Files
wasmtime/crates/component-util/src/lib.rs
Alex Crichton bc8e36a6af Refactor and optimize the flat type calculations (#4708)
* Optimize flat type representation calculations

Previously calculating the flat type representation would be done
recursively for an entire type tree every time it was visited.
Additionally the flat type representation was entirely built only to be
thrown away if it was too large at the end. This chiefly presented a
source of recursion based on the type structure in the component model
which fuzzing does not like as it reports stack overflows.

This commit overhauls the representation of flat types in Wasmtime by
caching the representation for each type in the compile-time
`ComponentTypesBuilder` structure. This avoids recalculating each time
the flat representation is queried and additionally allows opportunity
to have more short-circuiting to avoid building overly-large vectors.

* Remove duplicate flat count calculation in wasmtime

Roughly share the infrastructure in the `wasmtime-environ` crate, namely
the non-recursive and memoizing nature of the calculation.

* Fix component fuzz build

* Fix example compile
2022-08-16 13:31:47 -05:00

181 lines
5.1 KiB
Rust

/// Represents the possible sizes in bytes of the discriminant of a variant type in the component model
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum DiscriminantSize {
/// 8-bit discriminant
Size1,
/// 16-bit discriminant
Size2,
/// 32-bit discriminant
Size4,
}
impl DiscriminantSize {
/// Calculate the size of discriminant needed to represent a variant with the specified number of cases.
pub const fn from_count(count: usize) -> Option<Self> {
if count <= 0xFF {
Some(Self::Size1)
} else if count <= 0xFFFF {
Some(Self::Size2)
} else if count <= 0xFFFF_FFFF {
Some(Self::Size4)
} else {
None
}
}
/// Returns the size, in bytes, of this discriminant
pub const fn byte_size(&self) -> u32 {
match self {
DiscriminantSize::Size1 => 1,
DiscriminantSize::Size2 => 2,
DiscriminantSize::Size4 => 4,
}
}
}
impl From<DiscriminantSize> for u32 {
/// Size of the discriminant as a `u32`
fn from(size: DiscriminantSize) -> u32 {
size.byte_size()
}
}
impl From<DiscriminantSize> for usize {
/// Size of the discriminant as a `usize`
fn from(size: DiscriminantSize) -> usize {
match size {
DiscriminantSize::Size1 => 1,
DiscriminantSize::Size2 => 2,
DiscriminantSize::Size4 => 4,
}
}
}
/// Represents the number of bytes required to store a flags value in the component model
pub enum FlagsSize {
/// There are no flags
Size0,
/// Flags can fit in a u8
Size1,
/// Flags can fit in a u16
Size2,
/// Flags can fit in a specified number of u32 fields
Size4Plus(u8),
}
impl FlagsSize {
/// Calculate the size needed to represent a value with the specified number of flags.
pub const fn from_count(count: usize) -> FlagsSize {
if count == 0 {
FlagsSize::Size0
} else if count <= 8 {
FlagsSize::Size1
} else if count <= 16 {
FlagsSize::Size2
} else {
let amt = ceiling_divide(count, 32);
if amt > (u8::MAX as usize) {
panic!("too many flags");
}
FlagsSize::Size4Plus(amt as u8)
}
}
}
/// Divide `n` by `d`, rounding up in the case of a non-zero remainder.
const fn ceiling_divide(n: usize, d: usize) -> usize {
(n + d - 1) / d
}
/// A simple bump allocator which can be used with modules
pub const REALLOC_AND_FREE: &str = r#"
(global $last (mut i32) (i32.const 8))
(func $realloc (export "realloc")
(param $old_ptr i32)
(param $old_size i32)
(param $align i32)
(param $new_size i32)
(result i32)
(local $ret i32)
;; Test if the old pointer is non-null
local.get $old_ptr
if
;; If the old size is bigger than the new size then
;; this is a shrink and transparently allow it
local.get $old_size
local.get $new_size
i32.gt_u
if
local.get $old_ptr
return
end
;; otherwise fall through to allocate a new chunk which will later
;; copy data over
end
;; align up `$last`
(global.set $last
(i32.and
(i32.add
(global.get $last)
(i32.add
(local.get $align)
(i32.const -1)))
(i32.xor
(i32.add
(local.get $align)
(i32.const -1))
(i32.const -1))))
;; save the current value of `$last` as the return value
global.get $last
local.set $ret
;; bump our pointer
(global.set $last
(i32.add
(global.get $last)
(local.get $new_size)))
;; while `memory.size` is less than `$last`, grow memory
;; by one page
(loop $loop
(if
(i32.lt_u
(i32.mul (memory.size) (i32.const 65536))
(global.get $last))
(then
i32.const 1
memory.grow
;; test to make sure growth succeeded
i32.const -1
i32.eq
if unreachable end
br $loop)))
;; ensure anything necessary is set to valid data by spraying a bit
;; pattern that is invalid
local.get $ret
i32.const 0xde
local.get $new_size
memory.fill
;; If the old pointer is present then that means this was a reallocation
;; of an existing chunk which means the existing data must be copied.
local.get $old_ptr
if
local.get $ret ;; destination
local.get $old_ptr ;; source
local.get $old_size ;; size
memory.copy
end
local.get $ret
)
"#;