Files
wasmtime/lib/codegen/src/verifier/mod.rs
Dan Gohman 6af407144c Remove Signature's argument_bytes field.
It's not currently used. If we do need such information, it would be
better to compute it on demand.
2018-08-28 13:19:59 -07:00

1598 lines
52 KiB
Rust

//! A verifier for ensuring that functions are well formed.
//! It verifies:
//!
//! EBB integrity
//!
//! - All instructions reached from the `ebb_insts` iterator must belong to
//! the EBB as reported by `inst_ebb()`.
//! - Every EBB must end in a terminator instruction, and no other instruction
//! can be a terminator.
//! - Every value in the `ebb_params` iterator belongs to the EBB as reported by `value_ebb`.
//!
//! Instruction integrity
//!
//! - The instruction format must match the opcode.
//! - All result values must be created for multi-valued instructions.
//! - All referenced entities must exist. (Values, EBBs, stack slots, ...)
//! - Instructions must not reference (eg. branch to) the entry block.
//!
//! SSA form
//!
//! - Values must be defined by an instruction that exists and that is inserted in
//! an EBB, or be an argument of an existing EBB.
//! - Values used by an instruction must dominate the instruction.
//!
//! Control flow graph and dominator tree integrity:
//!
//! - All predecessors in the CFG must be branches to the EBB.
//! - All branches to an EBB must be present in the CFG.
//! - A recomputed dominator tree is identical to the existing one.
//!
//! Type checking
//!
//! - Compare input and output values against the opcode's type constraints.
//! For polymorphic opcodes, determine the controlling type variable first.
//! - Branches and jumps must pass arguments to destination EBBs that match the
//! expected types exactly. The number of arguments must match.
//! - All EBBs in a jump table must take no arguments.
//! - Function calls are type checked against their signature.
//! - The entry block must take arguments that match the signature of the current
//! function.
//! - All return instructions must have return value operands matching the current
//! function signature.
//!
//! Global values
//!
//! - Detect cycles in deref(base) declarations.
//! - Detect use of 'vmctx' global value when no corresponding parameter is defined.
//!
//! TODO:
//! Ad hoc checking
//!
//! - Stack slot loads and stores must be in-bounds.
//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
//! range for their polymorphic type.
//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
//! of arguments must match the destination type, and the lane indexes must be in range.
use self::flags::verify_flags;
use dbg::DisplayList;
use dominator_tree::DominatorTree;
use entity::SparseSet;
use flowgraph::{BasicBlock, ControlFlowGraph};
use ir;
use ir::entities::AnyEntity;
use ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint};
use ir::{
types, ArgumentLoc, Ebb, FuncRef, Function, GlobalValue, Inst, JumpTable, Opcode, SigRef,
StackSlot, StackSlotKind, Type, Value, ValueDef, ValueList, ValueLoc,
};
use isa::TargetIsa;
use iterators::IteratorExtras;
use settings::{Flags, FlagsOrIsa};
use std::cmp::Ordering;
use std::collections::BTreeSet;
use std::fmt::{self, Display, Formatter, Write};
use std::string::String;
use std::vec::Vec;
use timing;
pub use self::cssa::verify_cssa;
pub use self::liveness::verify_liveness;
pub use self::locations::verify_locations;
/// Report an error.
///
/// The first argument must be a `&mut VerifierErrors` reference, and the following
/// argument defines the location of the error and must implement `Into<AnyEntity>`.
/// Finally, subsequent arguments will be formatted using `format!()` and set
/// as the error message.
macro_rules! report {
( $errors: expr, $loc: expr, $msg: tt ) => {
$errors.0.push(::verifier::VerifierError {
location: $loc.into(),
message: String::from($msg),
})
};
( $errors: expr, $loc: expr, $fmt: tt, $( $arg: expr ),+ ) => {
$errors.0.push(::verifier::VerifierError {
location: $loc.into(),
message: format!( $fmt, $( $arg ),+ ),
})
};
}
/// Diagnose a fatal error, and return `Err`.
macro_rules! fatal {
( $( $arg: expr ),+ ) => ({
report!( $( $arg ),+ );
Err(())
});
}
/// Diagnose a non-fatal error, and return `Ok`.
macro_rules! nonfatal {
( $( $arg: expr ),+ ) => ({
report!( $( $arg ),+ );
Ok(())
});
}
/// Shorthand syntax for calling functions of the form
/// `verify_foo(a, b, &mut VerifierErrors) -> VerifierStepResult<T>`
/// as if they had the form `verify_foo(a, b) -> VerifierResult<T>`.
///
/// This syntax also ensures that no errors whatsoever were reported,
/// even if they were not fatal.
///
/// # Example
/// ```rust,ignore
/// verify!(verify_context, func, cfg, domtree, fisa)
///
/// // ... is equivalent to...
///
/// let mut errors = VerifierErrors::new();
/// let result = verify_context(func, cfg, domtree, fisa, &mut errors);
///
/// if errors.is_empty() {
/// Ok(result.unwrap())
/// } else {
/// Err(errors)
/// }
/// ```
#[macro_export]
macro_rules! verify {
( $verifier: expr; $fun: ident $(, $arg: expr )* ) => ({
let mut errors = $crate::verifier::VerifierErrors::default();
let result = $verifier.$fun( $( $arg, )* &mut errors);
if errors.is_empty() {
Ok(result.unwrap())
} else {
Err(errors)
}
});
( $fun: path, $(, $arg: expr )* ) => ({
let mut errors = $crate::verifier::VerifierErrors::default();
let result = $fun( $( $arg, )* &mut errors);
if errors.is_empty() {
Ok(result.unwrap())
} else {
Err(errors)
}
});
}
mod cssa;
mod flags;
mod liveness;
mod locations;
/// A verifier error.
#[derive(Fail, Debug, PartialEq, Eq)]
pub struct VerifierError {
/// The entity causing the verifier error.
pub location: AnyEntity,
/// The error message.
pub message: String,
}
impl Display for VerifierError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}: {}", self.location, self.message)
}
}
/// Result of a step in the verification process.
///
/// Functions that return `VerifierStepResult<()>` should also take a
/// mutable reference to `VerifierErrors` as argument in order to report
/// errors.
///
/// Here, `Ok` represents a step that **did not lead to a fatal error**,
/// meaning that the verification process may continue. However, other (non-fatal)
/// errors might have been reported through the previously mentioned `VerifierErrors`
/// argument.
pub type VerifierStepResult<T> = Result<T, ()>;
/// Result of a verification operation.
///
/// Unlike `VerifierStepResult<()>` which may be `Ok` while still having reported
/// errors, this type always returns `Err` if an error (fatal or not) was reported.
///
/// Typically, this error will be constructed by using `verify!` on a function
/// that returns `VerifierStepResult<T>`.
pub type VerifierResult<T> = Result<T, VerifierErrors>;
/// List of verifier errors.
#[derive(Fail, Debug, Default, PartialEq, Eq)]
pub struct VerifierErrors(pub Vec<VerifierError>);
impl VerifierErrors {
/// Return a new `VerifierErrors` struct.
#[inline]
pub fn new() -> Self {
VerifierErrors(Vec::new())
}
/// Return whether no errors were reported.
#[inline]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Return whether one or more errors were reported.
#[inline]
pub fn has_error(&self) -> bool {
!self.0.is_empty()
}
/// Return a `VerifierStepResult` that is fatal if at least one error was reported,
/// and non-fatal otherwise.
#[inline]
pub fn as_result(&self) -> VerifierStepResult<()> {
if self.is_empty() {
Ok(())
} else {
Err(())
}
}
}
impl From<Vec<VerifierError>> for VerifierErrors {
fn from(v: Vec<VerifierError>) -> Self {
VerifierErrors(v)
}
}
impl Into<Vec<VerifierError>> for VerifierErrors {
fn into(self) -> Vec<VerifierError> {
self.0
}
}
impl Into<VerifierResult<()>> for VerifierErrors {
fn into(self) -> VerifierResult<()> {
if self.is_empty() {
Ok(())
} else {
Err(self)
}
}
}
impl Display for VerifierErrors {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
for err in &self.0 {
writeln!(f, "- {}", err)?;
}
Ok(())
}
}
/// Verify `func`.
pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
func: &Function,
fisa: FOI,
) -> VerifierResult<()> {
let _tt = timing::verifier();
verify!(Verifier::new(func, fisa.into()); run)
}
/// Verify `func` after checking the integrity of associated context data structures `cfg` and
/// `domtree`.
pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
func: &Function,
cfg: &ControlFlowGraph,
domtree: &DominatorTree,
fisa: FOI,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let _tt = timing::verifier();
let verifier = Verifier::new(func, fisa.into());
if cfg.is_valid() {
verifier.cfg_integrity(cfg, errors)?;
}
if domtree.is_valid() {
verifier.domtree_integrity(domtree, errors)?;
}
verifier.run(errors)
}
struct Verifier<'a> {
func: &'a Function,
expected_cfg: ControlFlowGraph,
expected_domtree: DominatorTree,
flags: &'a Flags,
isa: Option<&'a TargetIsa>,
}
impl<'a> Verifier<'a> {
pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Verifier<'a> {
let expected_cfg = ControlFlowGraph::with_function(func);
let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
Verifier {
func,
expected_cfg,
expected_domtree,
flags: fisa.flags,
isa: fisa.isa,
}
}
// Check for:
// - cycles in the global value declarations.
// - use of 'vmctx' when no special parameter declares it.
fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
let mut cycle_seen = false;
let mut seen = SparseSet::new();
'gvs: for gv in self.func.global_values.keys() {
seen.clear();
seen.insert(gv);
let mut cur = gv;
while let ir::GlobalValueData::Deref { base, .. } = self.func.global_values[cur] {
if seen.insert(base).is_some() {
if !cycle_seen {
report!(errors, gv, "deref cycle: {}", DisplayList(seen.as_slice()));
cycle_seen = true; // ensures we don't report the cycle multiple times
}
continue 'gvs;
}
cur = base;
}
if let ir::GlobalValueData::VMContext { .. } = self.func.global_values[cur] {
if self
.func
.special_param(ir::ArgumentPurpose::VMContext)
.is_none()
{
report!(errors, cur, "undeclared vmctx reference {}", cur);
}
}
}
// Invalid global values shouldn't stop us from verifying the rest of the function
Ok(())
}
fn ebb_integrity(
&self,
ebb: Ebb,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let is_terminator = self.func.dfg[inst].opcode().is_terminator();
let is_last_inst = self.func.layout.last_inst(ebb) == Some(inst);
if is_terminator && !is_last_inst {
// Terminating instructions only occur at the end of blocks.
return fatal!(
errors,
inst,
"a terminator instruction was encountered before the end of {}",
ebb
);
}
if is_last_inst && !is_terminator {
return fatal!(
errors,
ebb,
"block does not end in a terminator instruction"
);
}
// Instructions belong to the correct ebb.
let inst_ebb = self.func.layout.inst_ebb(inst);
if inst_ebb != Some(ebb) {
return fatal!(errors, inst, "should belong to {} not {:?}", ebb, inst_ebb);
}
// Parameters belong to the correct ebb.
for &arg in self.func.dfg.ebb_params(ebb) {
match self.func.dfg.value_def(arg) {
ValueDef::Param(arg_ebb, _) => {
if ebb != arg_ebb {
return fatal!(errors, arg, "does not belong to {}", ebb);
}
}
_ => {
return fatal!(errors, arg, "expected an argument, found a result");
}
}
}
Ok(())
}
fn instruction_integrity(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let inst_data = &self.func.dfg[inst];
let dfg = &self.func.dfg;
// The instruction format matches the opcode
if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
return fatal!(
errors,
inst,
"instruction opcode doesn't match instruction format"
);
}
let fixed_results = inst_data.opcode().constraints().fixed_results();
// var_results is 0 if we aren't a call instruction
let var_results = dfg
.call_signature(inst)
.map_or(0, |sig| dfg.signatures[sig].returns.len());
let total_results = fixed_results + var_results;
// All result values for multi-valued instructions are created
let got_results = dfg.inst_results(inst).len();
if got_results != total_results {
return fatal!(
errors,
inst,
"expected {} result values, found {}",
total_results,
got_results
);
}
self.verify_entity_references(inst, errors)
}
fn verify_entity_references(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
use ir::instructions::InstructionData::*;
for &arg in self.func.dfg.inst_args(inst) {
self.verify_inst_arg(inst, arg, errors)?;
// All used values must be attached to something.
let original = self.func.dfg.resolve_aliases(arg);
if !self.func.dfg.value_is_attached(original) {
report!(
errors,
inst,
"argument {} -> {} is not attached",
arg,
original
);
}
}
for &res in self.func.dfg.inst_results(inst) {
self.verify_inst_result(inst, res, errors).is_ok();
}
match self.func.dfg[inst] {
MultiAry { ref args, .. } => {
self.verify_value_list(inst, args, errors)?;
}
Jump {
destination,
ref args,
..
}
| Branch {
destination,
ref args,
..
}
| BranchInt {
destination,
ref args,
..
}
| BranchFloat {
destination,
ref args,
..
}
| BranchIcmp {
destination,
ref args,
..
} => {
self.verify_ebb(inst, destination, errors)?;
self.verify_value_list(inst, args, errors)?;
}
BranchTable { table, .. } => {
self.verify_jump_table(inst, table, errors)?;
}
Call {
func_ref, ref args, ..
} => {
self.verify_func_ref(inst, func_ref, errors)?;
self.verify_value_list(inst, args, errors)?;
}
CallIndirect {
sig_ref, ref args, ..
} => {
self.verify_sig_ref(inst, sig_ref, errors)?;
self.verify_value_list(inst, args, errors)?;
}
FuncAddr { func_ref, .. } => {
self.verify_func_ref(inst, func_ref, errors)?;
}
StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
self.verify_stack_slot(inst, stack_slot, errors)?;
}
UnaryGlobalValue { global_value, .. } => {
self.verify_global_value(inst, global_value, errors)?;
}
HeapAddr { heap, .. } => {
self.verify_heap(inst, heap, errors)?;
}
TableAddr { table, .. } => {
self.verify_table(inst, table, errors)?;
}
RegSpill { dst, .. } => {
self.verify_stack_slot(inst, dst, errors)?;
}
RegFill { src, .. } => {
self.verify_stack_slot(inst, src, errors)?;
}
LoadComplex { ref args, .. } => {
self.verify_value_list(inst, args, errors)?;
}
StoreComplex { ref args, .. } => {
self.verify_value_list(inst, args, errors)?;
}
// Exhaustive list so we can't forget to add new formats
Unary { .. }
| UnaryImm { .. }
| UnaryIeee32 { .. }
| UnaryIeee64 { .. }
| UnaryBool { .. }
| Binary { .. }
| BinaryImm { .. }
| Ternary { .. }
| InsertLane { .. }
| ExtractLane { .. }
| IntCompare { .. }
| IntCompareImm { .. }
| IntCond { .. }
| FloatCompare { .. }
| FloatCond { .. }
| IntSelect { .. }
| Load { .. }
| Store { .. }
| RegMove { .. }
| CopySpecial { .. }
| Trap { .. }
| CondTrap { .. }
| IntCondTrap { .. }
| FloatCondTrap { .. }
| NullAry { .. } => {}
}
Ok(())
}
fn verify_ebb(
&self,
inst: Inst,
e: Ebb,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dfg.ebb_is_valid(e) || !self.func.layout.is_ebb_inserted(e) {
return fatal!(errors, inst, "invalid ebb reference {}", e);
}
if let Some(entry_block) = self.func.layout.entry_block() {
if e == entry_block {
return fatal!(errors, inst, "invalid reference to entry ebb {}", e);
}
}
Ok(())
}
fn verify_sig_ref(
&self,
inst: Inst,
s: SigRef,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dfg.signatures.is_valid(s) {
fatal!(errors, inst, "invalid signature reference {}", s)
} else {
Ok(())
}
}
fn verify_func_ref(
&self,
inst: Inst,
f: FuncRef,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dfg.ext_funcs.is_valid(f) {
nonfatal!(errors, inst, "invalid function reference {}", f)
} else {
Ok(())
}
}
fn verify_stack_slot(
&self,
inst: Inst,
ss: StackSlot,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.stack_slots.is_valid(ss) {
nonfatal!(errors, inst, "invalid stack slot {}", ss)
} else {
Ok(())
}
}
fn verify_global_value(
&self,
inst: Inst,
gv: GlobalValue,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.global_values.is_valid(gv) {
nonfatal!(errors, inst, "invalid global value {}", gv)
} else {
Ok(())
}
}
fn verify_heap(
&self,
inst: Inst,
heap: ir::Heap,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.heaps.is_valid(heap) {
nonfatal!(errors, inst, "invalid heap {}", heap)
} else {
Ok(())
}
}
fn verify_table(
&self,
inst: Inst,
table: ir::Table,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.tables.is_valid(table) {
nonfatal!(errors, inst, "invalid table {}", table)
} else {
Ok(())
}
}
fn verify_value_list(
&self,
inst: Inst,
l: &ValueList,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !l.is_valid(&self.func.dfg.value_lists) {
nonfatal!(errors, inst, "invalid value list reference {:?}", l)
} else {
Ok(())
}
}
fn verify_jump_table(
&self,
inst: Inst,
j: JumpTable,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.jump_tables.is_valid(j) {
nonfatal!(errors, inst, "invalid jump table reference {}", j)
} else {
Ok(())
}
}
fn verify_value(
&self,
loc_inst: Inst,
v: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let dfg = &self.func.dfg;
if !dfg.value_is_valid(v) {
nonfatal!(errors, loc_inst, "invalid value reference {}", v)
} else {
Ok(())
}
}
fn verify_inst_arg(
&self,
loc_inst: Inst,
v: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
self.verify_value(loc_inst, v, errors)?;
let dfg = &self.func.dfg;
let loc_ebb = self.func.layout.pp_ebb(loc_inst);
let is_reachable = self.expected_domtree.is_reachable(loc_ebb);
// SSA form
match dfg.value_def(v) {
ValueDef::Result(def_inst, _) => {
// Value is defined by an instruction that exists.
if !dfg.inst_is_valid(def_inst) {
return fatal!(
errors,
loc_inst,
"{} is defined by invalid instruction {}",
v,
def_inst
);
}
// Defining instruction is inserted in an EBB.
if self.func.layout.inst_ebb(def_inst) == None {
return fatal!(
errors,
loc_inst,
"{} is defined by {} which has no EBB",
v,
def_inst
);
}
// Defining instruction dominates the instruction that uses the value.
if is_reachable {
if !self
.expected_domtree
.dominates(def_inst, loc_inst, &self.func.layout)
{
return fatal!(
errors,
loc_inst,
"uses value from non-dominating {}",
def_inst
);
}
if def_inst == loc_inst {
return fatal!(
errors,
loc_inst,
"uses value from itself {}, {}",
def_inst,
loc_inst
);
}
}
}
ValueDef::Param(ebb, _) => {
// Value is defined by an existing EBB.
if !dfg.ebb_is_valid(ebb) {
return fatal!(errors, loc_inst, "{} is defined by invalid EBB {}", v, ebb);
}
// Defining EBB is inserted in the layout
if !self.func.layout.is_ebb_inserted(ebb) {
return fatal!(
errors,
loc_inst,
"{} is defined by {} which is not in the layout",
v,
ebb
);
}
// The defining EBB dominates the instruction using this value.
if is_reachable
&& !self
.expected_domtree
.dominates(ebb, loc_inst, &self.func.layout)
{
return fatal!(
errors,
loc_inst,
"uses value arg from non-dominating {}",
ebb
);
}
}
}
Ok(())
}
fn verify_inst_result(
&self,
loc_inst: Inst,
v: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
self.verify_value(loc_inst, v, errors)?;
match self.func.dfg.value_def(v) {
ValueDef::Result(def_inst, _) => {
if def_inst != loc_inst {
fatal!(
errors,
loc_inst,
"instruction result {} is not defined by the instruction",
v
)
} else {
Ok(())
}
}
ValueDef::Param(_, _) => fatal!(
errors,
loc_inst,
"instruction result {} is not defined by the instruction",
v
),
}
}
fn domtree_integrity(
&self,
domtree: &DominatorTree,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
// We consider two `DominatorTree`s to be equal if they return the same immediate
// dominator for each EBB. Therefore the current domtree is valid if it matches the freshly
// computed one.
for ebb in self.func.layout.ebbs() {
let expected = self.expected_domtree.idom(ebb);
let got = domtree.idom(ebb);
if got != expected {
return fatal!(
errors,
ebb,
"invalid domtree, expected idom({}) = {:?}, got {:?}",
ebb,
expected,
got
);
}
}
// We also verify if the postorder defined by `DominatorTree` is sane
if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
return fatal!(
errors,
AnyEntity::Function,
"incorrect number of Ebbs in postorder traversal"
);
}
for (index, (&test_ebb, &true_ebb)) in domtree
.cfg_postorder()
.iter()
.zip(self.expected_domtree.cfg_postorder().iter())
.enumerate()
{
if test_ebb != true_ebb {
return fatal!(
errors,
test_ebb,
"invalid domtree, postorder ebb number {} should be {}, got {}",
index,
true_ebb,
test_ebb
);
}
}
// We verify rpo_cmp on pairs of adjacent ebbs in the postorder
for (&prev_ebb, &next_ebb) in domtree.cfg_postorder().iter().adjacent_pairs() {
if self
.expected_domtree
.rpo_cmp(prev_ebb, next_ebb, &self.func.layout) != Ordering::Greater
{
return fatal!(
errors,
next_ebb,
"invalid domtree, rpo_cmp does not says {} is greater than {}",
prev_ebb,
next_ebb
);
}
}
Ok(())
}
fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if let Some(ebb) = self.func.layout.entry_block() {
let expected_types = &self.func.signature.params;
let ebb_param_count = self.func.dfg.num_ebb_params(ebb);
if ebb_param_count != expected_types.len() {
return fatal!(
errors,
ebb,
"entry block parameters ({}) must match function signature ({})",
ebb_param_count,
expected_types.len()
);
}
for (i, &arg) in self.func.dfg.ebb_params(ebb).iter().enumerate() {
let arg_type = self.func.dfg.value_type(arg);
if arg_type != expected_types[i].value_type {
report!(
errors,
ebb,
"entry block parameter {} expected to have type {}, got {}",
i,
expected_types[i],
arg_type
);
}
}
}
errors.as_result()
}
fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
let inst_data = &self.func.dfg[inst];
let constraints = inst_data.opcode().constraints();
let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
// For polymorphic opcodes, determine the controlling type variable first.
let ctrl_type = self.func.dfg.ctrl_typevar(inst);
if !value_typeset.contains(ctrl_type) {
report!(
errors,
inst,
"has an invalid controlling type {}",
ctrl_type
);
}
ctrl_type
} else {
// Non-polymorphic instructions don't check the controlling type variable, so `Option`
// is unnecessary and we can just make it `VOID`.
types::VOID
};
// Typechecking instructions is never fatal
self.typecheck_results(inst, ctrl_type, errors).is_ok();
self.typecheck_fixed_args(inst, ctrl_type, errors).is_ok();
self.typecheck_variable_args(inst, errors).is_ok();
self.typecheck_return(inst, errors).is_ok();
self.typecheck_special(inst, ctrl_type, errors).is_ok();
Ok(())
}
fn typecheck_results(
&self,
inst: Inst,
ctrl_type: Type,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let mut i = 0;
for &result in self.func.dfg.inst_results(inst) {
let result_type = self.func.dfg.value_type(result);
let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
if let Some(expected_type) = expected_type {
if result_type != expected_type {
report!(
errors,
inst,
"expected result {} ({}) to have type {}, found {}",
i,
result,
expected_type,
result_type
);
}
} else {
return nonfatal!(errors, inst, "has more result values than expected");
}
i += 1;
}
// There aren't any more result types left.
if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
return nonfatal!(errors, inst, "has fewer result values than expected");
}
Ok(())
}
fn typecheck_fixed_args(
&self,
inst: Inst,
ctrl_type: Type,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let constraints = self.func.dfg[inst].opcode().constraints();
for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
let arg_type = self.func.dfg.value_type(arg);
match constraints.value_argument_constraint(i, ctrl_type) {
ResolvedConstraint::Bound(expected_type) => {
if arg_type != expected_type {
report!(
errors,
inst,
"arg {} ({}) has type {}, expected {}",
i,
arg,
arg_type,
expected_type
);
}
}
ResolvedConstraint::Free(type_set) => {
if !type_set.contains(arg_type) {
report!(
errors,
inst,
"arg {} ({}) with type {} failed to satisfy type set {:?}",
i,
arg,
arg_type,
type_set
);
}
}
}
}
Ok(())
}
fn typecheck_variable_args(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
match self.func.dfg.analyze_branch(inst) {
BranchInfo::SingleDest(ebb, _) => {
let iter = self
.func
.dfg
.ebb_params(ebb)
.iter()
.map(|&v| self.func.dfg.value_type(v));
self.typecheck_variable_args_iterator(inst, iter, errors)?;
}
BranchInfo::Table(table) => {
for (_, ebb) in self.func.jump_tables[table].entries() {
let arg_count = self.func.dfg.num_ebb_params(ebb);
if arg_count != 0 {
return nonfatal!(
errors,
inst,
"takes no arguments, but had target {} with {} arguments",
ebb,
arg_count
);
}
}
}
BranchInfo::NotABranch => {}
}
match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
CallInfo::Direct(func_ref, _) => {
let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
let arg_types = self.func.dfg.signatures[sig_ref]
.params
.iter()
.map(|a| a.value_type);
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
self.check_outgoing_args(inst, sig_ref, errors)?;
}
CallInfo::Indirect(sig_ref, _) => {
let arg_types = self.func.dfg.signatures[sig_ref]
.params
.iter()
.map(|a| a.value_type);
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
self.check_outgoing_args(inst, sig_ref, errors)?;
}
CallInfo::NotACall => {}
}
Ok(())
}
fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(
&self,
inst: Inst,
iter: I,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let variable_args = self.func.dfg.inst_variable_args(inst);
let mut i = 0;
for expected_type in iter {
if i >= variable_args.len() {
// Result count mismatch handled below, we want the full argument count first though
i += 1;
continue;
}
let arg = variable_args[i];
let arg_type = self.func.dfg.value_type(arg);
if expected_type != arg_type {
report!(
errors,
inst,
"arg {} ({}) has type {}, expected {}",
i,
variable_args[i],
arg_type,
expected_type
);
}
i += 1;
}
if i != variable_args.len() {
return nonfatal!(
errors,
inst,
"mismatched argument count for `{}`: got {}, expected {}",
self.func.dfg.display_inst(inst, None),
variable_args.len(),
i
);
}
Ok(())
}
/// Check the locations assigned to outgoing call arguments.
///
/// When a signature has been legalized, all values passed as outgoing arguments on the stack
/// must be assigned to a matching `OutgoingArg` stack slot.
fn check_outgoing_args(
&self,
inst: Inst,
sig_ref: SigRef,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let sig = &self.func.dfg.signatures[sig_ref];
let args = self.func.dfg.inst_variable_args(inst);
let expected_args = &sig.params[..];
for (&arg, &abi) in args.iter().zip(expected_args) {
// Value types have already been checked by `typecheck_variable_args_iterator()`.
if let ArgumentLoc::Stack(offset) = abi.location {
let arg_loc = self.func.locations[arg];
if let ValueLoc::Stack(ss) = arg_loc {
// Argument value is assigned to a stack slot as expected.
self.verify_stack_slot(inst, ss, errors)?;
let slot = &self.func.stack_slots[ss];
if slot.kind != StackSlotKind::OutgoingArg {
return fatal!(
errors,
inst,
"Outgoing stack argument {} in wrong stack slot: {} = {}",
arg,
ss,
slot
);
}
if slot.offset != Some(offset) {
return fatal!(
errors,
inst,
"Outgoing stack argument {} should have offset {}: {} = {}",
arg,
offset,
ss,
slot
);
}
if slot.size != abi.value_type.bytes() {
return fatal!(
errors,
inst,
"Outgoing stack argument {} wrong size for {}: {} = {}",
arg,
abi.value_type,
ss,
slot
);
}
} else {
let reginfo = self.isa.map(|i| i.register_info());
return fatal!(
errors,
inst,
"Outgoing stack argument {} in wrong location: {}",
arg,
arg_loc.display(reginfo.as_ref())
);
}
}
}
Ok(())
}
fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if self.func.dfg[inst].opcode().is_return() {
let args = self.func.dfg.inst_variable_args(inst);
let expected_types = &self.func.signature.returns;
if args.len() != expected_types.len() {
return nonfatal!(
errors,
inst,
"arguments of return must match function signature"
);
}
for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
let arg_type = self.func.dfg.value_type(arg);
if arg_type != expected_type.value_type {
report!(
errors,
inst,
"arg {} ({}) has type {}, must match function signature of {}",
i,
arg,
arg_type,
expected_type
);
}
}
}
Ok(())
}
// Check special-purpose type constraints that can't be expressed in the normal opcode
// constraints.
fn typecheck_special(
&self,
inst: Inst,
ctrl_type: Type,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if let ir::InstructionData::Unary { opcode, arg } = self.func.dfg[inst] {
let arg_type = self.func.dfg.value_type(arg);
match opcode {
Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => {
if arg_type.lane_count() != ctrl_type.lane_count() {
return nonfatal!(
errors,
inst,
"input {} and output {} must have same number of lanes",
arg_type,
ctrl_type
);
}
if arg_type.lane_bits() >= ctrl_type.lane_bits() {
return nonfatal!(
errors,
inst,
"input {} must be smaller than output {}",
arg_type,
ctrl_type
);
}
}
Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => {
if arg_type.lane_count() != ctrl_type.lane_count() {
return nonfatal!(
errors,
inst,
"input {} and output {} must have same number of lanes",
arg_type,
ctrl_type
);
}
if arg_type.lane_bits() <= ctrl_type.lane_bits() {
return nonfatal!(
errors,
inst,
"input {} must be larger than output {}",
arg_type,
ctrl_type
);
}
}
_ => {}
}
}
Ok(())
}
fn cfg_integrity(
&self,
cfg: &ControlFlowGraph,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let mut expected_succs = BTreeSet::<Ebb>::new();
let mut got_succs = BTreeSet::<Ebb>::new();
let mut expected_preds = BTreeSet::<Inst>::new();
let mut got_preds = BTreeSet::<Inst>::new();
for ebb in self.func.layout.ebbs() {
expected_succs.extend(self.expected_cfg.succ_iter(ebb));
got_succs.extend(cfg.succ_iter(ebb));
let missing_succs: Vec<Ebb> = expected_succs.difference(&got_succs).cloned().collect();
if !missing_succs.is_empty() {
report!(
errors,
ebb,
"cfg lacked the following successor(s) {:?}",
missing_succs
);
continue;
}
let excess_succs: Vec<Ebb> = got_succs.difference(&expected_succs).cloned().collect();
if !excess_succs.is_empty() {
report!(
errors,
ebb,
"cfg had unexpected successor(s) {:?}",
excess_succs
);
continue;
}
expected_preds.extend(
self.expected_cfg
.pred_iter(ebb)
.map(|BasicBlock { inst, .. }| inst),
);
got_preds.extend(cfg.pred_iter(ebb).map(|BasicBlock { inst, .. }| inst));
let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
if !missing_preds.is_empty() {
report!(
errors,
ebb,
"cfg lacked the following predecessor(s) {:?}",
missing_preds
);
continue;
}
let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
if !excess_preds.is_empty() {
report!(
errors,
ebb,
"cfg had unexpected predecessor(s) {:?}",
excess_preds
);
continue;
}
expected_succs.clear();
got_succs.clear();
expected_preds.clear();
got_preds.clear();
}
errors.as_result()
}
/// If the verifier has been set up with an ISA, make sure that the recorded encoding for the
/// instruction (if any) matches how the ISA would encode it.
fn verify_encoding(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
// When the encodings table is empty, we don't require any instructions to be encoded.
//
// Once some instructions are encoded, we require all side-effecting instructions to have a
// legal encoding.
if self.func.encodings.is_empty() {
return Ok(());
}
let isa = match self.isa {
Some(isa) => isa,
None => return Ok(()),
};
let encoding = self.func.encodings[inst];
if encoding.is_legal() {
let mut encodings =
isa.legal_encodings(
&self.func,
&self.func.dfg[inst],
self.func.dfg.ctrl_typevar(inst),
).peekable();
if encodings.peek().is_none() {
return nonfatal!(
errors,
inst,
"Instruction failed to re-encode {}",
isa.encoding_info().display(encoding)
);
}
let has_valid_encoding = encodings.any(|possible_enc| encoding == possible_enc);
if !has_valid_encoding {
let mut possible_encodings = String::new();
let mut multiple_encodings = false;
for enc in isa.legal_encodings(
&self.func,
&self.func.dfg[inst],
self.func.dfg.ctrl_typevar(inst),
) {
if !possible_encodings.is_empty() {
possible_encodings.push_str(", ");
multiple_encodings = true;
}
possible_encodings
.write_fmt(format_args!("{}", isa.encoding_info().display(enc)))
.unwrap();
}
return nonfatal!(
errors,
inst,
"encoding {} should be {}{}",
isa.encoding_info().display(encoding),
if multiple_encodings { "one of: " } else { "" },
possible_encodings
);
}
return Ok(());
}
// Instruction is not encoded, so it is a ghost instruction.
// Instructions with side effects are not allowed to be ghost instructions.
let opcode = self.func.dfg[inst].opcode();
// The `fallthrough` instruction is marked as a terminator and a branch, but it is not
// required to have an encoding.
if opcode == Opcode::Fallthrough {
return Ok(());
}
// Check if this opcode must be encoded.
let mut needs_enc = None;
if opcode.is_branch() {
needs_enc = Some("Branch");
} else if opcode.is_call() {
needs_enc = Some("Call");
} else if opcode.is_return() {
needs_enc = Some("Return");
} else if opcode.can_store() {
needs_enc = Some("Store");
} else if opcode.can_trap() {
needs_enc = Some("Trapping instruction");
} else if opcode.other_side_effects() {
needs_enc = Some("Instruction with side effects");
}
if let Some(text) = needs_enc {
// This instruction needs an encoding, so generate an error.
// Provide the ISA default encoding as a hint.
match self.func.encode(inst, isa) {
Ok(enc) => {
return nonfatal!(
errors,
inst,
"{} must have an encoding (e.g., {})",
text,
isa.encoding_info().display(enc)
)
}
Err(_) => return nonfatal!(errors, inst, "{} must have an encoding", text),
}
}
Ok(())
}
/// Verify the `return_at_end` property which requires that there are no internal return
/// instructions.
fn verify_return_at_end(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
for ebb in self.func.layout.ebbs() {
let inst = self.func.layout.last_inst(ebb).unwrap();
if self.func.dfg[inst].opcode().is_return() && Some(ebb) != self.func.layout.last_ebb()
{
report!(
errors,
inst,
"Internal return not allowed with return_at_end=1"
);
}
}
errors.as_result()
}
pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
self.verify_global_values(errors)?;
self.typecheck_entry_block_params(errors)?;
for ebb in self.func.layout.ebbs() {
for inst in self.func.layout.ebb_insts(ebb) {
self.ebb_integrity(ebb, inst, errors)?;
self.instruction_integrity(inst, errors)?;
self.typecheck(inst, errors)?;
self.verify_encoding(inst, errors)?;
}
}
if self.flags.return_at_end() {
self.verify_return_at_end(errors)?;
}
verify_flags(self.func, &self.expected_cfg, self.isa, errors)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::{Verifier, VerifierError, VerifierErrors};
use entity::EntityList;
use ir::instructions::{InstructionData, Opcode};
use ir::Function;
use settings;
macro_rules! assert_err_with_msg {
($e:expr, $msg:expr) => {
match $e.0.get(0) {
None => panic!("Expected an error"),
Some(&VerifierError { ref message, .. }) => {
if !message.contains($msg) {
#[cfg(feature = "std")]
panic!(format!(
"'{}' did not contain the substring '{}'",
message, $msg
));
#[cfg(not(feature = "std"))]
panic!("error message did not contain the expected substring");
}
}
}
};
}
#[test]
fn empty() {
let func = Function::new();
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
let mut errors = VerifierErrors::default();
assert_eq!(verifier.run(&mut errors), Ok(()));
assert!(errors.0.is_empty());
}
#[test]
fn bad_instruction_format() {
let mut func = Function::new();
let ebb0 = func.dfg.make_ebb();
func.layout.append_ebb(ebb0);
let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
opcode: Opcode::F32const,
imm: 0.into(),
});
func.layout.append_inst(nullary_with_bad_opcode, ebb0);
func.layout.append_inst(
func.dfg.make_inst(InstructionData::Jump {
opcode: Opcode::Jump,
destination: ebb0,
args: EntityList::default(),
}),
ebb0,
);
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
let mut errors = VerifierErrors::default();
let _ = verifier.run(&mut errors);
assert_err_with_msg!(errors, "instruction format");
}
}