Files
wasmtime/lib/cretonne/meta/isa/intel/encodings.py
Jakob Stoklund Olesen 60e70da0e6 Add Intel encodings for ifcmp_imm.
The instruction set has variants with 8-bit and 32-bit signed immediate
operands.

Add a TODO to use a TEST instruction for the special case ifcmp_imm x, 0.
2018-02-13 10:38:46 -08:00

496 lines
16 KiB
Python

"""
Intel Encodings.
"""
from __future__ import absolute_import
from cdsl.predicates import IsUnsignedInt, Not, And
from base import instructions as base
from base.formats import UnaryImm
from .defs import I32, I64
from . import recipes as r
from . import settings as cfg
from . import instructions as x86
from .legalize import intel_expand
from base.legalize import narrow, expand
from base.settings import allones_funcaddrs, is_pic
from .settings import use_sse41
try:
from typing import TYPE_CHECKING, Any # noqa
if TYPE_CHECKING:
from cdsl.instructions import MaybeBoundInst # noqa
except ImportError:
pass
I32.legalize_monomorphic(expand)
I32.legalize_type(
default=narrow,
b1=expand,
i32=intel_expand,
f32=intel_expand,
f64=intel_expand)
I64.legalize_monomorphic(expand)
I64.legalize_type(
default=narrow,
b1=expand,
i32=intel_expand,
i64=intel_expand,
f32=intel_expand,
f64=intel_expand)
#
# Helper functions for generating encodings.
#
def enc_i64(inst, recipe, *args, **kwargs):
# type: (MaybeBoundInst, r.TailRecipe, *int, **int) -> None
"""
Add encodings for `inst` to I64 with and without a REX prefix.
"""
I64.enc(inst, *recipe.rex(*args, **kwargs))
I64.enc(inst, *recipe(*args, **kwargs))
def enc_both(inst, recipe, *args, **kwargs):
# type: (MaybeBoundInst, r.TailRecipe, *int, **Any) -> None
"""
Add encodings for `inst` to both I32 and I64.
"""
I32.enc(inst, *recipe(*args, **kwargs))
enc_i64(inst, recipe, *args, **kwargs)
def enc_i32_i64(inst, recipe, *args, **kwargs):
# type: (MaybeBoundInst, r.TailRecipe, *int, **int) -> None
"""
Add encodings for `inst.i32` to I32.
Add encodings for `inst.i32` to I64 with and without REX.
Add encodings for `inst.i64` to I64 with a REX.W prefix.
"""
I32.enc(inst.i32, *recipe(*args, **kwargs))
# REX-less encoding must come after REX encoding so we don't use it by
# default. Otherwise reg-alloc would never use r8 and up.
I64.enc(inst.i32, *recipe.rex(*args, **kwargs))
I64.enc(inst.i32, *recipe(*args, **kwargs))
I64.enc(inst.i64, *recipe.rex(*args, w=1, **kwargs))
def enc_i32_i64_ld_st(inst, w_bit, recipe, *args, **kwargs):
# type: (MaybeBoundInst, bool, r.TailRecipe, *int, **int) -> None
"""
Add encodings for `inst.i32` to I32.
Add encodings for `inst.i32` to I64 with and without REX.
Add encodings for `inst.i64` to I64 with a REX prefix, using the `w_bit`
argument to determine whether or not to set the REX.W bit.
"""
I32.enc(inst.i32.any, *recipe(*args, **kwargs))
# REX-less encoding must come after REX encoding so we don't use it by
# default. Otherwise reg-alloc would never use r8 and up.
I64.enc(inst.i32.any, *recipe.rex(*args, **kwargs))
I64.enc(inst.i32.any, *recipe(*args, **kwargs))
if w_bit:
I64.enc(inst.i64.any, *recipe.rex(*args, w=1, **kwargs))
else:
I64.enc(inst.i64.any, *recipe.rex(*args, **kwargs))
I64.enc(inst.i64.any, *recipe(*args, **kwargs))
for inst, opc in [
(base.iadd, 0x01),
(base.isub, 0x29),
(base.band, 0x21),
(base.bor, 0x09),
(base.bxor, 0x31)]:
enc_i32_i64(inst, r.rr, opc)
# Also add a `b1` encodings for the logic instructions.
# TODO: Should this be done with 8-bit instructions? It would improve
# partial register dependencies.
enc_both(base.band.b1, r.rr, 0x21)
enc_both(base.bor.b1, r.rr, 0x09)
enc_both(base.bxor.b1, r.rr, 0x31)
enc_i32_i64(base.imul, r.rrx, 0x0f, 0xaf)
enc_i32_i64(x86.sdivmodx, r.div, 0xf7, rrr=7)
enc_i32_i64(x86.udivmodx, r.div, 0xf7, rrr=6)
enc_i32_i64(base.copy, r.umr, 0x89)
enc_both(base.copy.b1, r.umr, 0x89)
enc_i32_i64(base.regmove, r.rmov, 0x89)
enc_both(base.regmove.b1, r.rmov, 0x89)
# Immediate instructions with sign-extended 8-bit and 32-bit immediate.
for inst, rrr in [
(base.iadd_imm, 0),
(base.band_imm, 4),
(base.bor_imm, 1),
(base.bxor_imm, 6)]:
enc_i32_i64(inst, r.rib, 0x83, rrr=rrr)
enc_i32_i64(inst, r.rid, 0x81, rrr=rrr)
# TODO: band_imm.i64 with an unsigned 32-bit immediate can be encoded as
# band_imm.i32. Can even use the single-byte immediate for 0xffff_ffXX masks.
# Immediate constants.
I32.enc(base.iconst.i32, *r.puid(0xb8))
I64.enc(base.iconst.i32, *r.puid.rex(0xb8))
I64.enc(base.iconst.i32, *r.puid(0xb8))
# The 32-bit immediate movl also zero-extends to 64 bits.
I64.enc(base.iconst.i64, *r.puid.rex(0xb8),
instp=IsUnsignedInt(UnaryImm.imm, 32))
I64.enc(base.iconst.i64, *r.puid(0xb8),
instp=IsUnsignedInt(UnaryImm.imm, 32))
# Sign-extended 32-bit immediate.
I64.enc(base.iconst.i64, *r.uid.rex(0xc7, rrr=0, w=1))
# Finally, the 0xb8 opcode takes an 8-byte immediate with a REX.W prefix.
I64.enc(base.iconst.i64, *r.puiq.rex(0xb8, w=1))
# Shifts and rotates.
# Note that the dynamic shift amount is only masked by 5 or 6 bits; the 8-bit
# and 16-bit shifts would need explicit masking.
for inst, rrr in [
(base.rotl, 0),
(base.rotr, 1),
(base.ishl, 4),
(base.ushr, 5),
(base.sshr, 7)]:
I32.enc(inst.i32.any, *r.rc(0xd3, rrr=rrr))
I64.enc(inst.i64.any, *r.rc.rex(0xd3, rrr=rrr, w=1))
I64.enc(inst.i32.any, *r.rc.rex(0xd3, rrr=rrr))
I64.enc(inst.i32.any, *r.rc(0xd3, rrr=rrr))
# Population count.
I32.enc(base.popcnt.i32, *r.urm(0xf3, 0x0f, 0xb8), isap=cfg.use_popcnt)
I64.enc(base.popcnt.i64, *r.urm.rex(0xf3, 0x0f, 0xb8, w=1),
isap=cfg.use_popcnt)
I64.enc(base.popcnt.i32, *r.urm.rex(0xf3, 0x0f, 0xb8), isap=cfg.use_popcnt)
I64.enc(base.popcnt.i32, *r.urm(0xf3, 0x0f, 0xb8), isap=cfg.use_popcnt)
# Count leading zero bits.
I32.enc(base.clz.i32, *r.urm(0xf3, 0x0f, 0xbd), isap=cfg.use_lzcnt)
I64.enc(base.clz.i64, *r.urm.rex(0xf3, 0x0f, 0xbd, w=1),
isap=cfg.use_lzcnt)
I64.enc(base.clz.i32, *r.urm.rex(0xf3, 0x0f, 0xbd), isap=cfg.use_lzcnt)
I64.enc(base.clz.i32, *r.urm(0xf3, 0x0f, 0xbd), isap=cfg.use_lzcnt)
# Count trailing zero bits.
I32.enc(base.ctz.i32, *r.urm(0xf3, 0x0f, 0xbc), isap=cfg.use_bmi1)
I64.enc(base.ctz.i64, *r.urm.rex(0xf3, 0x0f, 0xbc, w=1),
isap=cfg.use_bmi1)
I64.enc(base.ctz.i32, *r.urm.rex(0xf3, 0x0f, 0xbc), isap=cfg.use_bmi1)
I64.enc(base.ctz.i32, *r.urm(0xf3, 0x0f, 0xbc), isap=cfg.use_bmi1)
#
# Loads and stores.
#
for recipe in [r.st, r.stDisp8, r.stDisp32]:
enc_i32_i64_ld_st(base.store, True, recipe, 0x89)
enc_i64(base.istore32.i64.any, recipe, 0x89)
enc_i32_i64_ld_st(base.istore16, False, recipe, 0x66, 0x89)
# Byte stores are more complicated because the registers they can address
# depends of the presence of a REX prefix. The st*_abcd recipes fall back to
# the corresponding st* recipes when a REX prefix is applied.
for recipe in [r.st_abcd, r.stDisp8_abcd, r.stDisp32_abcd]:
enc_both(base.istore8.i32.any, recipe, 0x88)
enc_i64(base.istore8.i64.any, recipe, 0x88)
enc_i32_i64(base.spill, r.spSib32, 0x89)
enc_i32_i64(base.regspill, r.rsp32, 0x89)
# Use a 32-bit write for spilling `b1` to avoid constraining the permitted
# registers.
# See MIN_SPILL_SLOT_SIZE which makes this safe.
enc_both(base.spill.b1, r.spSib32, 0x89)
enc_both(base.regspill.b1, r.rsp32, 0x89)
for recipe in [r.ld, r.ldDisp8, r.ldDisp32]:
enc_i32_i64_ld_st(base.load, True, recipe, 0x8b)
enc_i64(base.uload32.i64, recipe, 0x8b)
I64.enc(base.sload32.i64, *recipe.rex(0x63, w=1))
enc_i32_i64_ld_st(base.uload16, True, recipe, 0x0f, 0xb7)
enc_i32_i64_ld_st(base.sload16, True, recipe, 0x0f, 0xbf)
enc_i32_i64_ld_st(base.uload8, True, recipe, 0x0f, 0xb6)
enc_i32_i64_ld_st(base.sload8, True, recipe, 0x0f, 0xbe)
enc_i32_i64(base.fill, r.fiSib32, 0x8b)
enc_i32_i64(base.regfill, r.rfi32, 0x8b)
# Load 32 bits from `b1` spill slots. See `spill.b1` above.
enc_both(base.fill.b1, r.fiSib32, 0x8b)
enc_both(base.regfill.b1, r.rfi32, 0x8b)
# Push and Pop
I32.enc(x86.push.i32, *r.pushq(0x50))
enc_i64(x86.push.i64, r.pushq, 0x50)
I32.enc(x86.pop.i32, *r.popq(0x58))
enc_i64(x86.pop.i64, r.popq, 0x58)
# Copy Special
I64.enc(base.copy_special, *r.copysp.rex(0x89, w=1))
I32.enc(base.copy_special, *r.copysp(0x89))
# Adjust SP Imm
I32.enc(base.adjust_sp_imm, *r.adjustsp8(0x83))
I32.enc(base.adjust_sp_imm, *r.adjustsp32(0x81))
I64.enc(base.adjust_sp_imm, *r.adjustsp8.rex(0x83, w=1))
I64.enc(base.adjust_sp_imm, *r.adjustsp32.rex(0x81, w=1))
#
# Float loads and stores.
#
enc_both(base.load.f32.any, r.fld, 0x66, 0x0f, 0x6e)
enc_both(base.load.f32.any, r.fldDisp8, 0x66, 0x0f, 0x6e)
enc_both(base.load.f32.any, r.fldDisp32, 0x66, 0x0f, 0x6e)
enc_both(base.load.f64.any, r.fld, 0xf3, 0x0f, 0x7e)
enc_both(base.load.f64.any, r.fldDisp8, 0xf3, 0x0f, 0x7e)
enc_both(base.load.f64.any, r.fldDisp32, 0xf3, 0x0f, 0x7e)
enc_both(base.store.f32.any, r.fst, 0x66, 0x0f, 0x7e)
enc_both(base.store.f32.any, r.fstDisp8, 0x66, 0x0f, 0x7e)
enc_both(base.store.f32.any, r.fstDisp32, 0x66, 0x0f, 0x7e)
enc_both(base.store.f64.any, r.fst, 0x66, 0x0f, 0xd6)
enc_both(base.store.f64.any, r.fstDisp8, 0x66, 0x0f, 0xd6)
enc_both(base.store.f64.any, r.fstDisp32, 0x66, 0x0f, 0xd6)
enc_both(base.fill.f32, r.ffiSib32, 0x66, 0x0f, 0x6e)
enc_both(base.regfill.f32, r.frfi32, 0x66, 0x0f, 0x6e)
enc_both(base.fill.f64, r.ffiSib32, 0xf3, 0x0f, 0x7e)
enc_both(base.regfill.f64, r.frfi32, 0xf3, 0x0f, 0x7e)
enc_both(base.spill.f32, r.fspSib32, 0x66, 0x0f, 0x7e)
enc_both(base.regspill.f32, r.frsp32, 0x66, 0x0f, 0x7e)
enc_both(base.spill.f64, r.fspSib32, 0x66, 0x0f, 0xd6)
enc_both(base.regspill.f64, r.frsp32, 0x66, 0x0f, 0xd6)
#
# Function addresses.
#
I32.enc(base.func_addr.i32, *r.fnaddr4(0xb8),
isap=Not(allones_funcaddrs))
I64.enc(base.func_addr.i64, *r.fnaddr8.rex(0xb8, w=1),
isap=And(Not(allones_funcaddrs), Not(is_pic)))
I32.enc(base.func_addr.i32, *r.allones_fnaddr4(0xb8),
isap=allones_funcaddrs)
I64.enc(base.func_addr.i64, *r.allones_fnaddr8.rex(0xb8, w=1),
isap=And(allones_funcaddrs, Not(is_pic)))
I64.enc(base.func_addr.i64, *r.got_fnaddr8.rex(0x8b, w=1),
isap=is_pic)
#
# Global addresses.
#
I32.enc(base.globalsym_addr.i32, *r.gvaddr4(0xb8))
I64.enc(base.globalsym_addr.i64, *r.gvaddr8.rex(0xb8, w=1),
isap=Not(is_pic))
I64.enc(base.globalsym_addr.i64, *r.got_gvaddr8.rex(0x8b, w=1),
isap=is_pic)
#
# Call/return
#
I32.enc(base.call, *r.call_id(0xe8))
I64.enc(base.call, *r.call_id(0xe8), isap=Not(is_pic))
I64.enc(base.call, *r.call_plt_id(0xe8), isap=is_pic)
I32.enc(base.call_indirect.i32, *r.call_r(0xff, rrr=2))
I64.enc(base.call_indirect.i64, *r.call_r.rex(0xff, rrr=2))
I64.enc(base.call_indirect.i64, *r.call_r(0xff, rrr=2))
I32.enc(base.x_return, *r.ret(0xc3))
I64.enc(base.x_return, *r.ret(0xc3))
#
# Branches
#
enc_both(base.jump, r.jmpb, 0xeb)
enc_both(base.jump, r.jmpd, 0xe9)
enc_both(base.brif, r.brib, 0x70)
enc_both(base.brif, r.brid, 0x0f, 0x80)
# Not all float condition codes are legal, see `supported_floatccs`.
enc_both(base.brff, r.brfb, 0x70)
enc_both(base.brff, r.brfd, 0x0f, 0x80)
# Note that the tjccd opcode will be prefixed with 0x0f.
enc_i32_i64(base.brz, r.tjccb, 0x74)
enc_i32_i64(base.brz, r.tjccd, 0x84)
enc_i32_i64(base.brnz, r.tjccb, 0x75)
enc_i32_i64(base.brnz, r.tjccd, 0x85)
# Branch on a b1 value in a register only looks at the low 8 bits. See also
# bint encodings below.
#
# Start with the worst-case encoding for I32 only. The register allocator can't
# handle a branch with an ABCD-constrained operand.
I32.enc(base.brz.b1, *r.t8jccd_long(0x84))
I32.enc(base.brnz.b1, *r.t8jccd_long(0x85))
enc_both(base.brz.b1, r.t8jccb_abcd, 0x74)
enc_both(base.brz.b1, r.t8jccd_abcd, 0x84)
enc_both(base.brnz.b1, r.t8jccb_abcd, 0x75)
enc_both(base.brnz.b1, r.t8jccd_abcd, 0x85)
#
# Trap as ud2
#
I32.enc(base.trap, *r.trap(0x0f, 0x0b))
I64.enc(base.trap, *r.trap(0x0f, 0x0b))
# Using a standard EncRecipe, not the TailRecipe.
I32.enc(base.trapif, r.trapif, 0)
I64.enc(base.trapif, r.trapif, 0)
#
# Comparisons
#
enc_i32_i64(base.icmp, r.icscc, 0x39)
enc_i32_i64(base.ifcmp, r.rcmp, 0x39)
enc_i32_i64(base.ifcmp_imm, r.rcmpib, 0x83, rrr=7)
enc_i32_i64(base.ifcmp_imm, r.rcmpid, 0x81, rrr=7)
# TODO: We could special-case ifcmp_imm(x, 0) to TEST(x, x).
I32.enc(base.ifcmp_sp.i32, *r.rcmp_sp(0x39))
I64.enc(base.ifcmp_sp.i64, *r.rcmp_sp.rex(0x39, w=1))
#
# Convert flags to bool.
#
# This encodes `b1` as an 8-bit low register with the value 0 or 1.
enc_both(base.trueif, r.seti_abcd, 0x0f, 0x90)
enc_both(base.trueff, r.setf_abcd, 0x0f, 0x90)
#
# Conditional move (a.k.a integer select)
#
enc_i32_i64(base.selectif, r.cmov, 0x0F, 0x40)
#
# Bit scan forwards and reverse
#
enc_i32_i64(x86.bsf, r.bsf_and_bsr, 0x0F, 0xBC)
enc_i32_i64(x86.bsr, r.bsf_and_bsr, 0x0F, 0xBD)
#
# Convert bool to int.
#
# This assumes that b1 is represented as an 8-bit low register with the value 0
# or 1.
I32.enc(base.bint.i32.b1, *r.urm_abcd(0x0f, 0xb6))
I64.enc(base.bint.i64.b1, *r.urm.rex(0x0f, 0xb6)) # zext to i64 implicit.
I64.enc(base.bint.i64.b1, *r.urm_abcd(0x0f, 0xb6)) # zext to i64 implicit.
I64.enc(base.bint.i32.b1, *r.urm.rex(0x0f, 0xb6))
I64.enc(base.bint.i32.b1, *r.urm_abcd(0x0f, 0xb6))
# Numerical conversions.
# Converting i64 to i32 is a no-op in 64-bit mode.
I64.enc(base.ireduce.i32.i64, r.null, 0)
I64.enc(base.sextend.i64.i32, *r.urm.rex(0x63, w=1))
# A 32-bit register copy clears the high 32 bits.
I64.enc(base.uextend.i64.i32, *r.umr.rex(0x89))
I64.enc(base.uextend.i64.i32, *r.umr(0x89))
#
# Floating point
#
# movd
enc_both(base.bitcast.f32.i32, r.frurm, 0x66, 0x0f, 0x6e)
enc_both(base.bitcast.i32.f32, r.rfumr, 0x66, 0x0f, 0x7e)
# movq
I64.enc(base.bitcast.f64.i64, *r.frurm.rex(0x66, 0x0f, 0x6e, w=1))
I64.enc(base.bitcast.i64.f64, *r.rfumr.rex(0x66, 0x0f, 0x7e, w=1))
# movaps
enc_both(base.copy.f32, r.furm, 0x0f, 0x28)
enc_both(base.copy.f64, r.furm, 0x0f, 0x28)
enc_both(base.regmove.f32, r.frmov, 0x0f, 0x28)
enc_both(base.regmove.f64, r.frmov, 0x0f, 0x28)
# cvtsi2ss
enc_i32_i64(base.fcvt_from_sint.f32, r.frurm, 0xf3, 0x0f, 0x2a)
# cvtsi2sd
enc_i32_i64(base.fcvt_from_sint.f64, r.frurm, 0xf2, 0x0f, 0x2a)
# cvtss2sd
enc_both(base.fpromote.f64.f32, r.furm, 0xf3, 0x0f, 0x5a)
# cvtsd2ss
enc_both(base.fdemote.f32.f64, r.furm, 0xf2, 0x0f, 0x5a)
# cvttss2si
enc_both(x86.cvtt2si.i32.f32, r.rfurm, 0xf3, 0x0f, 0x2c)
I64.enc(x86.cvtt2si.i64.f32, *r.rfurm.rex(0xf3, 0x0f, 0x2c, w=1))
# cvttsd2si
enc_both(x86.cvtt2si.i32.f64, r.rfurm, 0xf2, 0x0f, 0x2c)
I64.enc(x86.cvtt2si.i64.f64, *r.rfurm.rex(0xf2, 0x0f, 0x2c, w=1))
# Exact square roots.
enc_both(base.sqrt.f32, r.furm, 0xf3, 0x0f, 0x51)
enc_both(base.sqrt.f64, r.furm, 0xf2, 0x0f, 0x51)
# Rounding. The recipe looks at the opcode to pick an immediate.
for inst in [
base.nearest,
base.floor,
base.ceil,
base.trunc]:
enc_both(inst.f32, r.furmi_rnd, 0x66, 0x0f, 0x3a, 0x0a, isap=use_sse41)
enc_both(inst.f64, r.furmi_rnd, 0x66, 0x0f, 0x3a, 0x0b, isap=use_sse41)
# Binary arithmetic ops.
for inst, opc in [
(base.fadd, 0x58),
(base.fsub, 0x5c),
(base.fmul, 0x59),
(base.fdiv, 0x5e),
(x86.fmin, 0x5d),
(x86.fmax, 0x5f)]:
enc_both(inst.f32, r.fa, 0xf3, 0x0f, opc)
enc_both(inst.f64, r.fa, 0xf2, 0x0f, opc)
# Binary bitwise ops.
for inst, opc in [
(base.band, 0x54),
(base.bor, 0x56),
(base.bxor, 0x57)]:
enc_both(inst.f32, r.fa, 0x0f, opc)
enc_both(inst.f64, r.fa, 0x0f, opc)
# The `andnps(x,y)` instruction computes `~x&y`, while band_not(x,y)` is `x&~y.
enc_both(base.band_not.f32, r.fax, 0x0f, 0x55)
enc_both(base.band_not.f64, r.fax, 0x0f, 0x55)
# Comparisons.
#
# This only covers the condition codes in `supported_floatccs`, the rest are
# handled by legalization patterns.
enc_both(base.fcmp.f32, r.fcscc, 0x0f, 0x2e)
enc_both(base.fcmp.f64, r.fcscc, 0x66, 0x0f, 0x2e)
enc_both(base.ffcmp.f32, r.fcmp, 0x0f, 0x2e)
enc_both(base.ffcmp.f64, r.fcmp, 0x66, 0x0f, 0x2e)