`lucetc` currently *almost*, but not quite, works with the new x64 backend; the only missing piece is support for the particular instructions emitted as part of its prologue stack-check. We do not normally see `brff`, `brif`, or `ifcmp_sp` in CLIF generated by `cranelift-wasm` without the old-backend legalization rules, so these were not supported in the new x64 backend as they were not necessary for Wasm MVP support. Using them resulted in an `unimplemented!()` panic. This PR adds support for `brff` and `brif` analogously to how AArch64 implements them, by pattern-matching the `ifcmp` / `ffcmp` directly. Then `ifcmp_sp` is a straightforward variant of `ifcmp`. Along the way, this also removes the notion of "fallthrough block" from the branch-group lowering method; instead, `fallthrough` instructions are handled as normal branches to their explicitly-provided targets, which (in the original CLIF) match the fallthrough block. The reason for this is that the block reordering done as part of lowering can change the fallthrough block. We were not using `fallthrough` instructions in the output produced by `cranelift-wasm`, so this, too, was not previously caught. With these changes, the `lucetc` crate in Lucet passes all tests with the `x64` feature-flag added to its `cranelift-codegen` dependency.
Cranelift Code Generator
A Bytecode Alliance project
Cranelift is a low-level retargetable code generator. It translates a target-independent intermediate representation into executable machine code.
For more information, see the documentation.
For an example of how to use the JIT, see the SimpleJIT Demo, which implements a toy language.
For an example of how to use Cranelift to run WebAssembly code, see Wasmtime, which implements a standalone, embeddable, VM using Cranelift.
Status
Cranelift currently supports enough functionality to run a wide variety of programs, including all the functionality needed to execute WebAssembly MVP functions, although it needs to be used within an external WebAssembly embedding to be part of a complete WebAssembly implementation.
The x86-64 backend is currently the most complete and stable; other architectures are in various stages of development. Cranelift currently supports both the System V AMD64 ABI calling convention used on many platforms and the Windows x64 calling convention. The performance of code produced by Cranelift is not yet impressive, though we have plans to fix that.
The core codegen crates have minimal dependencies, support no_std mode (see below), and do not require any host floating-point support, and do not use callstack recursion.
Cranelift does not yet perform mitigations for Spectre or related security issues, though it may do so in the future. It does not currently make any security-relevant instruction timing guarantees. It has seen a fair amount of testing and fuzzing, although more work is needed before it would be ready for a production use case.
Cranelift's APIs are not yet stable.
Cranelift currently requires Rust 1.37 or later to build.
Contributing
If you're interested in contributing to Cranelift: thank you! We have a contributing guide which will help you getting involved in the Cranelift project.
Planned uses
Cranelift is designed to be a code generator for WebAssembly, but it is general enough to be useful elsewhere too. The initial planned uses that affected its design are:
- WebAssembly compiler for the SpiderMonkey engine in Firefox.
- Backend for the IonMonkey JavaScript JIT compiler in Firefox.
- Debug build backend for the Rust compiler.
- Wasmtime non-Web wasm engine.
Building Cranelift
Cranelift uses a conventional Cargo build process.
Cranelift consists of a collection of crates, and uses a Cargo
Workspace,
so for some cargo commands, such as cargo test, the --all is needed
to tell cargo to visit all of the crates.
test-all.sh at the top level is a script which runs all the cargo
tests and also performs code format, lint, and documentation checks.
Building with no_std
The following crates support `no_std`, although they do depend on liballoc:
- cranelift-entity
- cranelift-bforest
- cranelift-codegen
- cranelift-frontend
- cranelift-native
- cranelift-wasm
- cranelift-module
- cranelift-preopt
- cranelift
To use no_std mode, disable the std feature and enable the core feature. This currently requires nightly rust.
For example, to build `cranelift-codegen`:
cd cranelift-codegen
cargo build --no-default-features --features core
Or, when using cranelift-codegen as a dependency (in Cargo.toml):
[dependency.cranelift-codegen]
...
default-features = false
features = ["core"]
no_std support is currently "best effort". We won't try to break it, and we'll accept patches fixing problems, however we don't expect all developers to build and test no_std when submitting patches. Accordingly, the ./test-all.sh script does not test no_std.
There is a separate ./test-no_std.sh script that tests the no_std support in packages which support it.
It's important to note that cranelift still needs liballoc to compile. Thus, whatever environment is used must implement an allocator.
Also, to allow the use of HashMaps with no_std, an external crate called hashmap_core is pulled in (via the core feature). This is mostly the same as std::collections::HashMap, except that it doesn't have DOS protection. Just something to think about.
Log configuration
Cranelift uses the log crate to log messages at various levels. It doesn't
specify any maximal logging level, so embedders can choose what it should be;
however, this can have an impact of Cranelift's code size. You can use log
features to reduce the maximum logging level. For instance if you want to limit
the level of logging to warn messages and above in release mode:
[dependency.log]
...
features = ["release_max_level_warn"]
Editor Support
Editor support for working with Cranelift IR (clif) files: