Files
wasmtime/cranelift/wasm/src/environ/spec.rs
Alex Crichton 73cda83548 Propagate module-linking types to wasmtime (#2115)
This commit adds lots of plumbing to get the type section from the
module linking proposal plumbed all the way through to the `wasmtime`
crate and the `wasmtime-c-api` crate. This isn't all that useful right
now because Wasmtime doesn't support imported/exported
modules/instances, but this is all necessary groundwork to getting that
exported at some point. I've added some light tests but I suspect the
bulk of the testing will come in a future commit.

One major change in this commit is that `SignatureIndex` no longer
follows type type index space in a wasm module. Instead a new
`TypeIndex` type is used to track that. Function signatures, still
indexed by `SignatureIndex`, are then packed together tightly.
2020-11-06 14:48:09 -06:00

916 lines
32 KiB
Rust

//! All the runtime support necessary for the wasm to cranelift translation is formalized by the
//! traits `FunctionEnvironment` and `ModuleEnvironment`.
//!
//! There are skeleton implementations of these traits in the `dummy` module, and complete
//! implementations in [Wasmtime].
//!
//! [Wasmtime]: https://github.com/bytecodealliance/wasmtime
use crate::state::FuncTranslationState;
use crate::translation_utils::{
DataIndex, ElemIndex, EntityType, FuncIndex, Global, GlobalIndex, Memory, MemoryIndex, Table,
TableIndex, TypeIndex,
};
use core::convert::From;
use core::convert::TryFrom;
use cranelift_codegen::cursor::FuncCursor;
use cranelift_codegen::ir::immediates::Offset32;
use cranelift_codegen::ir::{self, InstBuilder};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_frontend::FunctionBuilder;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
use std::boxed::Box;
use std::string::ToString;
use thiserror::Error;
use wasmparser::ValidatorResources;
use wasmparser::{BinaryReaderError, FuncValidator, FunctionBody, Operator, WasmFeatures};
/// WebAssembly value type -- equivalent of `wasmparser`'s Type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum WasmType {
/// I32 type
I32,
/// I64 type
I64,
/// F32 type
F32,
/// F64 type
F64,
/// V128 type
V128,
/// FuncRef type
FuncRef,
/// ExternRef type
ExternRef,
}
impl TryFrom<wasmparser::Type> for WasmType {
type Error = WasmError;
fn try_from(ty: wasmparser::Type) -> Result<Self, Self::Error> {
use wasmparser::Type::*;
match ty {
I32 => Ok(WasmType::I32),
I64 => Ok(WasmType::I64),
F32 => Ok(WasmType::F32),
F64 => Ok(WasmType::F64),
V128 => Ok(WasmType::V128),
FuncRef => Ok(WasmType::FuncRef),
ExternRef => Ok(WasmType::ExternRef),
EmptyBlockType | Func => Err(WasmError::InvalidWebAssembly {
message: "unexpected value type".to_string(),
offset: 0,
}),
}
}
}
impl From<WasmType> for wasmparser::Type {
fn from(ty: WasmType) -> wasmparser::Type {
match ty {
WasmType::I32 => wasmparser::Type::I32,
WasmType::I64 => wasmparser::Type::I64,
WasmType::F32 => wasmparser::Type::F32,
WasmType::F64 => wasmparser::Type::F64,
WasmType::V128 => wasmparser::Type::V128,
WasmType::FuncRef => wasmparser::Type::FuncRef,
WasmType::ExternRef => wasmparser::Type::ExternRef,
}
}
}
/// WebAssembly function type -- equivalent of `wasmparser`'s FuncType.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct WasmFuncType {
/// Function params types.
pub params: Box<[WasmType]>,
/// Returns params types.
pub returns: Box<[WasmType]>,
}
impl TryFrom<wasmparser::FuncType> for WasmFuncType {
type Error = WasmError;
fn try_from(ty: wasmparser::FuncType) -> Result<Self, Self::Error> {
Ok(Self {
params: ty
.params
.into_vec()
.into_iter()
.map(WasmType::try_from)
.collect::<Result<_, Self::Error>>()?,
returns: ty
.returns
.into_vec()
.into_iter()
.map(WasmType::try_from)
.collect::<Result<_, Self::Error>>()?,
})
}
}
/// The value of a WebAssembly global variable.
#[derive(Clone, Copy)]
pub enum GlobalVariable {
/// This is a constant global with a value known at compile time.
Const(ir::Value),
/// This is a variable in memory that should be referenced through a `GlobalValue`.
Memory {
/// The address of the global variable storage.
gv: ir::GlobalValue,
/// An offset to add to the address.
offset: Offset32,
/// The global variable's type.
ty: ir::Type,
},
/// This is a global variable that needs to be handled by the environment.
Custom,
}
/// A WebAssembly translation error.
///
/// When a WebAssembly function can't be translated, one of these error codes will be returned
/// to describe the failure.
#[derive(Error, Debug)]
pub enum WasmError {
/// The input WebAssembly code is invalid.
///
/// This error code is used by a WebAssembly translator when it encounters invalid WebAssembly
/// code. This should never happen for validated WebAssembly code.
#[error("Invalid input WebAssembly code at offset {offset}: {message}")]
InvalidWebAssembly {
/// A string describing the validation error.
message: std::string::String,
/// The bytecode offset where the error occurred.
offset: usize,
},
/// A feature used by the WebAssembly code is not supported by the embedding environment.
///
/// Embedding environments may have their own limitations and feature restrictions.
#[error("Unsupported feature: {0}")]
Unsupported(std::string::String),
/// An implementation limit was exceeded.
///
/// Cranelift can compile very large and complicated functions, but the [implementation has
/// limits][limits] that cause compilation to fail when they are exceeded.
///
/// [limits]: https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/docs/ir.md#implementation-limits
#[error("Implementation limit exceeded")]
ImplLimitExceeded,
/// Any user-defined error.
#[error("User error: {0}")]
User(std::string::String),
}
/// Return an `Err(WasmError::Unsupported(msg))` where `msg` the string built by calling `format!`
/// on the arguments to this macro.
#[macro_export]
macro_rules! wasm_unsupported {
($($arg:tt)*) => { $crate::environ::WasmError::Unsupported(format!($($arg)*)) }
}
impl From<BinaryReaderError> for WasmError {
/// Convert from a `BinaryReaderError` to a `WasmError`.
fn from(e: BinaryReaderError) -> Self {
Self::InvalidWebAssembly {
message: e.message().into(),
offset: e.offset(),
}
}
}
/// A convenient alias for a `Result` that uses `WasmError` as the error type.
pub type WasmResult<T> = Result<T, WasmError>;
/// How to return from functions.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum ReturnMode {
/// Use normal return instructions as needed.
NormalReturns,
/// Use a single fallthrough return at the end of the function.
FallthroughReturn,
}
/// Environment affecting the translation of a WebAssembly.
pub trait TargetEnvironment {
/// Get the information needed to produce Cranelift IR for the given target.
fn target_config(&self) -> TargetFrontendConfig;
/// Get the Cranelift integer type to use for native pointers.
///
/// This returns `I64` for 64-bit architectures and `I32` for 32-bit architectures.
fn pointer_type(&self) -> ir::Type {
ir::Type::int(u16::from(self.target_config().pointer_bits())).unwrap()
}
/// Get the size of a native pointer, in bytes.
fn pointer_bytes(&self) -> u8 {
self.target_config().pointer_bytes()
}
/// Get the Cranelift reference type to use for the given Wasm reference
/// type.
///
/// By default, this returns `R64` for 64-bit architectures and `R32` for
/// 32-bit architectures. If you override this, then you should also
/// override `FuncEnvironment::{translate_ref_null, translate_ref_is_null}`
/// as well.
fn reference_type(&self, ty: WasmType) -> ir::Type {
let _ = ty;
match self.pointer_type() {
ir::types::I32 => ir::types::R32,
ir::types::I64 => ir::types::R64,
_ => panic!("unsupported pointer type"),
}
}
}
/// Environment affecting the translation of a single WebAssembly function.
///
/// A `FuncEnvironment` trait object is required to translate a WebAssembly function to Cranelift
/// IR. The function environment provides information about the WebAssembly module as well as the
/// runtime environment.
pub trait FuncEnvironment: TargetEnvironment {
/// Is the given parameter of the given function a wasm-level parameter, as opposed to a hidden
/// parameter added for use by the implementation?
fn is_wasm_parameter(&self, signature: &ir::Signature, index: usize) -> bool {
signature.params[index].purpose == ir::ArgumentPurpose::Normal
}
/// Is the given return of the given function a wasm-level parameter, as
/// opposed to a hidden parameter added for use by the implementation?
fn is_wasm_return(&self, signature: &ir::Signature, index: usize) -> bool {
signature.returns[index].purpose == ir::ArgumentPurpose::Normal
}
/// Should the code be structured to use a single `fallthrough_return` instruction at the end
/// of the function body, rather than `return` instructions as needed? This is used by VMs
/// to append custom epilogues.
fn return_mode(&self) -> ReturnMode {
ReturnMode::NormalReturns
}
/// Set up the necessary preamble definitions in `func` to access the global variable
/// identified by `index`.
///
/// The index space covers both imported globals and globals defined by the module.
///
/// Return the global variable reference that should be used to access the global and the
/// WebAssembly type of the global.
fn make_global(
&mut self,
func: &mut ir::Function,
index: GlobalIndex,
) -> WasmResult<GlobalVariable>;
/// Set up the necessary preamble definitions in `func` to access the linear memory identified
/// by `index`.
///
/// The index space covers both imported and locally declared memories.
fn make_heap(&mut self, func: &mut ir::Function, index: MemoryIndex) -> WasmResult<ir::Heap>;
/// Set up the necessary preamble definitions in `func` to access the table identified
/// by `index`.
///
/// The index space covers both imported and locally declared tables.
fn make_table(&mut self, func: &mut ir::Function, index: TableIndex) -> WasmResult<ir::Table>;
/// Set up a signature definition in the preamble of `func` that can be used for an indirect
/// call with signature `index`.
///
/// The signature may contain additional arguments needed for an indirect call, but the
/// arguments marked as `ArgumentPurpose::Normal` must correspond to the WebAssembly signature
/// arguments.
///
/// The signature will only be used for indirect calls, even if the module has direct function
/// calls with the same WebAssembly type.
fn make_indirect_sig(
&mut self,
func: &mut ir::Function,
index: TypeIndex,
) -> WasmResult<ir::SigRef>;
/// Set up an external function definition in the preamble of `func` that can be used to
/// directly call the function `index`.
///
/// The index space covers both imported functions and functions defined in the current module.
///
/// The function's signature may contain additional arguments needed for a direct call, but the
/// arguments marked as `ArgumentPurpose::Normal` must correspond to the WebAssembly signature
/// arguments.
///
/// The function's signature will only be used for direct calls, even if the module has
/// indirect calls with the same WebAssembly type.
fn make_direct_func(
&mut self,
func: &mut ir::Function,
index: FuncIndex,
) -> WasmResult<ir::FuncRef>;
/// Translate a `call_indirect` WebAssembly instruction at `pos`.
///
/// Insert instructions at `pos` for an indirect call to the function `callee` in the table
/// `table_index` with WebAssembly signature `sig_index`. The `callee` value will have type
/// `i32`.
///
/// The signature `sig_ref` was previously created by `make_indirect_sig()`.
///
/// Return the call instruction whose results are the WebAssembly return values.
#[cfg_attr(feature = "cargo-clippy", allow(clippy::too_many_arguments))]
fn translate_call_indirect(
&mut self,
pos: FuncCursor,
table_index: TableIndex,
table: ir::Table,
sig_index: TypeIndex,
sig_ref: ir::SigRef,
callee: ir::Value,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst>;
/// Translate a `call` WebAssembly instruction at `pos`.
///
/// Insert instructions at `pos` for a direct call to the function `callee_index`.
///
/// The function reference `callee` was previously created by `make_direct_func()`.
///
/// Return the call instruction whose results are the WebAssembly return values.
fn translate_call(
&mut self,
mut pos: FuncCursor,
_callee_index: FuncIndex,
callee: ir::FuncRef,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
Ok(pos.ins().call(callee, call_args))
}
/// Translate a `memory.grow` WebAssembly instruction.
///
/// The `index` provided identifies the linear memory to grow, and `heap` is the heap reference
/// returned by `make_heap` for the same index.
///
/// The `val` value is the requested memory size in pages.
///
/// Returns the old size (in pages) of the memory.
fn translate_memory_grow(
&mut self,
pos: FuncCursor,
index: MemoryIndex,
heap: ir::Heap,
val: ir::Value,
) -> WasmResult<ir::Value>;
/// Translates a `memory.size` WebAssembly instruction.
///
/// The `index` provided identifies the linear memory to query, and `heap` is the heap reference
/// returned by `make_heap` for the same index.
///
/// Returns the size in pages of the memory.
fn translate_memory_size(
&mut self,
pos: FuncCursor,
index: MemoryIndex,
heap: ir::Heap,
) -> WasmResult<ir::Value>;
/// Translate a `memory.copy` WebAssembly instruction.
///
/// The `index` provided identifies the linear memory to query, and `heap` is the heap reference
/// returned by `make_heap` for the same index.
fn translate_memory_copy(
&mut self,
pos: FuncCursor,
src_index: MemoryIndex,
src_heap: ir::Heap,
dst_index: MemoryIndex,
dst_heap: ir::Heap,
dst: ir::Value,
src: ir::Value,
len: ir::Value,
) -> WasmResult<()>;
/// Translate a `memory.fill` WebAssembly instruction.
///
/// The `index` provided identifies the linear memory to query, and `heap` is the heap reference
/// returned by `make_heap` for the same index.
fn translate_memory_fill(
&mut self,
pos: FuncCursor,
index: MemoryIndex,
heap: ir::Heap,
dst: ir::Value,
val: ir::Value,
len: ir::Value,
) -> WasmResult<()>;
/// Translate a `memory.init` WebAssembly instruction.
///
/// The `index` provided identifies the linear memory to query, and `heap` is the heap reference
/// returned by `make_heap` for the same index. `seg_index` is the index of the segment to copy
/// from.
#[allow(clippy::too_many_arguments)]
fn translate_memory_init(
&mut self,
pos: FuncCursor,
index: MemoryIndex,
heap: ir::Heap,
seg_index: u32,
dst: ir::Value,
src: ir::Value,
len: ir::Value,
) -> WasmResult<()>;
/// Translate a `data.drop` WebAssembly instruction.
fn translate_data_drop(&mut self, pos: FuncCursor, seg_index: u32) -> WasmResult<()>;
/// Translate a `table.size` WebAssembly instruction.
fn translate_table_size(
&mut self,
pos: FuncCursor,
index: TableIndex,
table: ir::Table,
) -> WasmResult<ir::Value>;
/// Translate a `table.grow` WebAssembly instruction.
fn translate_table_grow(
&mut self,
pos: FuncCursor,
table_index: TableIndex,
table: ir::Table,
delta: ir::Value,
init_value: ir::Value,
) -> WasmResult<ir::Value>;
/// Translate a `table.get` WebAssembly instruction.
fn translate_table_get(
&mut self,
builder: &mut FunctionBuilder,
table_index: TableIndex,
table: ir::Table,
index: ir::Value,
) -> WasmResult<ir::Value>;
/// Translate a `table.set` WebAssembly instruction.
fn translate_table_set(
&mut self,
builder: &mut FunctionBuilder,
table_index: TableIndex,
table: ir::Table,
value: ir::Value,
index: ir::Value,
) -> WasmResult<()>;
/// Translate a `table.copy` WebAssembly instruction.
#[allow(clippy::too_many_arguments)]
fn translate_table_copy(
&mut self,
pos: FuncCursor,
dst_table_index: TableIndex,
dst_table: ir::Table,
src_table_index: TableIndex,
src_table: ir::Table,
dst: ir::Value,
src: ir::Value,
len: ir::Value,
) -> WasmResult<()>;
/// Translate a `table.fill` WebAssembly instruction.
fn translate_table_fill(
&mut self,
pos: FuncCursor,
table_index: TableIndex,
dst: ir::Value,
val: ir::Value,
len: ir::Value,
) -> WasmResult<()>;
/// Translate a `table.init` WebAssembly instruction.
#[allow(clippy::too_many_arguments)]
fn translate_table_init(
&mut self,
pos: FuncCursor,
seg_index: u32,
table_index: TableIndex,
table: ir::Table,
dst: ir::Value,
src: ir::Value,
len: ir::Value,
) -> WasmResult<()>;
/// Translate a `elem.drop` WebAssembly instruction.
fn translate_elem_drop(&mut self, pos: FuncCursor, seg_index: u32) -> WasmResult<()>;
/// Translate a `ref.null T` WebAssembly instruction.
///
/// By default, translates into a null reference type.
///
/// Override this if you don't use Cranelift reference types for all Wasm
/// reference types (e.g. you use a raw pointer for `funcref`s) or if the
/// null sentinel is not a null reference type pointer for your type. If you
/// override this method, then you should also override
/// `translate_ref_is_null` as well.
fn translate_ref_null(&mut self, mut pos: FuncCursor, ty: WasmType) -> WasmResult<ir::Value> {
let _ = ty;
Ok(pos.ins().null(self.reference_type(ty)))
}
/// Translate a `ref.is_null` WebAssembly instruction.
///
/// By default, assumes that `value` is a Cranelift reference type, and that
/// a null Cranelift reference type is the null value for all Wasm reference
/// types.
///
/// If you override this method, you probably also want to override
/// `translate_ref_null` as well.
fn translate_ref_is_null(
&mut self,
mut pos: FuncCursor,
value: ir::Value,
) -> WasmResult<ir::Value> {
let is_null = pos.ins().is_null(value);
Ok(pos.ins().bint(ir::types::I32, is_null))
}
/// Translate a `ref.func` WebAssembly instruction.
fn translate_ref_func(
&mut self,
pos: FuncCursor,
func_index: FuncIndex,
) -> WasmResult<ir::Value>;
/// Translate a `global.get` WebAssembly instruction at `pos` for a global
/// that is custom.
fn translate_custom_global_get(
&mut self,
pos: FuncCursor,
global_index: GlobalIndex,
) -> WasmResult<ir::Value>;
/// Translate a `global.set` WebAssembly instruction at `pos` for a global
/// that is custom.
fn translate_custom_global_set(
&mut self,
pos: FuncCursor,
global_index: GlobalIndex,
val: ir::Value,
) -> WasmResult<()>;
/// Translate an `i32.atomic.wait` or `i64.atomic.wait` WebAssembly instruction.
/// The `index` provided identifies the linear memory containing the value
/// to wait on, and `heap` is the heap reference returned by `make_heap`
/// for the same index. Whether the waited-on value is 32- or 64-bit can be
/// determined by examining the type of `expected`, which must be only I32 or I64.
///
/// Returns an i32, which is negative if the helper call failed.
fn translate_atomic_wait(
&mut self,
pos: FuncCursor,
index: MemoryIndex,
heap: ir::Heap,
addr: ir::Value,
expected: ir::Value,
timeout: ir::Value,
) -> WasmResult<ir::Value>;
/// Translate an `atomic.notify` WebAssembly instruction.
/// The `index` provided identifies the linear memory containing the value
/// to wait on, and `heap` is the heap reference returned by `make_heap`
/// for the same index.
///
/// Returns an i64, which is negative if the helper call failed.
fn translate_atomic_notify(
&mut self,
pos: FuncCursor,
index: MemoryIndex,
heap: ir::Heap,
addr: ir::Value,
count: ir::Value,
) -> WasmResult<ir::Value>;
/// Emit code at the beginning of every wasm loop.
///
/// This can be used to insert explicit interrupt or safepoint checking at
/// the beginnings of loops.
fn translate_loop_header(&mut self, _pos: FuncCursor) -> WasmResult<()> {
// By default, don't emit anything.
Ok(())
}
/// Optional callback for the `FunctionEnvironment` performing this translation to maintain
/// internal state or prepare custom state for the operator to translate
fn before_translate_operator(
&mut self,
_op: &Operator,
_builder: &mut FunctionBuilder,
_state: &FuncTranslationState,
) -> WasmResult<()> {
Ok(())
}
/// Optional callback for the `FunctionEnvironment` performing this translation to maintain
/// internal state or finalize custom state for the operator that was translated
fn after_translate_operator(
&mut self,
_op: &Operator,
_builder: &mut FunctionBuilder,
_state: &FuncTranslationState,
) -> WasmResult<()> {
Ok(())
}
}
/// An object satisfying the `ModuleEnvironment` trait can be passed as argument to the
/// [`translate_module`](fn.translate_module.html) function. These methods should not be called
/// by the user, they are only for `cranelift-wasm` internal use.
pub trait ModuleEnvironment<'data>: TargetEnvironment {
/// Provides the number of types up front. By default this does nothing, but
/// implementations can use this to preallocate memory if desired.
fn reserve_types(&mut self, _num: u32) -> WasmResult<()> {
Ok(())
}
/// Declares a function signature to the environment.
fn declare_type_func(
&mut self,
wasm_func_type: WasmFuncType,
sig: ir::Signature,
) -> WasmResult<()>;
/// Declares a module type signature to the environment.
fn declare_type_module(
&mut self,
imports: &[(&'data str, Option<&'data str>, EntityType)],
exports: &[(&'data str, EntityType)],
) -> WasmResult<()> {
drop((imports, exports));
Err(WasmError::Unsupported("module linking".to_string()))
}
/// Declares an instance type signature to the environment.
fn declare_type_instance(&mut self, exports: &[(&'data str, EntityType)]) -> WasmResult<()> {
drop(exports);
Err(WasmError::Unsupported("module linking".to_string()))
}
/// Provides the number of imports up front. By default this does nothing, but
/// implementations can use this to preallocate memory if desired.
fn reserve_imports(&mut self, _num: u32) -> WasmResult<()> {
Ok(())
}
/// Declares a function import to the environment.
fn declare_func_import(
&mut self,
index: TypeIndex,
module: &'data str,
field: &'data str,
) -> WasmResult<()>;
/// Declares a table import to the environment.
fn declare_table_import(
&mut self,
table: Table,
module: &'data str,
field: &'data str,
) -> WasmResult<()>;
/// Declares a memory import to the environment.
fn declare_memory_import(
&mut self,
memory: Memory,
module: &'data str,
field: &'data str,
) -> WasmResult<()>;
/// Declares a global import to the environment.
fn declare_global_import(
&mut self,
global: Global,
module: &'data str,
field: &'data str,
) -> WasmResult<()>;
/// Declares a module import to the environment.
fn declare_module_import(
&mut self,
ty_index: TypeIndex,
module: &'data str,
field: &'data str,
) -> WasmResult<()> {
drop((ty_index, module, field));
Err(WasmError::Unsupported("module linking".to_string()))
}
/// Declares an instance import to the environment.
fn declare_instance_import(
&mut self,
ty_index: TypeIndex,
module: &'data str,
field: &'data str,
) -> WasmResult<()> {
drop((ty_index, module, field));
Err(WasmError::Unsupported("module linking".to_string()))
}
/// Notifies the implementation that all imports have been declared.
fn finish_imports(&mut self) -> WasmResult<()> {
Ok(())
}
/// Provides the number of defined functions up front. By default this does nothing, but
/// implementations can use this to preallocate memory if desired.
fn reserve_func_types(&mut self, _num: u32) -> WasmResult<()> {
Ok(())
}
/// Declares the type (signature) of a local function in the module.
fn declare_func_type(&mut self, index: TypeIndex) -> WasmResult<()>;
/// Provides the number of defined tables up front. By default this does nothing, but
/// implementations can use this to preallocate memory if desired.
fn reserve_tables(&mut self, _num: u32) -> WasmResult<()> {
Ok(())
}
/// Declares a table to the environment.
fn declare_table(&mut self, table: Table) -> WasmResult<()>;
/// Provides the number of defined memories up front. By default this does nothing, but
/// implementations can use this to preallocate memory if desired.
fn reserve_memories(&mut self, _num: u32) -> WasmResult<()> {
Ok(())
}
/// Declares a memory to the environment
fn declare_memory(&mut self, memory: Memory) -> WasmResult<()>;
/// Provides the number of defined globals up front. By default this does nothing, but
/// implementations can use this to preallocate memory if desired.
fn reserve_globals(&mut self, _num: u32) -> WasmResult<()> {
Ok(())
}
/// Declares a global to the environment.
fn declare_global(&mut self, global: Global) -> WasmResult<()>;
/// Provides the number of exports up front. By default this does nothing, but
/// implementations can use this to preallocate memory if desired.
fn reserve_exports(&mut self, _num: u32) -> WasmResult<()> {
Ok(())
}
/// Declares a function export to the environment.
fn declare_func_export(&mut self, func_index: FuncIndex, name: &'data str) -> WasmResult<()>;
/// Declares a table export to the environment.
fn declare_table_export(&mut self, table_index: TableIndex, name: &'data str)
-> WasmResult<()>;
/// Declares a memory export to the environment.
fn declare_memory_export(
&mut self,
memory_index: MemoryIndex,
name: &'data str,
) -> WasmResult<()>;
/// Declares a global export to the environment.
fn declare_global_export(
&mut self,
global_index: GlobalIndex,
name: &'data str,
) -> WasmResult<()>;
/// Notifies the implementation that all exports have been declared.
fn finish_exports(&mut self) -> WasmResult<()> {
Ok(())
}
/// Declares the optional start function.
fn declare_start_func(&mut self, index: FuncIndex) -> WasmResult<()>;
/// Provides the number of element initializers up front. By default this does nothing, but
/// implementations can use this to preallocate memory if desired.
fn reserve_table_elements(&mut self, _num: u32) -> WasmResult<()> {
Ok(())
}
/// Fills a declared table with references to functions in the module.
fn declare_table_elements(
&mut self,
table_index: TableIndex,
base: Option<GlobalIndex>,
offset: usize,
elements: Box<[FuncIndex]>,
) -> WasmResult<()>;
/// Declare a passive element segment.
fn declare_passive_element(
&mut self,
index: ElemIndex,
elements: Box<[FuncIndex]>,
) -> WasmResult<()>;
/// Provides the number of passive data segments up front.
///
/// By default this does nothing, but implementations may use this to
/// pre-allocate memory if desired.
fn reserve_passive_data(&mut self, count: u32) -> WasmResult<()> {
let _ = count;
Ok(())
}
/// Declare a passive data segment.
fn declare_passive_data(&mut self, data_index: DataIndex, data: &'data [u8]) -> WasmResult<()>;
/// Indicates how many functions the code section reports and the byte
/// offset of where the code sections starts.
fn reserve_function_bodies(&mut self, bodies: u32, code_section_offset: u64) {
drop((bodies, code_section_offset));
}
/// Provides the contents of a function body.
fn define_function_body(
&mut self,
validator: FuncValidator<ValidatorResources>,
body: FunctionBody<'data>,
) -> WasmResult<()>;
/// Provides the number of data initializers up front. By default this does nothing, but
/// implementations can use this to preallocate memory if desired.
fn reserve_data_initializers(&mut self, _num: u32) -> WasmResult<()> {
Ok(())
}
/// Fills a declared memory with bytes at module instantiation.
fn declare_data_initialization(
&mut self,
memory_index: MemoryIndex,
base: Option<GlobalIndex>,
offset: usize,
data: &'data [u8],
) -> WasmResult<()>;
/// Declares the name of a module to the environment.
///
/// By default this does nothing, but implementations can use this to read
/// the module name subsection of the custom name section if desired.
fn declare_module_name(&mut self, _name: &'data str) {}
/// Declares the name of a function to the environment.
///
/// By default this does nothing, but implementations can use this to read
/// the function name subsection of the custom name section if desired.
fn declare_func_name(&mut self, _func_index: FuncIndex, _name: &'data str) {}
/// Declares the name of a function's local to the environment.
///
/// By default this does nothing, but implementations can use this to read
/// the local name subsection of the custom name section if desired.
fn declare_local_name(&mut self, _func_index: FuncIndex, _local_index: u32, _name: &'data str) {
}
/// Indicates that a custom section has been found in the wasm file
fn custom_section(&mut self, _name: &'data str, _data: &'data [u8]) -> WasmResult<()> {
Ok(())
}
/// Returns the list of enabled wasm features this translation will be using.
fn wasm_features(&self) -> WasmFeatures {
WasmFeatures::default()
}
/// Indicates that this module will have `amount` submodules.
///
/// Note that this is just child modules of this module, and each child
/// module may have yet more submodules.
fn reserve_modules(&mut self, amount: u32) {
drop(amount);
}
/// Called at the beginning of translating a module.
///
/// The `index` argument is a monotonically increasing index which
/// corresponds to the nth module that's being translated. This is not the
/// 32-bit index in the current module's index space. For example the first
/// call to `module_start` will have index 0.
///
/// Note that for nested modules this may be called multiple times.
fn module_start(&mut self, index: usize) {
drop(index);
}
/// Called at the end of translating a module.
///
/// Note that for nested modules this may be called multiple times.
fn module_end(&mut self, index: usize) {
drop(index);
}
}