Files
wasmtime/lib/cretonne/src/legalizer/mod.rs
Jakob Stoklund Olesen 6609d7baf4 Try to depend only on the ir module being in scope.
Generated code should used qualified names assuming that `ir` is in
scope, not everything else.
2017-07-28 16:33:02 -07:00

100 lines
4.0 KiB
Rust

//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.
use dominator_tree::DominatorTree;
use flowgraph::ControlFlowGraph;
use ir::{self, Function, Cursor};
use ir::condcodes::IntCC;
use isa::TargetIsa;
use bitset::BitSet;
mod boundary;
mod split;
/// Legalize `func` for `isa`.
///
/// - Transform any instructions that don't have a legal representation in `isa`.
/// - Fill out `func.encodings`.
///
pub fn legalize_function(func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &DominatorTree,
isa: &TargetIsa) {
boundary::legalize_signatures(func, isa);
func.encodings.resize(func.dfg.num_insts());
let mut pos = Cursor::new(&mut func.layout);
// Process EBBs in a reverse post-order. This minimizes the number of split instructions we
// need.
for &ebb in domtree.cfg_postorder().iter().rev() {
pos.goto_top(ebb);
// Keep track of the cursor position before the instruction being processed, so we can
// double back when replacing instructions.
let mut prev_pos = pos.position();
while let Some(inst) = pos.next_inst() {
let opcode = func.dfg[inst].opcode();
// Check for ABI boundaries that need to be converted to the legalized signature.
if opcode.is_call() && boundary::handle_call_abi(&mut func.dfg, cfg, &mut pos) {
// Go back and legalize the inserted argument conversion instructions.
pos.set_position(prev_pos);
continue;
}
if opcode.is_return() &&
boundary::handle_return_abi(&mut func.dfg, cfg, &mut pos, &func.signature) {
// Go back and legalize the inserted return value conversion instructions.
pos.set_position(prev_pos);
continue;
}
if opcode.is_branch() {
split::simplify_branch_arguments(&mut func.dfg, inst);
}
match isa.encode(&func.dfg, &func.dfg[inst], func.dfg.ctrl_typevar(inst)) {
Ok(encoding) => *func.encodings.ensure(inst) = encoding,
Err(action) => {
// We should transform the instruction into legal equivalents.
let changed = action(&mut func.dfg, cfg, &mut pos);
// If the current instruction was replaced, we need to double back and revisit
// the expanded sequence. This is both to assign encodings and possible to
// expand further.
// There's a risk of infinite looping here if the legalization patterns are
// unsound. Should we attempt to detect that?
if changed {
pos.set_position(prev_pos);
continue;
}
}
}
// Remember this position in case we need to double back.
prev_pos = pos.position();
}
}
func.encodings.resize(func.dfg.num_insts());
}
// Include legalization patterns that were generated by `gen_legalizer.py` from the `XForms` in
// `meta/cretonne/legalize.py`.
//
// Concretely, this defines private functions `narrow()`, and `expand()`.
include!(concat!(env!("OUT_DIR"), "/legalizer.rs"));