It's not currently used. If we do need such information, it would be better to compute it on demand.
1598 lines
52 KiB
Rust
1598 lines
52 KiB
Rust
//! A verifier for ensuring that functions are well formed.
|
|
//! It verifies:
|
|
//!
|
|
//! EBB integrity
|
|
//!
|
|
//! - All instructions reached from the `ebb_insts` iterator must belong to
|
|
//! the EBB as reported by `inst_ebb()`.
|
|
//! - Every EBB must end in a terminator instruction, and no other instruction
|
|
//! can be a terminator.
|
|
//! - Every value in the `ebb_params` iterator belongs to the EBB as reported by `value_ebb`.
|
|
//!
|
|
//! Instruction integrity
|
|
//!
|
|
//! - The instruction format must match the opcode.
|
|
//! - All result values must be created for multi-valued instructions.
|
|
//! - All referenced entities must exist. (Values, EBBs, stack slots, ...)
|
|
//! - Instructions must not reference (eg. branch to) the entry block.
|
|
//!
|
|
//! SSA form
|
|
//!
|
|
//! - Values must be defined by an instruction that exists and that is inserted in
|
|
//! an EBB, or be an argument of an existing EBB.
|
|
//! - Values used by an instruction must dominate the instruction.
|
|
//!
|
|
//! Control flow graph and dominator tree integrity:
|
|
//!
|
|
//! - All predecessors in the CFG must be branches to the EBB.
|
|
//! - All branches to an EBB must be present in the CFG.
|
|
//! - A recomputed dominator tree is identical to the existing one.
|
|
//!
|
|
//! Type checking
|
|
//!
|
|
//! - Compare input and output values against the opcode's type constraints.
|
|
//! For polymorphic opcodes, determine the controlling type variable first.
|
|
//! - Branches and jumps must pass arguments to destination EBBs that match the
|
|
//! expected types exactly. The number of arguments must match.
|
|
//! - All EBBs in a jump table must take no arguments.
|
|
//! - Function calls are type checked against their signature.
|
|
//! - The entry block must take arguments that match the signature of the current
|
|
//! function.
|
|
//! - All return instructions must have return value operands matching the current
|
|
//! function signature.
|
|
//!
|
|
//! Global values
|
|
//!
|
|
//! - Detect cycles in deref(base) declarations.
|
|
//! - Detect use of 'vmctx' global value when no corresponding parameter is defined.
|
|
//!
|
|
//! TODO:
|
|
//! Ad hoc checking
|
|
//!
|
|
//! - Stack slot loads and stores must be in-bounds.
|
|
//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
|
|
//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
|
|
//! range for their polymorphic type.
|
|
//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
|
|
//! of arguments must match the destination type, and the lane indexes must be in range.
|
|
|
|
use self::flags::verify_flags;
|
|
use dbg::DisplayList;
|
|
use dominator_tree::DominatorTree;
|
|
use entity::SparseSet;
|
|
use flowgraph::{BasicBlock, ControlFlowGraph};
|
|
use ir;
|
|
use ir::entities::AnyEntity;
|
|
use ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint};
|
|
use ir::{
|
|
types, ArgumentLoc, Ebb, FuncRef, Function, GlobalValue, Inst, JumpTable, Opcode, SigRef,
|
|
StackSlot, StackSlotKind, Type, Value, ValueDef, ValueList, ValueLoc,
|
|
};
|
|
use isa::TargetIsa;
|
|
use iterators::IteratorExtras;
|
|
use settings::{Flags, FlagsOrIsa};
|
|
use std::cmp::Ordering;
|
|
use std::collections::BTreeSet;
|
|
use std::fmt::{self, Display, Formatter, Write};
|
|
use std::string::String;
|
|
use std::vec::Vec;
|
|
use timing;
|
|
|
|
pub use self::cssa::verify_cssa;
|
|
pub use self::liveness::verify_liveness;
|
|
pub use self::locations::verify_locations;
|
|
|
|
/// Report an error.
|
|
///
|
|
/// The first argument must be a `&mut VerifierErrors` reference, and the following
|
|
/// argument defines the location of the error and must implement `Into<AnyEntity>`.
|
|
/// Finally, subsequent arguments will be formatted using `format!()` and set
|
|
/// as the error message.
|
|
macro_rules! report {
|
|
( $errors: expr, $loc: expr, $msg: tt ) => {
|
|
$errors.0.push(::verifier::VerifierError {
|
|
location: $loc.into(),
|
|
message: String::from($msg),
|
|
})
|
|
};
|
|
|
|
( $errors: expr, $loc: expr, $fmt: tt, $( $arg: expr ),+ ) => {
|
|
$errors.0.push(::verifier::VerifierError {
|
|
location: $loc.into(),
|
|
message: format!( $fmt, $( $arg ),+ ),
|
|
})
|
|
};
|
|
}
|
|
|
|
/// Diagnose a fatal error, and return `Err`.
|
|
macro_rules! fatal {
|
|
( $( $arg: expr ),+ ) => ({
|
|
report!( $( $arg ),+ );
|
|
Err(())
|
|
});
|
|
}
|
|
|
|
/// Diagnose a non-fatal error, and return `Ok`.
|
|
macro_rules! nonfatal {
|
|
( $( $arg: expr ),+ ) => ({
|
|
report!( $( $arg ),+ );
|
|
Ok(())
|
|
});
|
|
}
|
|
|
|
/// Shorthand syntax for calling functions of the form
|
|
/// `verify_foo(a, b, &mut VerifierErrors) -> VerifierStepResult<T>`
|
|
/// as if they had the form `verify_foo(a, b) -> VerifierResult<T>`.
|
|
///
|
|
/// This syntax also ensures that no errors whatsoever were reported,
|
|
/// even if they were not fatal.
|
|
///
|
|
/// # Example
|
|
/// ```rust,ignore
|
|
/// verify!(verify_context, func, cfg, domtree, fisa)
|
|
///
|
|
/// // ... is equivalent to...
|
|
///
|
|
/// let mut errors = VerifierErrors::new();
|
|
/// let result = verify_context(func, cfg, domtree, fisa, &mut errors);
|
|
///
|
|
/// if errors.is_empty() {
|
|
/// Ok(result.unwrap())
|
|
/// } else {
|
|
/// Err(errors)
|
|
/// }
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! verify {
|
|
( $verifier: expr; $fun: ident $(, $arg: expr )* ) => ({
|
|
let mut errors = $crate::verifier::VerifierErrors::default();
|
|
let result = $verifier.$fun( $( $arg, )* &mut errors);
|
|
|
|
if errors.is_empty() {
|
|
Ok(result.unwrap())
|
|
} else {
|
|
Err(errors)
|
|
}
|
|
});
|
|
|
|
( $fun: path, $(, $arg: expr )* ) => ({
|
|
let mut errors = $crate::verifier::VerifierErrors::default();
|
|
let result = $fun( $( $arg, )* &mut errors);
|
|
|
|
if errors.is_empty() {
|
|
Ok(result.unwrap())
|
|
} else {
|
|
Err(errors)
|
|
}
|
|
});
|
|
}
|
|
|
|
mod cssa;
|
|
mod flags;
|
|
mod liveness;
|
|
mod locations;
|
|
|
|
/// A verifier error.
|
|
#[derive(Fail, Debug, PartialEq, Eq)]
|
|
pub struct VerifierError {
|
|
/// The entity causing the verifier error.
|
|
pub location: AnyEntity,
|
|
/// The error message.
|
|
pub message: String,
|
|
}
|
|
|
|
impl Display for VerifierError {
|
|
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
|
write!(f, "{}: {}", self.location, self.message)
|
|
}
|
|
}
|
|
|
|
/// Result of a step in the verification process.
|
|
///
|
|
/// Functions that return `VerifierStepResult<()>` should also take a
|
|
/// mutable reference to `VerifierErrors` as argument in order to report
|
|
/// errors.
|
|
///
|
|
/// Here, `Ok` represents a step that **did not lead to a fatal error**,
|
|
/// meaning that the verification process may continue. However, other (non-fatal)
|
|
/// errors might have been reported through the previously mentioned `VerifierErrors`
|
|
/// argument.
|
|
pub type VerifierStepResult<T> = Result<T, ()>;
|
|
|
|
/// Result of a verification operation.
|
|
///
|
|
/// Unlike `VerifierStepResult<()>` which may be `Ok` while still having reported
|
|
/// errors, this type always returns `Err` if an error (fatal or not) was reported.
|
|
///
|
|
/// Typically, this error will be constructed by using `verify!` on a function
|
|
/// that returns `VerifierStepResult<T>`.
|
|
pub type VerifierResult<T> = Result<T, VerifierErrors>;
|
|
|
|
/// List of verifier errors.
|
|
#[derive(Fail, Debug, Default, PartialEq, Eq)]
|
|
pub struct VerifierErrors(pub Vec<VerifierError>);
|
|
|
|
impl VerifierErrors {
|
|
/// Return a new `VerifierErrors` struct.
|
|
#[inline]
|
|
pub fn new() -> Self {
|
|
VerifierErrors(Vec::new())
|
|
}
|
|
|
|
/// Return whether no errors were reported.
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.0.is_empty()
|
|
}
|
|
|
|
/// Return whether one or more errors were reported.
|
|
#[inline]
|
|
pub fn has_error(&self) -> bool {
|
|
!self.0.is_empty()
|
|
}
|
|
|
|
/// Return a `VerifierStepResult` that is fatal if at least one error was reported,
|
|
/// and non-fatal otherwise.
|
|
#[inline]
|
|
pub fn as_result(&self) -> VerifierStepResult<()> {
|
|
if self.is_empty() {
|
|
Ok(())
|
|
} else {
|
|
Err(())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<Vec<VerifierError>> for VerifierErrors {
|
|
fn from(v: Vec<VerifierError>) -> Self {
|
|
VerifierErrors(v)
|
|
}
|
|
}
|
|
|
|
impl Into<Vec<VerifierError>> for VerifierErrors {
|
|
fn into(self) -> Vec<VerifierError> {
|
|
self.0
|
|
}
|
|
}
|
|
|
|
impl Into<VerifierResult<()>> for VerifierErrors {
|
|
fn into(self) -> VerifierResult<()> {
|
|
if self.is_empty() {
|
|
Ok(())
|
|
} else {
|
|
Err(self)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Display for VerifierErrors {
|
|
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
|
for err in &self.0 {
|
|
writeln!(f, "- {}", err)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Verify `func`.
|
|
pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
|
|
func: &Function,
|
|
fisa: FOI,
|
|
) -> VerifierResult<()> {
|
|
let _tt = timing::verifier();
|
|
verify!(Verifier::new(func, fisa.into()); run)
|
|
}
|
|
|
|
/// Verify `func` after checking the integrity of associated context data structures `cfg` and
|
|
/// `domtree`.
|
|
pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
|
|
func: &Function,
|
|
cfg: &ControlFlowGraph,
|
|
domtree: &DominatorTree,
|
|
fisa: FOI,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let _tt = timing::verifier();
|
|
let verifier = Verifier::new(func, fisa.into());
|
|
if cfg.is_valid() {
|
|
verifier.cfg_integrity(cfg, errors)?;
|
|
}
|
|
if domtree.is_valid() {
|
|
verifier.domtree_integrity(domtree, errors)?;
|
|
}
|
|
verifier.run(errors)
|
|
}
|
|
|
|
struct Verifier<'a> {
|
|
func: &'a Function,
|
|
expected_cfg: ControlFlowGraph,
|
|
expected_domtree: DominatorTree,
|
|
flags: &'a Flags,
|
|
isa: Option<&'a TargetIsa>,
|
|
}
|
|
|
|
impl<'a> Verifier<'a> {
|
|
pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Verifier<'a> {
|
|
let expected_cfg = ControlFlowGraph::with_function(func);
|
|
let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
|
|
Verifier {
|
|
func,
|
|
expected_cfg,
|
|
expected_domtree,
|
|
flags: fisa.flags,
|
|
isa: fisa.isa,
|
|
}
|
|
}
|
|
|
|
// Check for:
|
|
// - cycles in the global value declarations.
|
|
// - use of 'vmctx' when no special parameter declares it.
|
|
fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
let mut cycle_seen = false;
|
|
let mut seen = SparseSet::new();
|
|
|
|
'gvs: for gv in self.func.global_values.keys() {
|
|
seen.clear();
|
|
seen.insert(gv);
|
|
|
|
let mut cur = gv;
|
|
while let ir::GlobalValueData::Deref { base, .. } = self.func.global_values[cur] {
|
|
if seen.insert(base).is_some() {
|
|
if !cycle_seen {
|
|
report!(errors, gv, "deref cycle: {}", DisplayList(seen.as_slice()));
|
|
cycle_seen = true; // ensures we don't report the cycle multiple times
|
|
}
|
|
continue 'gvs;
|
|
}
|
|
|
|
cur = base;
|
|
}
|
|
|
|
if let ir::GlobalValueData::VMContext { .. } = self.func.global_values[cur] {
|
|
if self
|
|
.func
|
|
.special_param(ir::ArgumentPurpose::VMContext)
|
|
.is_none()
|
|
{
|
|
report!(errors, cur, "undeclared vmctx reference {}", cur);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Invalid global values shouldn't stop us from verifying the rest of the function
|
|
Ok(())
|
|
}
|
|
|
|
fn ebb_integrity(
|
|
&self,
|
|
ebb: Ebb,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let is_terminator = self.func.dfg[inst].opcode().is_terminator();
|
|
let is_last_inst = self.func.layout.last_inst(ebb) == Some(inst);
|
|
|
|
if is_terminator && !is_last_inst {
|
|
// Terminating instructions only occur at the end of blocks.
|
|
return fatal!(
|
|
errors,
|
|
inst,
|
|
"a terminator instruction was encountered before the end of {}",
|
|
ebb
|
|
);
|
|
}
|
|
if is_last_inst && !is_terminator {
|
|
return fatal!(
|
|
errors,
|
|
ebb,
|
|
"block does not end in a terminator instruction"
|
|
);
|
|
}
|
|
|
|
// Instructions belong to the correct ebb.
|
|
let inst_ebb = self.func.layout.inst_ebb(inst);
|
|
if inst_ebb != Some(ebb) {
|
|
return fatal!(errors, inst, "should belong to {} not {:?}", ebb, inst_ebb);
|
|
}
|
|
|
|
// Parameters belong to the correct ebb.
|
|
for &arg in self.func.dfg.ebb_params(ebb) {
|
|
match self.func.dfg.value_def(arg) {
|
|
ValueDef::Param(arg_ebb, _) => {
|
|
if ebb != arg_ebb {
|
|
return fatal!(errors, arg, "does not belong to {}", ebb);
|
|
}
|
|
}
|
|
_ => {
|
|
return fatal!(errors, arg, "expected an argument, found a result");
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn instruction_integrity(
|
|
&self,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let inst_data = &self.func.dfg[inst];
|
|
let dfg = &self.func.dfg;
|
|
|
|
// The instruction format matches the opcode
|
|
if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
|
|
return fatal!(
|
|
errors,
|
|
inst,
|
|
"instruction opcode doesn't match instruction format"
|
|
);
|
|
}
|
|
|
|
let fixed_results = inst_data.opcode().constraints().fixed_results();
|
|
// var_results is 0 if we aren't a call instruction
|
|
let var_results = dfg
|
|
.call_signature(inst)
|
|
.map_or(0, |sig| dfg.signatures[sig].returns.len());
|
|
let total_results = fixed_results + var_results;
|
|
|
|
// All result values for multi-valued instructions are created
|
|
let got_results = dfg.inst_results(inst).len();
|
|
if got_results != total_results {
|
|
return fatal!(
|
|
errors,
|
|
inst,
|
|
"expected {} result values, found {}",
|
|
total_results,
|
|
got_results
|
|
);
|
|
}
|
|
|
|
self.verify_entity_references(inst, errors)
|
|
}
|
|
|
|
fn verify_entity_references(
|
|
&self,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
use ir::instructions::InstructionData::*;
|
|
|
|
for &arg in self.func.dfg.inst_args(inst) {
|
|
self.verify_inst_arg(inst, arg, errors)?;
|
|
|
|
// All used values must be attached to something.
|
|
let original = self.func.dfg.resolve_aliases(arg);
|
|
if !self.func.dfg.value_is_attached(original) {
|
|
report!(
|
|
errors,
|
|
inst,
|
|
"argument {} -> {} is not attached",
|
|
arg,
|
|
original
|
|
);
|
|
}
|
|
}
|
|
|
|
for &res in self.func.dfg.inst_results(inst) {
|
|
self.verify_inst_result(inst, res, errors).is_ok();
|
|
}
|
|
|
|
match self.func.dfg[inst] {
|
|
MultiAry { ref args, .. } => {
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
Jump {
|
|
destination,
|
|
ref args,
|
|
..
|
|
}
|
|
| Branch {
|
|
destination,
|
|
ref args,
|
|
..
|
|
}
|
|
| BranchInt {
|
|
destination,
|
|
ref args,
|
|
..
|
|
}
|
|
| BranchFloat {
|
|
destination,
|
|
ref args,
|
|
..
|
|
}
|
|
| BranchIcmp {
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
self.verify_ebb(inst, destination, errors)?;
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
BranchTable { table, .. } => {
|
|
self.verify_jump_table(inst, table, errors)?;
|
|
}
|
|
Call {
|
|
func_ref, ref args, ..
|
|
} => {
|
|
self.verify_func_ref(inst, func_ref, errors)?;
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
CallIndirect {
|
|
sig_ref, ref args, ..
|
|
} => {
|
|
self.verify_sig_ref(inst, sig_ref, errors)?;
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
FuncAddr { func_ref, .. } => {
|
|
self.verify_func_ref(inst, func_ref, errors)?;
|
|
}
|
|
StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
|
|
self.verify_stack_slot(inst, stack_slot, errors)?;
|
|
}
|
|
UnaryGlobalValue { global_value, .. } => {
|
|
self.verify_global_value(inst, global_value, errors)?;
|
|
}
|
|
HeapAddr { heap, .. } => {
|
|
self.verify_heap(inst, heap, errors)?;
|
|
}
|
|
TableAddr { table, .. } => {
|
|
self.verify_table(inst, table, errors)?;
|
|
}
|
|
RegSpill { dst, .. } => {
|
|
self.verify_stack_slot(inst, dst, errors)?;
|
|
}
|
|
RegFill { src, .. } => {
|
|
self.verify_stack_slot(inst, src, errors)?;
|
|
}
|
|
LoadComplex { ref args, .. } => {
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
StoreComplex { ref args, .. } => {
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
|
|
// Exhaustive list so we can't forget to add new formats
|
|
Unary { .. }
|
|
| UnaryImm { .. }
|
|
| UnaryIeee32 { .. }
|
|
| UnaryIeee64 { .. }
|
|
| UnaryBool { .. }
|
|
| Binary { .. }
|
|
| BinaryImm { .. }
|
|
| Ternary { .. }
|
|
| InsertLane { .. }
|
|
| ExtractLane { .. }
|
|
| IntCompare { .. }
|
|
| IntCompareImm { .. }
|
|
| IntCond { .. }
|
|
| FloatCompare { .. }
|
|
| FloatCond { .. }
|
|
| IntSelect { .. }
|
|
| Load { .. }
|
|
| Store { .. }
|
|
| RegMove { .. }
|
|
| CopySpecial { .. }
|
|
| Trap { .. }
|
|
| CondTrap { .. }
|
|
| IntCondTrap { .. }
|
|
| FloatCondTrap { .. }
|
|
| NullAry { .. } => {}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_ebb(
|
|
&self,
|
|
inst: Inst,
|
|
e: Ebb,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.dfg.ebb_is_valid(e) || !self.func.layout.is_ebb_inserted(e) {
|
|
return fatal!(errors, inst, "invalid ebb reference {}", e);
|
|
}
|
|
if let Some(entry_block) = self.func.layout.entry_block() {
|
|
if e == entry_block {
|
|
return fatal!(errors, inst, "invalid reference to entry ebb {}", e);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_sig_ref(
|
|
&self,
|
|
inst: Inst,
|
|
s: SigRef,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.dfg.signatures.is_valid(s) {
|
|
fatal!(errors, inst, "invalid signature reference {}", s)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_func_ref(
|
|
&self,
|
|
inst: Inst,
|
|
f: FuncRef,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.dfg.ext_funcs.is_valid(f) {
|
|
nonfatal!(errors, inst, "invalid function reference {}", f)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_stack_slot(
|
|
&self,
|
|
inst: Inst,
|
|
ss: StackSlot,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.stack_slots.is_valid(ss) {
|
|
nonfatal!(errors, inst, "invalid stack slot {}", ss)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_global_value(
|
|
&self,
|
|
inst: Inst,
|
|
gv: GlobalValue,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.global_values.is_valid(gv) {
|
|
nonfatal!(errors, inst, "invalid global value {}", gv)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_heap(
|
|
&self,
|
|
inst: Inst,
|
|
heap: ir::Heap,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.heaps.is_valid(heap) {
|
|
nonfatal!(errors, inst, "invalid heap {}", heap)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_table(
|
|
&self,
|
|
inst: Inst,
|
|
table: ir::Table,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.tables.is_valid(table) {
|
|
nonfatal!(errors, inst, "invalid table {}", table)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_value_list(
|
|
&self,
|
|
inst: Inst,
|
|
l: &ValueList,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !l.is_valid(&self.func.dfg.value_lists) {
|
|
nonfatal!(errors, inst, "invalid value list reference {:?}", l)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_jump_table(
|
|
&self,
|
|
inst: Inst,
|
|
j: JumpTable,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.jump_tables.is_valid(j) {
|
|
nonfatal!(errors, inst, "invalid jump table reference {}", j)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_value(
|
|
&self,
|
|
loc_inst: Inst,
|
|
v: Value,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let dfg = &self.func.dfg;
|
|
if !dfg.value_is_valid(v) {
|
|
nonfatal!(errors, loc_inst, "invalid value reference {}", v)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_inst_arg(
|
|
&self,
|
|
loc_inst: Inst,
|
|
v: Value,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
self.verify_value(loc_inst, v, errors)?;
|
|
|
|
let dfg = &self.func.dfg;
|
|
let loc_ebb = self.func.layout.pp_ebb(loc_inst);
|
|
let is_reachable = self.expected_domtree.is_reachable(loc_ebb);
|
|
|
|
// SSA form
|
|
match dfg.value_def(v) {
|
|
ValueDef::Result(def_inst, _) => {
|
|
// Value is defined by an instruction that exists.
|
|
if !dfg.inst_is_valid(def_inst) {
|
|
return fatal!(
|
|
errors,
|
|
loc_inst,
|
|
"{} is defined by invalid instruction {}",
|
|
v,
|
|
def_inst
|
|
);
|
|
}
|
|
// Defining instruction is inserted in an EBB.
|
|
if self.func.layout.inst_ebb(def_inst) == None {
|
|
return fatal!(
|
|
errors,
|
|
loc_inst,
|
|
"{} is defined by {} which has no EBB",
|
|
v,
|
|
def_inst
|
|
);
|
|
}
|
|
// Defining instruction dominates the instruction that uses the value.
|
|
if is_reachable {
|
|
if !self
|
|
.expected_domtree
|
|
.dominates(def_inst, loc_inst, &self.func.layout)
|
|
{
|
|
return fatal!(
|
|
errors,
|
|
loc_inst,
|
|
"uses value from non-dominating {}",
|
|
def_inst
|
|
);
|
|
}
|
|
if def_inst == loc_inst {
|
|
return fatal!(
|
|
errors,
|
|
loc_inst,
|
|
"uses value from itself {}, {}",
|
|
def_inst,
|
|
loc_inst
|
|
);
|
|
}
|
|
}
|
|
}
|
|
ValueDef::Param(ebb, _) => {
|
|
// Value is defined by an existing EBB.
|
|
if !dfg.ebb_is_valid(ebb) {
|
|
return fatal!(errors, loc_inst, "{} is defined by invalid EBB {}", v, ebb);
|
|
}
|
|
// Defining EBB is inserted in the layout
|
|
if !self.func.layout.is_ebb_inserted(ebb) {
|
|
return fatal!(
|
|
errors,
|
|
loc_inst,
|
|
"{} is defined by {} which is not in the layout",
|
|
v,
|
|
ebb
|
|
);
|
|
}
|
|
// The defining EBB dominates the instruction using this value.
|
|
if is_reachable
|
|
&& !self
|
|
.expected_domtree
|
|
.dominates(ebb, loc_inst, &self.func.layout)
|
|
{
|
|
return fatal!(
|
|
errors,
|
|
loc_inst,
|
|
"uses value arg from non-dominating {}",
|
|
ebb
|
|
);
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_inst_result(
|
|
&self,
|
|
loc_inst: Inst,
|
|
v: Value,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
self.verify_value(loc_inst, v, errors)?;
|
|
|
|
match self.func.dfg.value_def(v) {
|
|
ValueDef::Result(def_inst, _) => {
|
|
if def_inst != loc_inst {
|
|
fatal!(
|
|
errors,
|
|
loc_inst,
|
|
"instruction result {} is not defined by the instruction",
|
|
v
|
|
)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
ValueDef::Param(_, _) => fatal!(
|
|
errors,
|
|
loc_inst,
|
|
"instruction result {} is not defined by the instruction",
|
|
v
|
|
),
|
|
}
|
|
}
|
|
|
|
fn domtree_integrity(
|
|
&self,
|
|
domtree: &DominatorTree,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
// We consider two `DominatorTree`s to be equal if they return the same immediate
|
|
// dominator for each EBB. Therefore the current domtree is valid if it matches the freshly
|
|
// computed one.
|
|
for ebb in self.func.layout.ebbs() {
|
|
let expected = self.expected_domtree.idom(ebb);
|
|
let got = domtree.idom(ebb);
|
|
if got != expected {
|
|
return fatal!(
|
|
errors,
|
|
ebb,
|
|
"invalid domtree, expected idom({}) = {:?}, got {:?}",
|
|
ebb,
|
|
expected,
|
|
got
|
|
);
|
|
}
|
|
}
|
|
// We also verify if the postorder defined by `DominatorTree` is sane
|
|
if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
|
|
return fatal!(
|
|
errors,
|
|
AnyEntity::Function,
|
|
"incorrect number of Ebbs in postorder traversal"
|
|
);
|
|
}
|
|
for (index, (&test_ebb, &true_ebb)) in domtree
|
|
.cfg_postorder()
|
|
.iter()
|
|
.zip(self.expected_domtree.cfg_postorder().iter())
|
|
.enumerate()
|
|
{
|
|
if test_ebb != true_ebb {
|
|
return fatal!(
|
|
errors,
|
|
test_ebb,
|
|
"invalid domtree, postorder ebb number {} should be {}, got {}",
|
|
index,
|
|
true_ebb,
|
|
test_ebb
|
|
);
|
|
}
|
|
}
|
|
// We verify rpo_cmp on pairs of adjacent ebbs in the postorder
|
|
for (&prev_ebb, &next_ebb) in domtree.cfg_postorder().iter().adjacent_pairs() {
|
|
if self
|
|
.expected_domtree
|
|
.rpo_cmp(prev_ebb, next_ebb, &self.func.layout) != Ordering::Greater
|
|
{
|
|
return fatal!(
|
|
errors,
|
|
next_ebb,
|
|
"invalid domtree, rpo_cmp does not says {} is greater than {}",
|
|
prev_ebb,
|
|
next_ebb
|
|
);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
if let Some(ebb) = self.func.layout.entry_block() {
|
|
let expected_types = &self.func.signature.params;
|
|
let ebb_param_count = self.func.dfg.num_ebb_params(ebb);
|
|
|
|
if ebb_param_count != expected_types.len() {
|
|
return fatal!(
|
|
errors,
|
|
ebb,
|
|
"entry block parameters ({}) must match function signature ({})",
|
|
ebb_param_count,
|
|
expected_types.len()
|
|
);
|
|
}
|
|
|
|
for (i, &arg) in self.func.dfg.ebb_params(ebb).iter().enumerate() {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
if arg_type != expected_types[i].value_type {
|
|
report!(
|
|
errors,
|
|
ebb,
|
|
"entry block parameter {} expected to have type {}, got {}",
|
|
i,
|
|
expected_types[i],
|
|
arg_type
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
errors.as_result()
|
|
}
|
|
|
|
fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
let inst_data = &self.func.dfg[inst];
|
|
let constraints = inst_data.opcode().constraints();
|
|
|
|
let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
|
|
// For polymorphic opcodes, determine the controlling type variable first.
|
|
let ctrl_type = self.func.dfg.ctrl_typevar(inst);
|
|
|
|
if !value_typeset.contains(ctrl_type) {
|
|
report!(
|
|
errors,
|
|
inst,
|
|
"has an invalid controlling type {}",
|
|
ctrl_type
|
|
);
|
|
}
|
|
|
|
ctrl_type
|
|
} else {
|
|
// Non-polymorphic instructions don't check the controlling type variable, so `Option`
|
|
// is unnecessary and we can just make it `VOID`.
|
|
types::VOID
|
|
};
|
|
|
|
// Typechecking instructions is never fatal
|
|
self.typecheck_results(inst, ctrl_type, errors).is_ok();
|
|
self.typecheck_fixed_args(inst, ctrl_type, errors).is_ok();
|
|
self.typecheck_variable_args(inst, errors).is_ok();
|
|
self.typecheck_return(inst, errors).is_ok();
|
|
self.typecheck_special(inst, ctrl_type, errors).is_ok();
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_results(
|
|
&self,
|
|
inst: Inst,
|
|
ctrl_type: Type,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let mut i = 0;
|
|
for &result in self.func.dfg.inst_results(inst) {
|
|
let result_type = self.func.dfg.value_type(result);
|
|
let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
|
|
if let Some(expected_type) = expected_type {
|
|
if result_type != expected_type {
|
|
report!(
|
|
errors,
|
|
inst,
|
|
"expected result {} ({}) to have type {}, found {}",
|
|
i,
|
|
result,
|
|
expected_type,
|
|
result_type
|
|
);
|
|
}
|
|
} else {
|
|
return nonfatal!(errors, inst, "has more result values than expected");
|
|
}
|
|
i += 1;
|
|
}
|
|
|
|
// There aren't any more result types left.
|
|
if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
|
|
return nonfatal!(errors, inst, "has fewer result values than expected");
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_fixed_args(
|
|
&self,
|
|
inst: Inst,
|
|
ctrl_type: Type,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let constraints = self.func.dfg[inst].opcode().constraints();
|
|
|
|
for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
match constraints.value_argument_constraint(i, ctrl_type) {
|
|
ResolvedConstraint::Bound(expected_type) => {
|
|
if arg_type != expected_type {
|
|
report!(
|
|
errors,
|
|
inst,
|
|
"arg {} ({}) has type {}, expected {}",
|
|
i,
|
|
arg,
|
|
arg_type,
|
|
expected_type
|
|
);
|
|
}
|
|
}
|
|
ResolvedConstraint::Free(type_set) => {
|
|
if !type_set.contains(arg_type) {
|
|
report!(
|
|
errors,
|
|
inst,
|
|
"arg {} ({}) with type {} failed to satisfy type set {:?}",
|
|
i,
|
|
arg,
|
|
arg_type,
|
|
type_set
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_variable_args(
|
|
&self,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
match self.func.dfg.analyze_branch(inst) {
|
|
BranchInfo::SingleDest(ebb, _) => {
|
|
let iter = self
|
|
.func
|
|
.dfg
|
|
.ebb_params(ebb)
|
|
.iter()
|
|
.map(|&v| self.func.dfg.value_type(v));
|
|
self.typecheck_variable_args_iterator(inst, iter, errors)?;
|
|
}
|
|
BranchInfo::Table(table) => {
|
|
for (_, ebb) in self.func.jump_tables[table].entries() {
|
|
let arg_count = self.func.dfg.num_ebb_params(ebb);
|
|
if arg_count != 0 {
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"takes no arguments, but had target {} with {} arguments",
|
|
ebb,
|
|
arg_count
|
|
);
|
|
}
|
|
}
|
|
}
|
|
BranchInfo::NotABranch => {}
|
|
}
|
|
|
|
match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
|
|
CallInfo::Direct(func_ref, _) => {
|
|
let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
|
|
let arg_types = self.func.dfg.signatures[sig_ref]
|
|
.params
|
|
.iter()
|
|
.map(|a| a.value_type);
|
|
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
|
|
self.check_outgoing_args(inst, sig_ref, errors)?;
|
|
}
|
|
CallInfo::Indirect(sig_ref, _) => {
|
|
let arg_types = self.func.dfg.signatures[sig_ref]
|
|
.params
|
|
.iter()
|
|
.map(|a| a.value_type);
|
|
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
|
|
self.check_outgoing_args(inst, sig_ref, errors)?;
|
|
}
|
|
CallInfo::NotACall => {}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(
|
|
&self,
|
|
inst: Inst,
|
|
iter: I,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let variable_args = self.func.dfg.inst_variable_args(inst);
|
|
let mut i = 0;
|
|
|
|
for expected_type in iter {
|
|
if i >= variable_args.len() {
|
|
// Result count mismatch handled below, we want the full argument count first though
|
|
i += 1;
|
|
continue;
|
|
}
|
|
let arg = variable_args[i];
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
if expected_type != arg_type {
|
|
report!(
|
|
errors,
|
|
inst,
|
|
"arg {} ({}) has type {}, expected {}",
|
|
i,
|
|
variable_args[i],
|
|
arg_type,
|
|
expected_type
|
|
);
|
|
}
|
|
i += 1;
|
|
}
|
|
if i != variable_args.len() {
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"mismatched argument count for `{}`: got {}, expected {}",
|
|
self.func.dfg.display_inst(inst, None),
|
|
variable_args.len(),
|
|
i
|
|
);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Check the locations assigned to outgoing call arguments.
|
|
///
|
|
/// When a signature has been legalized, all values passed as outgoing arguments on the stack
|
|
/// must be assigned to a matching `OutgoingArg` stack slot.
|
|
fn check_outgoing_args(
|
|
&self,
|
|
inst: Inst,
|
|
sig_ref: SigRef,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let sig = &self.func.dfg.signatures[sig_ref];
|
|
|
|
let args = self.func.dfg.inst_variable_args(inst);
|
|
let expected_args = &sig.params[..];
|
|
|
|
for (&arg, &abi) in args.iter().zip(expected_args) {
|
|
// Value types have already been checked by `typecheck_variable_args_iterator()`.
|
|
if let ArgumentLoc::Stack(offset) = abi.location {
|
|
let arg_loc = self.func.locations[arg];
|
|
if let ValueLoc::Stack(ss) = arg_loc {
|
|
// Argument value is assigned to a stack slot as expected.
|
|
self.verify_stack_slot(inst, ss, errors)?;
|
|
let slot = &self.func.stack_slots[ss];
|
|
if slot.kind != StackSlotKind::OutgoingArg {
|
|
return fatal!(
|
|
errors,
|
|
inst,
|
|
"Outgoing stack argument {} in wrong stack slot: {} = {}",
|
|
arg,
|
|
ss,
|
|
slot
|
|
);
|
|
}
|
|
if slot.offset != Some(offset) {
|
|
return fatal!(
|
|
errors,
|
|
inst,
|
|
"Outgoing stack argument {} should have offset {}: {} = {}",
|
|
arg,
|
|
offset,
|
|
ss,
|
|
slot
|
|
);
|
|
}
|
|
if slot.size != abi.value_type.bytes() {
|
|
return fatal!(
|
|
errors,
|
|
inst,
|
|
"Outgoing stack argument {} wrong size for {}: {} = {}",
|
|
arg,
|
|
abi.value_type,
|
|
ss,
|
|
slot
|
|
);
|
|
}
|
|
} else {
|
|
let reginfo = self.isa.map(|i| i.register_info());
|
|
return fatal!(
|
|
errors,
|
|
inst,
|
|
"Outgoing stack argument {} in wrong location: {}",
|
|
arg,
|
|
arg_loc.display(reginfo.as_ref())
|
|
);
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
if self.func.dfg[inst].opcode().is_return() {
|
|
let args = self.func.dfg.inst_variable_args(inst);
|
|
let expected_types = &self.func.signature.returns;
|
|
if args.len() != expected_types.len() {
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"arguments of return must match function signature"
|
|
);
|
|
}
|
|
for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
if arg_type != expected_type.value_type {
|
|
report!(
|
|
errors,
|
|
inst,
|
|
"arg {} ({}) has type {}, must match function signature of {}",
|
|
i,
|
|
arg,
|
|
arg_type,
|
|
expected_type
|
|
);
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// Check special-purpose type constraints that can't be expressed in the normal opcode
|
|
// constraints.
|
|
fn typecheck_special(
|
|
&self,
|
|
inst: Inst,
|
|
ctrl_type: Type,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if let ir::InstructionData::Unary { opcode, arg } = self.func.dfg[inst] {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
match opcode {
|
|
Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => {
|
|
if arg_type.lane_count() != ctrl_type.lane_count() {
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"input {} and output {} must have same number of lanes",
|
|
arg_type,
|
|
ctrl_type
|
|
);
|
|
}
|
|
if arg_type.lane_bits() >= ctrl_type.lane_bits() {
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"input {} must be smaller than output {}",
|
|
arg_type,
|
|
ctrl_type
|
|
);
|
|
}
|
|
}
|
|
Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => {
|
|
if arg_type.lane_count() != ctrl_type.lane_count() {
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"input {} and output {} must have same number of lanes",
|
|
arg_type,
|
|
ctrl_type
|
|
);
|
|
}
|
|
if arg_type.lane_bits() <= ctrl_type.lane_bits() {
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"input {} must be larger than output {}",
|
|
arg_type,
|
|
ctrl_type
|
|
);
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn cfg_integrity(
|
|
&self,
|
|
cfg: &ControlFlowGraph,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let mut expected_succs = BTreeSet::<Ebb>::new();
|
|
let mut got_succs = BTreeSet::<Ebb>::new();
|
|
let mut expected_preds = BTreeSet::<Inst>::new();
|
|
let mut got_preds = BTreeSet::<Inst>::new();
|
|
|
|
for ebb in self.func.layout.ebbs() {
|
|
expected_succs.extend(self.expected_cfg.succ_iter(ebb));
|
|
got_succs.extend(cfg.succ_iter(ebb));
|
|
|
|
let missing_succs: Vec<Ebb> = expected_succs.difference(&got_succs).cloned().collect();
|
|
if !missing_succs.is_empty() {
|
|
report!(
|
|
errors,
|
|
ebb,
|
|
"cfg lacked the following successor(s) {:?}",
|
|
missing_succs
|
|
);
|
|
continue;
|
|
}
|
|
|
|
let excess_succs: Vec<Ebb> = got_succs.difference(&expected_succs).cloned().collect();
|
|
if !excess_succs.is_empty() {
|
|
report!(
|
|
errors,
|
|
ebb,
|
|
"cfg had unexpected successor(s) {:?}",
|
|
excess_succs
|
|
);
|
|
continue;
|
|
}
|
|
|
|
expected_preds.extend(
|
|
self.expected_cfg
|
|
.pred_iter(ebb)
|
|
.map(|BasicBlock { inst, .. }| inst),
|
|
);
|
|
got_preds.extend(cfg.pred_iter(ebb).map(|BasicBlock { inst, .. }| inst));
|
|
|
|
let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
|
|
if !missing_preds.is_empty() {
|
|
report!(
|
|
errors,
|
|
ebb,
|
|
"cfg lacked the following predecessor(s) {:?}",
|
|
missing_preds
|
|
);
|
|
continue;
|
|
}
|
|
|
|
let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
|
|
if !excess_preds.is_empty() {
|
|
report!(
|
|
errors,
|
|
ebb,
|
|
"cfg had unexpected predecessor(s) {:?}",
|
|
excess_preds
|
|
);
|
|
continue;
|
|
}
|
|
|
|
expected_succs.clear();
|
|
got_succs.clear();
|
|
expected_preds.clear();
|
|
got_preds.clear();
|
|
}
|
|
errors.as_result()
|
|
}
|
|
|
|
/// If the verifier has been set up with an ISA, make sure that the recorded encoding for the
|
|
/// instruction (if any) matches how the ISA would encode it.
|
|
fn verify_encoding(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
// When the encodings table is empty, we don't require any instructions to be encoded.
|
|
//
|
|
// Once some instructions are encoded, we require all side-effecting instructions to have a
|
|
// legal encoding.
|
|
if self.func.encodings.is_empty() {
|
|
return Ok(());
|
|
}
|
|
|
|
let isa = match self.isa {
|
|
Some(isa) => isa,
|
|
None => return Ok(()),
|
|
};
|
|
|
|
let encoding = self.func.encodings[inst];
|
|
if encoding.is_legal() {
|
|
let mut encodings =
|
|
isa.legal_encodings(
|
|
&self.func,
|
|
&self.func.dfg[inst],
|
|
self.func.dfg.ctrl_typevar(inst),
|
|
).peekable();
|
|
|
|
if encodings.peek().is_none() {
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"Instruction failed to re-encode {}",
|
|
isa.encoding_info().display(encoding)
|
|
);
|
|
}
|
|
|
|
let has_valid_encoding = encodings.any(|possible_enc| encoding == possible_enc);
|
|
|
|
if !has_valid_encoding {
|
|
let mut possible_encodings = String::new();
|
|
let mut multiple_encodings = false;
|
|
|
|
for enc in isa.legal_encodings(
|
|
&self.func,
|
|
&self.func.dfg[inst],
|
|
self.func.dfg.ctrl_typevar(inst),
|
|
) {
|
|
if !possible_encodings.is_empty() {
|
|
possible_encodings.push_str(", ");
|
|
multiple_encodings = true;
|
|
}
|
|
possible_encodings
|
|
.write_fmt(format_args!("{}", isa.encoding_info().display(enc)))
|
|
.unwrap();
|
|
}
|
|
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"encoding {} should be {}{}",
|
|
isa.encoding_info().display(encoding),
|
|
if multiple_encodings { "one of: " } else { "" },
|
|
possible_encodings
|
|
);
|
|
}
|
|
return Ok(());
|
|
}
|
|
|
|
// Instruction is not encoded, so it is a ghost instruction.
|
|
// Instructions with side effects are not allowed to be ghost instructions.
|
|
let opcode = self.func.dfg[inst].opcode();
|
|
|
|
// The `fallthrough` instruction is marked as a terminator and a branch, but it is not
|
|
// required to have an encoding.
|
|
if opcode == Opcode::Fallthrough {
|
|
return Ok(());
|
|
}
|
|
|
|
// Check if this opcode must be encoded.
|
|
let mut needs_enc = None;
|
|
if opcode.is_branch() {
|
|
needs_enc = Some("Branch");
|
|
} else if opcode.is_call() {
|
|
needs_enc = Some("Call");
|
|
} else if opcode.is_return() {
|
|
needs_enc = Some("Return");
|
|
} else if opcode.can_store() {
|
|
needs_enc = Some("Store");
|
|
} else if opcode.can_trap() {
|
|
needs_enc = Some("Trapping instruction");
|
|
} else if opcode.other_side_effects() {
|
|
needs_enc = Some("Instruction with side effects");
|
|
}
|
|
|
|
if let Some(text) = needs_enc {
|
|
// This instruction needs an encoding, so generate an error.
|
|
// Provide the ISA default encoding as a hint.
|
|
match self.func.encode(inst, isa) {
|
|
Ok(enc) => {
|
|
return nonfatal!(
|
|
errors,
|
|
inst,
|
|
"{} must have an encoding (e.g., {})",
|
|
text,
|
|
isa.encoding_info().display(enc)
|
|
)
|
|
}
|
|
Err(_) => return nonfatal!(errors, inst, "{} must have an encoding", text),
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Verify the `return_at_end` property which requires that there are no internal return
|
|
/// instructions.
|
|
fn verify_return_at_end(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
for ebb in self.func.layout.ebbs() {
|
|
let inst = self.func.layout.last_inst(ebb).unwrap();
|
|
if self.func.dfg[inst].opcode().is_return() && Some(ebb) != self.func.layout.last_ebb()
|
|
{
|
|
report!(
|
|
errors,
|
|
inst,
|
|
"Internal return not allowed with return_at_end=1"
|
|
);
|
|
}
|
|
}
|
|
|
|
errors.as_result()
|
|
}
|
|
|
|
pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
self.verify_global_values(errors)?;
|
|
self.typecheck_entry_block_params(errors)?;
|
|
|
|
for ebb in self.func.layout.ebbs() {
|
|
for inst in self.func.layout.ebb_insts(ebb) {
|
|
self.ebb_integrity(ebb, inst, errors)?;
|
|
self.instruction_integrity(inst, errors)?;
|
|
self.typecheck(inst, errors)?;
|
|
self.verify_encoding(inst, errors)?;
|
|
}
|
|
}
|
|
|
|
if self.flags.return_at_end() {
|
|
self.verify_return_at_end(errors)?;
|
|
}
|
|
|
|
verify_flags(self.func, &self.expected_cfg, self.isa, errors)?;
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::{Verifier, VerifierError, VerifierErrors};
|
|
use entity::EntityList;
|
|
use ir::instructions::{InstructionData, Opcode};
|
|
use ir::Function;
|
|
use settings;
|
|
|
|
macro_rules! assert_err_with_msg {
|
|
($e:expr, $msg:expr) => {
|
|
match $e.0.get(0) {
|
|
None => panic!("Expected an error"),
|
|
Some(&VerifierError { ref message, .. }) => {
|
|
if !message.contains($msg) {
|
|
#[cfg(feature = "std")]
|
|
panic!(format!(
|
|
"'{}' did not contain the substring '{}'",
|
|
message, $msg
|
|
));
|
|
#[cfg(not(feature = "std"))]
|
|
panic!("error message did not contain the expected substring");
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
fn empty() {
|
|
let func = Function::new();
|
|
let flags = &settings::Flags::new(settings::builder());
|
|
let verifier = Verifier::new(&func, flags.into());
|
|
let mut errors = VerifierErrors::default();
|
|
|
|
assert_eq!(verifier.run(&mut errors), Ok(()));
|
|
assert!(errors.0.is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn bad_instruction_format() {
|
|
let mut func = Function::new();
|
|
let ebb0 = func.dfg.make_ebb();
|
|
func.layout.append_ebb(ebb0);
|
|
let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
|
|
opcode: Opcode::F32const,
|
|
imm: 0.into(),
|
|
});
|
|
func.layout.append_inst(nullary_with_bad_opcode, ebb0);
|
|
func.layout.append_inst(
|
|
func.dfg.make_inst(InstructionData::Jump {
|
|
opcode: Opcode::Jump,
|
|
destination: ebb0,
|
|
args: EntityList::default(),
|
|
}),
|
|
ebb0,
|
|
);
|
|
let flags = &settings::Flags::new(settings::builder());
|
|
let verifier = Verifier::new(&func, flags.into());
|
|
let mut errors = VerifierErrors::default();
|
|
|
|
let _ = verifier.run(&mut errors);
|
|
|
|
assert_err_with_msg!(errors, "instruction format");
|
|
}
|
|
}
|