Files
wasmtime/lib/cretonne/src/context.rs
Jakob Stoklund Olesen 6d9198d55f Recompute the dominator tree on demand.
The legalizer can invalidate the dominator tree, but we don't actually
need a dominator tree during legalization, so defer the construction of
the domtree.

- Add an "invalid" state to the dominator tree along with clear() and
  is_valid() methods to test it.
- Invalidate the dominator tree as part of legalization.
- Ensure that a valid dominator tree exists before the passes that need
  it.

Together these features add up to a manual invalidation mechanism for
the dominator tree.
2017-08-28 11:16:29 -07:00

164 lines
5.6 KiB
Rust

//! Cretonne compilation context and main entry point.
//!
//! When compiling many small functions, it is important to avoid repeatedly allocating and
//! deallocating the data structures needed for compilation. The `Context` struct is used to hold
//! on to memory allocations between function compilations.
//!
//! The context does not hold a `TargetIsa` instance which has to be provided as an argument
//! instead. This is because an ISA instance is immutable and can be used by multiple compilation
//! contexts concurrently. Typically, you would have one context per compilation thread and only a
//! single ISA instance.
use binemit::{CodeOffset, relax_branches, MemoryCodeSink, RelocSink};
use dominator_tree::DominatorTree;
use flowgraph::ControlFlowGraph;
use ir::Function;
use loop_analysis::LoopAnalysis;
use isa::TargetIsa;
use legalize_function;
use regalloc;
use result::{CtonError, CtonResult};
use verifier;
use simple_gvn::do_simple_gvn;
use licm::do_licm;
/// Persistent data structures and compilation pipeline.
pub struct Context {
/// The function we're compiling.
pub func: Function,
/// The control flow graph of `func`.
pub cfg: ControlFlowGraph,
/// Dominator tree for `func`.
pub domtree: DominatorTree,
/// Register allocation context.
pub regalloc: regalloc::Context,
/// Loop analysis of `func`.
pub loop_analysis: LoopAnalysis,
}
impl Context {
/// Allocate a new compilation context.
///
/// The returned instance should be reused for compiling multiple functions in order to avoid
/// needless allocator thrashing.
pub fn new() -> Context {
Context {
func: Function::new(),
cfg: ControlFlowGraph::new(),
domtree: DominatorTree::new(),
regalloc: regalloc::Context::new(),
loop_analysis: LoopAnalysis::new(),
}
}
/// Compile the function.
///
/// Run the function through all the passes necessary to generate code for the target ISA
/// represented by `isa`. This does not include the final step of emitting machine code into a
/// code sink.
///
/// Returns the size of the function's code.
pub fn compile(&mut self, isa: &TargetIsa) -> Result<CodeOffset, CtonError> {
self.cfg.compute(&self.func);
self.verify_if(isa)?;
self.legalize(isa)?;
self.regalloc(isa)?;
self.prologue_epilogue(isa)?;
self.relax_branches(isa)
}
/// Emit machine code directly into raw memory.
///
/// Write all of the function's machine code to the memory at `mem`. The size of the machine
/// code is returned by `compile` above.
///
/// The machine code is not relocated. Instead, any relocations are emitted into `relocs`.
pub fn emit_to_memory(&self, mem: *mut u8, relocs: &mut RelocSink, isa: &TargetIsa) {
isa.emit_function(&self.func, &mut MemoryCodeSink::new(mem, relocs));
}
/// Run the verifier on the function.
///
/// Also check that the dominator tree and control flow graph are consistent with the function.
///
/// The `isa` argument is currently unused, but the verifier will soon be able to also
/// check ISA-dependent constraints.
pub fn verify(&self, isa: Option<&TargetIsa>) -> verifier::Result {
verifier::verify_context(&self.func, &self.cfg, &self.domtree, isa)
}
/// Run the verifier only if the `enable_verifier` setting is true.
pub fn verify_if(&self, isa: &TargetIsa) -> CtonResult {
if isa.flags().enable_verifier() {
self.verify(Some(isa)).map_err(Into::into)
} else {
Ok(())
}
}
/// Run the legalizer for `isa` on the function.
pub fn legalize(&mut self, isa: &TargetIsa) -> CtonResult {
// Legalization invalidates the domtree by mutating the CFG.
self.domtree.clear();
legalize_function(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)
}
/// Recompute the control flow graph and dominator tree.
pub fn flowgraph(&mut self) {
self.cfg.compute(&self.func);
self.domtree.compute(&self.func, &self.cfg);
}
/// Ensure that a valid domtree exists.
pub fn ensure_domtree(&mut self) {
if !self.domtree.is_valid() {
self.domtree.compute(&self.func, &self.cfg);
}
}
/// Perform simple GVN on the function.
pub fn simple_gvn(&mut self) -> CtonResult {
do_simple_gvn(&mut self.func, &mut self.cfg);
// TODO: Factor things such that we can get a Flags and test
// enable_verifier().
self.verify(None).map_err(Into::into)
}
/// Perform LICM on the function.
pub fn licm(&mut self) -> CtonResult {
self.ensure_domtree();
do_licm(&mut self.func,
&mut self.cfg,
&mut self.domtree,
&mut self.loop_analysis);
self.verify(None).map_err(Into::into)
}
/// Run the register allocator.
pub fn regalloc(&mut self, isa: &TargetIsa) -> CtonResult {
self.ensure_domtree();
self.regalloc
.run(isa, &mut self.func, &self.cfg, &self.domtree)
}
/// Insert prologue and epilogues after computing the stack frame layout.
pub fn prologue_epilogue(&mut self, isa: &TargetIsa) -> CtonResult {
isa.prologue_epilogue(&mut self.func)?;
self.verify_if(isa)
}
/// Run the branch relaxation pass and return the final code size.
pub fn relax_branches(&mut self, isa: &TargetIsa) -> Result<CodeOffset, CtonError> {
let code_size = relax_branches(&mut self.func, isa)?;
self.verify_if(isa)?;
Ok(code_size)
}
}