntityMap<K, V>
where K: EntityRef
{
elems: Vec<V>,
unused: PhantomData<K>,
}
/// Shared `EntityMap` implementation for all value types.
impl<K, V> EntityMap<K, V>
where K: EntityRef
{
/// Create a new empty map.
pub fn new() -> Self {
EntityMap {
elems: Vec::new(),
unused: PhantomData,
}
}
/// Check if `k` is a valid key in the map.
pub fn is_valid(&self, k: K) -> bool {
k.index() < self.elems.len()
}
/// Get the element at `k` if it exists.
pub fn get(&self, k: K) -> Option<&V> {
self.elems.get(k.index())
}
/// Is this map completely empty?
pub fn is_empty(&self) -> bool {
self.elems.is_empty()
}
/// Remove all entries from this map.
pub fn clear(&mut self) {
self.elems.clear()
}
/// Iterate over all the keys in this map.
pub fn keys(&self) -> Keys<K> {
Keys {
pos: 0,
len: self.elems.len(),
unused: PhantomData,
}
}
}
/// A marker trait for data stored in primary entity maps.
///
/// A primary entity map can be used to allocate new entity references with the `push` method. It
/// is important that entity references can't be created anywhere else, so the data stored in a
/// primary entity map must be tagged as `PrimaryEntityData` to unlock the `push` method.
pub trait PrimaryEntityData {}
/// Additional methods for primary entry maps only.
///
/// These are identified by the `PrimaryEntityData` marker trait.
impl<K, V> EntityMap<K, V>
where K: EntityRef,
V: PrimaryEntityData
{
/// Get the key that will be assigned to the next pushed value.
pub fn next_key(&self) -> K {
K::new(self.elems.len())
}
/// Append `v` to the mapping, assigning a new key which is returned.
pub fn push(&mut self, v: V) -> K {
let k = self.next_key();
self.elems.push(v);
k
}
/// Get the total number of entity references created.
pub fn len(&self) -> usize {
self.elems.len()
}
}
/// Additional methods for value types that implement `Clone` and `Default`.
///
/// When the value type implements these additional traits, the `EntityMap` can be resized
/// explicitly with the `ensure` method.
///
/// Use this for secondary maps that are mapping keys created by another primary map.
impl<K, V> EntityMap<K, V>
where K: EntityRef,
V: Clone + Default
{
/// Create a new secondary `EntityMap` that is prepared to hold `n` elements.
///
/// Use this when the length of the primary map is known:
/// ```
/// let secondary_map = EntityMap::with_capacity(primary_map.len());
/// ```
pub fn with_capacity(n: usize) -> Self {
let mut map = EntityMap {
elems: Vec::with_capacity(n),
unused: PhantomData,
};
map.elems.resize(n, V::default());
map
}
/// Resize the map to have `n` entries by adding default entries as needed.
pub fn resize(&mut self, n: usize) {
self.elems.resize(n, V::default());
}
/// Ensure that `k` is a valid key but adding default entries if necessary.
///
/// Return a mutable reference to the corresponding entry.
pub fn ensure(&mut self, k: K) -> &mut V {
if !self.is_valid(k) {
self.resize(k.index() + 1)
}
&mut self.elems[k.index()]
}
}
/// Immutable indexing into an `EntityMap`.
/// The indexed value must be in the map, either because it was created by `push`, or the key was
/// passed to `ensure`.
impl<K, V> Index<K> for EntityMap<K, V>
where K: EntityRef
{
type Output = V;
fn index(&self, k: K) -> &V {
&self.elems[k.index()]
}
}
/// Mutable indexing into an `EntityMap`.
/// Use `ensure` instead if the key is not known to be valid.
impl<K, V> IndexMut<K> for EntityMap<K, V>
where K: EntityRef
{
fn index_mut(&mut self, k: K) -> &mut V {
&mut self.elems[k.index()]
}
}
/// Iterate over all keys in order.
pub struct Keys<K>
where K: EntityRef
{
pos: usize,
len: usize,
unused: PhantomData<K>,
}
impl<K> Iterator for Keys<K>
where K: EntityRef
{
type Item = K;
fn next(&mut self) -> Option<Self::Item> {
if self.pos < self.len {
let k = K::new(self.pos);
self.pos += 1;
Some(k)
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use super::*;
// `EntityRef` impl for testing.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct E(u32);
impl EntityRef for E {
fn new(i: usize) -> Self {
E(i as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
impl PrimaryEntityData for isize {}
#[test]
fn basic() {
let r0 = E(0);
let r1 = E(1);
let r2 = E(2);
let mut m = EntityMap::new();
let v: Vec<E> = m.keys().collect();
assert_eq!(v, []);
assert!(!m.is_valid(r0));
m.ensure(r2);
m[r2] = 3;
assert!(m.is_valid(r1));
m[r1] = 5;
assert_eq!(m[r1], 5);
assert_eq!(m[r2], 3);
let v: Vec<E> = m.keys().collect();
assert_eq!(v, [r0, r1, r2]);
let shared = &m;
assert_eq!(shared[r0], 0);
assert_eq!(shared[r1], 5);
assert_eq!(shared[r2], 3);
}
#[test]
fn push() {
let mut m = EntityMap::new();
let k1: E = m.push(12);
let k2 = m.push(33);
assert_eq!(m[k1], 12);
assert_eq!(m[k2], 33);
}
}