* Rewrite interpreter generically This change re-implements the Cranelift interpreter to use generic values; this makes it possible to do abstract interpretation of Cranelift instructions. In doing so, the interpretation state is extracted from the `Interpreter` structure and is accessed via a `State` trait; this makes it possible to not only more clearly observe the interpreter's state but also to interpret using a dummy state (e.g. `ImmutableRegisterState`). This addition made it possible to implement more of the Cranelift instructions (~70%, ignoring the x86-specific instructions). * Replace macros with closures
452 lines
18 KiB
Rust
452 lines
18 KiB
Rust
//! Provides functionality for compiling and running CLIF IR for `run` tests.
|
|
use core::{mem, ptr};
|
|
use cranelift_codegen::binemit::{NullRelocSink, NullStackMapSink, NullTrapSink};
|
|
use cranelift_codegen::data_value::DataValue;
|
|
use cranelift_codegen::ir::immediates::{Ieee32, Ieee64};
|
|
use cranelift_codegen::ir::{condcodes::IntCC, Function, InstBuilder, Signature, Type};
|
|
use cranelift_codegen::isa::TargetIsa;
|
|
use cranelift_codegen::{ir, settings, CodegenError, Context};
|
|
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
|
|
use cranelift_native::builder as host_isa_builder;
|
|
use log::trace;
|
|
use memmap::{Mmap, MmapMut};
|
|
use std::cmp::max;
|
|
use std::collections::HashMap;
|
|
use thiserror::Error;
|
|
|
|
/// Compile a single function.
|
|
///
|
|
/// Several Cranelift functions need the ability to run Cranelift IR (e.g. `test_run`); this
|
|
/// [SingleFunctionCompiler] provides a way for compiling Cranelift [Function]s to
|
|
/// `CompiledFunction`s and subsequently calling them through the use of a `Trampoline`. As its
|
|
/// name indicates, this compiler is limited: any functionality that requires knowledge of things
|
|
/// outside the [Function] will likely not work (e.g. global values, calls). For an example of this
|
|
/// "outside-of-function" functionality, see `cranelift_simplejit::backend::SimpleJITBackend`.
|
|
///
|
|
/// ```
|
|
/// use cranelift_filetests::SingleFunctionCompiler;
|
|
/// use cranelift_reader::parse_functions;
|
|
///
|
|
/// let code = "test run \n function %add(i32, i32) -> i32 { block0(v0:i32, v1:i32): v2 = iadd v0, v1 return v2 }".into();
|
|
/// let func = parse_functions(code).unwrap().into_iter().nth(0).unwrap();
|
|
/// let mut compiler = SingleFunctionCompiler::with_default_host_isa();
|
|
/// let compiled_func = compiler.compile(func).unwrap();
|
|
/// println!("Address of compiled function: {:p}", compiled_func.as_ptr());
|
|
/// ```
|
|
pub struct SingleFunctionCompiler {
|
|
isa: Box<dyn TargetIsa>,
|
|
trampolines: HashMap<Signature, Trampoline>,
|
|
}
|
|
|
|
impl SingleFunctionCompiler {
|
|
/// Build a [SingleFunctionCompiler] from a [TargetIsa]. For functions to be runnable on the
|
|
/// host machine, this [TargetIsa] must match the host machine's ISA (see
|
|
/// [SingleFunctionCompiler::with_host_isa]).
|
|
pub fn new(isa: Box<dyn TargetIsa>) -> Self {
|
|
let trampolines = HashMap::new();
|
|
Self { isa, trampolines }
|
|
}
|
|
|
|
/// Build a [SingleFunctionCompiler] using the host machine's ISA and the passed flags.
|
|
pub fn with_host_isa(flags: settings::Flags) -> Self {
|
|
let builder = host_isa_builder().expect("Unable to build a TargetIsa for the current host");
|
|
let isa = builder.finish(flags);
|
|
Self::new(isa)
|
|
}
|
|
|
|
/// Build a [SingleFunctionCompiler] using the host machine's ISA and the default flags for this
|
|
/// ISA.
|
|
pub fn with_default_host_isa() -> Self {
|
|
let flags = settings::Flags::new(settings::builder());
|
|
Self::with_host_isa(flags)
|
|
}
|
|
|
|
/// Compile the passed [Function] to a `CompiledFunction`. This function will:
|
|
/// - check that the default ISA calling convention is used (to ensure it can be called)
|
|
/// - compile the [Function]
|
|
/// - compile a `Trampoline` for the [Function]'s signature (or used a cached `Trampoline`;
|
|
/// this makes it possible to call functions when the signature is not known until runtime.
|
|
pub fn compile(&mut self, function: Function) -> Result<CompiledFunction, CompilationError> {
|
|
let signature = function.signature.clone();
|
|
if signature.call_conv != self.isa.default_call_conv() {
|
|
return Err(CompilationError::InvalidTargetIsa);
|
|
}
|
|
|
|
// Compile the function itself.
|
|
let code_page = compile(function, self.isa.as_ref())?;
|
|
|
|
// Compile the trampoline to call it, if necessary (it may be cached).
|
|
let isa = self.isa.as_ref();
|
|
let trampoline = self
|
|
.trampolines
|
|
.entry(signature.clone())
|
|
.or_insert_with(|| {
|
|
let ir = make_trampoline(&signature, isa);
|
|
let code = compile(ir, isa).expect("failed to compile trampoline");
|
|
Trampoline::new(code)
|
|
});
|
|
|
|
Ok(CompiledFunction::new(code_page, signature, trampoline))
|
|
}
|
|
}
|
|
|
|
#[derive(Error, Debug)]
|
|
pub enum CompilationError {
|
|
#[error("Cross-compilation not currently supported; use the host's default calling convention \
|
|
or remove the specified calling convention in the function signature to use the host's default.")]
|
|
InvalidTargetIsa,
|
|
#[error("Cranelift codegen error")]
|
|
CodegenError(#[from] CodegenError),
|
|
#[error("Memory mapping error")]
|
|
IoError(#[from] std::io::Error),
|
|
}
|
|
|
|
/// Contains the compiled code to move memory-allocated [DataValue]s to the correct location (e.g.
|
|
/// register, stack) dictated by the calling convention before calling a [CompiledFunction]. Without
|
|
/// this, it would be quite difficult to correctly place [DataValue]s since both the calling
|
|
/// convention and function signature are not known until runtime. See [make_trampoline] for the
|
|
/// Cranelift IR used to build this.
|
|
pub struct Trampoline {
|
|
page: Mmap,
|
|
}
|
|
|
|
impl Trampoline {
|
|
/// Build a new [Trampoline].
|
|
pub fn new(page: Mmap) -> Self {
|
|
Self { page }
|
|
}
|
|
|
|
/// Return a pointer to the compiled code.
|
|
fn as_ptr(&self) -> *const u8 {
|
|
self.page.as_ptr()
|
|
}
|
|
}
|
|
|
|
/// Container for the compiled code of a [Function]. This wrapper allows users to call the compiled
|
|
/// function through the use of a [Trampoline].
|
|
///
|
|
/// ```
|
|
/// use cranelift_filetests::SingleFunctionCompiler;
|
|
/// use cranelift_reader::parse_functions;
|
|
/// use cranelift_codegen::data_value::DataValue;
|
|
///
|
|
/// let code = "test run \n function %add(i32, i32) -> i32 { block0(v0:i32, v1:i32): v2 = iadd v0, v1 return v2 }".into();
|
|
/// let func = parse_functions(code).unwrap().into_iter().nth(0).unwrap();
|
|
/// let mut compiler = SingleFunctionCompiler::with_default_host_isa();
|
|
/// let compiled_func = compiler.compile(func).unwrap();
|
|
///
|
|
/// let returned = compiled_func.call(&vec![DataValue::I32(2), DataValue::I32(40)]);
|
|
/// assert_eq!(vec![DataValue::I32(42)], returned);
|
|
/// ```
|
|
pub struct CompiledFunction<'a> {
|
|
page: Mmap,
|
|
signature: Signature,
|
|
trampoline: &'a Trampoline,
|
|
}
|
|
|
|
impl<'a> CompiledFunction<'a> {
|
|
/// Build a new [CompiledFunction].
|
|
pub fn new(page: Mmap, signature: Signature, trampoline: &'a Trampoline) -> Self {
|
|
Self {
|
|
page,
|
|
signature,
|
|
trampoline,
|
|
}
|
|
}
|
|
|
|
/// Return a pointer to the compiled code.
|
|
pub fn as_ptr(&self) -> *const u8 {
|
|
self.page.as_ptr()
|
|
}
|
|
|
|
/// Call the [CompiledFunction], passing in [DataValue]s using a compiled [Trampoline].
|
|
pub fn call(&self, arguments: &[DataValue]) -> Vec<DataValue> {
|
|
let mut values = UnboxedValues::make_arguments(arguments, &self.signature);
|
|
let arguments_address = values.as_mut_ptr();
|
|
let function_address = self.as_ptr();
|
|
|
|
let callable_trampoline: fn(*const u8, *mut u128) -> () =
|
|
unsafe { mem::transmute(self.trampoline.as_ptr()) };
|
|
callable_trampoline(function_address, arguments_address);
|
|
|
|
values.collect_returns(&self.signature)
|
|
}
|
|
}
|
|
|
|
/// A container for laying out the [ValueData]s in memory in a way that the [Trampoline] can
|
|
/// understand.
|
|
struct UnboxedValues(Vec<u128>);
|
|
|
|
impl UnboxedValues {
|
|
/// The size in bytes of each slot location in the allocated [DataValue]s. Though [DataValue]s
|
|
/// could be smaller than 16 bytes (e.g. `I16`), this simplifies the creation of the [DataValue]
|
|
/// array and could be used to align the slots to the largest used [DataValue] (i.e. 128-bit
|
|
/// vectors).
|
|
const SLOT_SIZE: usize = 16;
|
|
|
|
/// Build the arguments vector for passing the [DataValue]s into the [Trampoline]. The size of
|
|
/// `u128` used here must match [Trampoline::SLOT_SIZE].
|
|
pub fn make_arguments(arguments: &[DataValue], signature: &ir::Signature) -> Self {
|
|
assert_eq!(arguments.len(), signature.params.len());
|
|
let mut values_vec = vec![0; max(signature.params.len(), signature.returns.len())];
|
|
|
|
// Store the argument values into `values_vec`.
|
|
for ((arg, slot), param) in arguments.iter().zip(&mut values_vec).zip(&signature.params) {
|
|
assert!(
|
|
arg.ty() == param.value_type || arg.is_vector(),
|
|
"argument type mismatch: {} != {}",
|
|
arg.ty(),
|
|
param.value_type
|
|
);
|
|
unsafe {
|
|
Self::write_value_to(arg, slot);
|
|
}
|
|
}
|
|
|
|
Self(values_vec)
|
|
}
|
|
|
|
/// Return a pointer to the underlying memory for passing to the trampoline.
|
|
pub fn as_mut_ptr(&mut self) -> *mut u128 {
|
|
self.0.as_mut_ptr()
|
|
}
|
|
|
|
/// Collect the returned [DataValue]s into a [Vec]. The size of `u128` used here must match
|
|
/// [Trampoline::SLOT_SIZE].
|
|
pub fn collect_returns(&self, signature: &ir::Signature) -> Vec<DataValue> {
|
|
assert!(self.0.len() >= signature.returns.len());
|
|
let mut returns = Vec::with_capacity(signature.returns.len());
|
|
|
|
// Extract the returned values from this vector.
|
|
for (slot, param) in self.0.iter().zip(&signature.returns) {
|
|
let value = unsafe { Self::read_value_from(slot, param.value_type) };
|
|
returns.push(value);
|
|
}
|
|
|
|
returns
|
|
}
|
|
|
|
/// Write a [DataValue] to a memory location.
|
|
unsafe fn write_value_to(v: &DataValue, p: *mut u128) {
|
|
match v {
|
|
DataValue::B(b) => ptr::write(p as *mut bool, *b),
|
|
DataValue::I8(i) => ptr::write(p as *mut i8, *i),
|
|
DataValue::I16(i) => ptr::write(p as *mut i16, *i),
|
|
DataValue::I32(i) => ptr::write(p as *mut i32, *i),
|
|
DataValue::I64(i) => ptr::write(p as *mut i64, *i),
|
|
DataValue::F32(f) => ptr::write(p as *mut Ieee32, *f),
|
|
DataValue::F64(f) => ptr::write(p as *mut Ieee64, *f),
|
|
DataValue::V128(b) => ptr::write(p as *mut [u8; 16], *b),
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
/// Read a [DataValue] from a memory location using a given [Type].
|
|
unsafe fn read_value_from(p: *const u128, ty: Type) -> DataValue {
|
|
match ty {
|
|
ir::types::I8 => DataValue::I8(ptr::read(p as *const i8)),
|
|
ir::types::I16 => DataValue::I16(ptr::read(p as *const i16)),
|
|
ir::types::I32 => DataValue::I32(ptr::read(p as *const i32)),
|
|
ir::types::I64 => DataValue::I64(ptr::read(p as *const i64)),
|
|
ir::types::F32 => DataValue::F32(ptr::read(p as *const Ieee32)),
|
|
ir::types::F64 => DataValue::F64(ptr::read(p as *const Ieee64)),
|
|
_ if ty.is_bool() => DataValue::B(ptr::read(p as *const bool)),
|
|
_ if ty.is_vector() && ty.bytes() == 16 => {
|
|
DataValue::V128(ptr::read(p as *const [u8; 16]))
|
|
}
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compile a [Function] to its executable bytes in memory.
|
|
///
|
|
/// This currently returns a [Mmap], a type from an external crate, so we wrap this up before
|
|
/// exposing it in public APIs.
|
|
fn compile(function: Function, isa: &dyn TargetIsa) -> Result<Mmap, CompilationError> {
|
|
// Set up the context.
|
|
let mut context = Context::new();
|
|
context.func = function;
|
|
|
|
// Compile and encode the result to machine code.
|
|
let relocs = &mut NullRelocSink {};
|
|
let traps = &mut NullTrapSink {};
|
|
let stack_maps = &mut NullStackMapSink {};
|
|
let code_info = context.compile(isa)?;
|
|
let mut code_page = MmapMut::map_anon(code_info.total_size as usize)?;
|
|
|
|
unsafe {
|
|
context.emit_to_memory(isa, code_page.as_mut_ptr(), relocs, traps, stack_maps);
|
|
};
|
|
|
|
let code_page = code_page.make_exec()?;
|
|
trace!(
|
|
"Compiled function {} with signature {} at: {:p}",
|
|
context.func.name,
|
|
context.func.signature,
|
|
code_page.as_ptr()
|
|
);
|
|
|
|
Ok(code_page)
|
|
}
|
|
|
|
/// Build the Cranelift IR for moving the memory-allocated [DataValue]s to their correct location
|
|
/// (e.g. register, stack) prior to calling a [CompiledFunction]. The [Function] returned by
|
|
/// [make_trampoline] is compiled to a [Trampoline]. Note that this uses the [TargetIsa]'s default
|
|
/// calling convention so we must also check that the [CompiledFunction] has the same calling
|
|
/// convention (see [SingleFunctionCompiler::compile]).
|
|
fn make_trampoline(signature: &ir::Signature, isa: &dyn TargetIsa) -> Function {
|
|
// Create the trampoline signature: (callee_address: pointer, values_vec: pointer) -> ()
|
|
let pointer_type = isa.pointer_type();
|
|
let mut wrapper_sig = ir::Signature::new(isa.frontend_config().default_call_conv);
|
|
wrapper_sig.params.push(ir::AbiParam::new(pointer_type)); // Add the `callee_address` parameter.
|
|
wrapper_sig.params.push(ir::AbiParam::new(pointer_type)); // Add the `values_vec` parameter.
|
|
|
|
let mut func = ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wrapper_sig);
|
|
|
|
// The trampoline has a single block filled with loads, one call to callee_address, and some loads.
|
|
let mut builder_context = FunctionBuilderContext::new();
|
|
let mut builder = FunctionBuilder::new(&mut func, &mut builder_context);
|
|
let block0 = builder.create_block();
|
|
builder.append_block_params_for_function_params(block0);
|
|
builder.switch_to_block(block0);
|
|
builder.seal_block(block0);
|
|
|
|
// Extract the incoming SSA values.
|
|
let (callee_value, values_vec_ptr_val) = {
|
|
let params = builder.func.dfg.block_params(block0);
|
|
(params[0], params[1])
|
|
};
|
|
|
|
// Load the argument values out of `values_vec`.
|
|
let callee_args = signature
|
|
.params
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, param)| {
|
|
// Calculate the type to load from memory, using integers for booleans (no encodings).
|
|
let ty = if param.value_type.is_bool() {
|
|
Type::int(max(param.value_type.bits(), 8)).expect(
|
|
"to be able to convert any boolean type to its equal-width integer type",
|
|
)
|
|
} else {
|
|
param.value_type
|
|
};
|
|
// Load the value.
|
|
let loaded = builder.ins().load(
|
|
ty,
|
|
ir::MemFlags::trusted(),
|
|
values_vec_ptr_val,
|
|
(i * UnboxedValues::SLOT_SIZE) as i32,
|
|
);
|
|
// For booleans, we want to type-convert the loaded integer into a boolean and ensure
|
|
// that we are using the architecture's canonical boolean representation (presumably
|
|
// comparison will emit this).
|
|
if param.value_type.is_bool() {
|
|
builder.ins().icmp_imm(IntCC::NotEqual, loaded, 0)
|
|
} else {
|
|
loaded
|
|
}
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// Call the passed function.
|
|
let new_sig = builder.import_signature(signature.clone());
|
|
let call = builder
|
|
.ins()
|
|
.call_indirect(new_sig, callee_value, &callee_args);
|
|
|
|
// Store the return values into `values_vec`.
|
|
let results = builder.func.dfg.inst_results(call).to_vec();
|
|
for ((i, value), param) in results.iter().enumerate().zip(&signature.returns) {
|
|
// Before storing return values, we convert booleans to their integer representation.
|
|
let value = if param.value_type.is_bool() {
|
|
let ty = Type::int(max(param.value_type.bits(), 8))
|
|
.expect("to be able to convert any boolean type to its equal-width integer type");
|
|
builder.ins().bint(ty, *value)
|
|
} else {
|
|
*value
|
|
};
|
|
// Store the value.
|
|
builder.ins().store(
|
|
ir::MemFlags::trusted(),
|
|
value,
|
|
values_vec_ptr_val,
|
|
(i * UnboxedValues::SLOT_SIZE) as i32,
|
|
);
|
|
}
|
|
|
|
builder.ins().return_(&[]);
|
|
builder.finalize();
|
|
|
|
func
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
use cranelift_reader::{parse_functions, parse_test, ParseOptions};
|
|
|
|
fn parse(code: &str) -> Function {
|
|
parse_functions(code).unwrap().into_iter().nth(0).unwrap()
|
|
}
|
|
|
|
#[test]
|
|
fn nop() {
|
|
let code = String::from(
|
|
"
|
|
test run
|
|
function %test() -> b8 {
|
|
block0:
|
|
nop
|
|
v1 = bconst.b8 true
|
|
return v1
|
|
}",
|
|
);
|
|
|
|
// extract function
|
|
let test_file = parse_test(code.as_str(), ParseOptions::default()).unwrap();
|
|
assert_eq!(1, test_file.functions.len());
|
|
let function = test_file.functions[0].0.clone();
|
|
|
|
// execute function
|
|
let mut compiler = SingleFunctionCompiler::with_default_host_isa();
|
|
let compiled_function = compiler.compile(function).unwrap();
|
|
let returned = compiled_function.call(&[]);
|
|
assert_eq!(returned, vec![DataValue::B(true)])
|
|
}
|
|
|
|
#[test]
|
|
fn trampolines() {
|
|
let function = parse(
|
|
"
|
|
function %test(f32, i8, i64x2, b1) -> f32x4, b64 {
|
|
block0(v0: f32, v1: i8, v2: i64x2, v3: b1):
|
|
v4 = vconst.f32x4 [0x0.1 0x0.2 0x0.3 0x0.4]
|
|
v5 = bconst.b64 true
|
|
return v4, v5
|
|
}",
|
|
);
|
|
|
|
let compiler = SingleFunctionCompiler::with_default_host_isa();
|
|
let trampoline = make_trampoline(&function.signature, compiler.isa.as_ref());
|
|
assert!(format!("{}", trampoline).ends_with(
|
|
"sig0 = (f32, i8, i64x2, b1) -> f32x4, b64 fast
|
|
|
|
block0(v0: i64, v1: i64):
|
|
v2 = load.f32 notrap aligned v1
|
|
v3 = load.i8 notrap aligned v1+16
|
|
v4 = load.i64x2 notrap aligned v1+32
|
|
v5 = load.i8 notrap aligned v1+48
|
|
v6 = icmp_imm ne v5, 0
|
|
v7, v8 = call_indirect sig0, v0(v2, v3, v4, v6)
|
|
store notrap aligned v7, v1
|
|
v9 = bint.i64 v8
|
|
store notrap aligned v9, v1+16
|
|
return
|
|
}
|
|
"
|
|
));
|
|
}
|
|
}
|