This means that we can verify the basics with verify_context before moving on to verifying the liveness information. Live ranges are now verified immediately after computing them and after register allocation is complete.
712 lines
26 KiB
Rust
712 lines
26 KiB
Rust
//! A verifier for ensuring that functions are well formed.
|
|
//! It verifies:
|
|
//!
|
|
//! EBB integrity
|
|
//!
|
|
//! - All instructions reached from the `ebb_insts` iterator must belong to
|
|
//! the EBB as reported by `inst_ebb()`.
|
|
//! - Every EBB must end in a terminator instruction, and no other instruction
|
|
//! can be a terminator.
|
|
//! - Every value in the `ebb_args` iterator belongs to the EBB as reported by `value_ebb`.
|
|
//!
|
|
//! Instruction integrity
|
|
//!
|
|
//! - The instruction format must match the opcode.
|
|
//! - All result values must be created for multi-valued instructions.
|
|
//! - All referenced entities must exist. (Values, EBBs, stack slots, ...)
|
|
//!
|
|
//! SSA form
|
|
//!
|
|
//! - Values must be defined by an instruction that exists and that is inserted in
|
|
//! an EBB, or be an argument of an existing EBB.
|
|
//! - Values used by an instruction must dominate the instruction.
|
|
//!
|
|
//! Control flow graph and dominator tree integrity:
|
|
//!
|
|
//! - All predecessors in the CFG must be branches to the EBB.
|
|
//! - All branches to an EBB must be present in the CFG.
|
|
//! - A recomputed dominator tree is identical to the existing one.
|
|
//!
|
|
//! Type checking
|
|
//!
|
|
//! - Compare input and output values against the opcode's type constraints.
|
|
//! For polymorphic opcodes, determine the controlling type variable first.
|
|
//! - Branches and jumps must pass arguments to destination EBBs that match the
|
|
//! expected types exactly. The number of arguments must match.
|
|
//! - All EBBs in a jump_table must take no arguments.
|
|
//! - Function calls are type checked against their signature.
|
|
//! - The entry block must take arguments that match the signature of the current
|
|
//! function.
|
|
//! - All return instructions must have return value operands matching the current
|
|
//! function signature.
|
|
//!
|
|
//! TODO:
|
|
//! Ad hoc checking
|
|
//!
|
|
//! - Stack slot loads and stores must be in-bounds.
|
|
//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
|
|
//! - Extend / truncate instructions have more type constraints: Source type can't be
|
|
//! larger / smaller than result type.
|
|
//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
|
|
//! range for their polymorphic type.
|
|
//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
|
|
//! of arguments must match the destination type, and the lane indexes must be in range.
|
|
|
|
use dominator_tree::DominatorTree;
|
|
use flowgraph::ControlFlowGraph;
|
|
use ir::entities::AnyEntity;
|
|
use ir::instructions::{InstructionFormat, BranchInfo, ResolvedConstraint, CallInfo};
|
|
use ir::{types, Function, ValueDef, Ebb, Inst, SigRef, FuncRef, ValueList, JumpTable, StackSlot,
|
|
Value, Type};
|
|
use std::error as std_error;
|
|
use std::fmt::{self, Display, Formatter};
|
|
use std::result;
|
|
use std::collections::BTreeSet;
|
|
|
|
pub use self::liveness::verify_liveness;
|
|
|
|
// Create an `Err` variant of `Result<X>` from a location and `format!` arguments.
|
|
macro_rules! err {
|
|
( $loc:expr, $msg:expr ) => {
|
|
Err(::verifier::Error {
|
|
location: $loc.into(),
|
|
message: String::from($msg),
|
|
})
|
|
};
|
|
|
|
( $loc:expr, $fmt:expr, $( $arg:expr ),+ ) => {
|
|
Err(::verifier::Error {
|
|
location: $loc.into(),
|
|
message: format!( $fmt, $( $arg ),+ ),
|
|
})
|
|
};
|
|
}
|
|
|
|
mod liveness;
|
|
|
|
/// A verifier error.
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub struct Error {
|
|
/// The entity causing the verifier error.
|
|
pub location: AnyEntity,
|
|
/// Error message.
|
|
pub message: String,
|
|
}
|
|
|
|
impl Display for Error {
|
|
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
|
write!(f, "{}: {}", self.location, self.message)
|
|
}
|
|
}
|
|
|
|
impl std_error::Error for Error {
|
|
fn description(&self) -> &str {
|
|
&self.message
|
|
}
|
|
}
|
|
|
|
/// Verifier result.
|
|
pub type Result = result::Result<(), Error>;
|
|
|
|
/// Verify `func`.
|
|
pub fn verify_function(func: &Function) -> Result {
|
|
Verifier::new(func).run()
|
|
}
|
|
|
|
/// Verify `func` after checking the integrity of associated context data structures `cfg` and
|
|
/// `domtree`.
|
|
pub fn verify_context(func: &Function, cfg: &ControlFlowGraph, domtree: &DominatorTree) -> Result {
|
|
let verifier = Verifier::new(func);
|
|
verifier.cfg_integrity(cfg)?;
|
|
verifier.domtree_integrity(domtree)?;
|
|
verifier.run()
|
|
}
|
|
|
|
struct Verifier<'a> {
|
|
func: &'a Function,
|
|
cfg: ControlFlowGraph,
|
|
domtree: DominatorTree,
|
|
}
|
|
|
|
impl<'a> Verifier<'a> {
|
|
pub fn new(func: &'a Function) -> Verifier {
|
|
let cfg = ControlFlowGraph::with_function(func);
|
|
let domtree = DominatorTree::with_function(func, &cfg);
|
|
Verifier {
|
|
func: func,
|
|
cfg: cfg,
|
|
domtree: domtree,
|
|
}
|
|
}
|
|
|
|
fn ebb_integrity(&self, ebb: Ebb, inst: Inst) -> Result {
|
|
|
|
let is_terminator = self.func.dfg[inst].opcode().is_terminator();
|
|
let is_last_inst = self.func.layout.last_inst(ebb) == Some(inst);
|
|
|
|
if is_terminator && !is_last_inst {
|
|
// Terminating instructions only occur at the end of blocks.
|
|
return err!(inst,
|
|
"a terminator instruction was encountered before the end of {}",
|
|
ebb);
|
|
}
|
|
if is_last_inst && !is_terminator {
|
|
return err!(ebb, "block does not end in a terminator instruction!");
|
|
}
|
|
|
|
// Instructions belong to the correct ebb.
|
|
let inst_ebb = self.func.layout.inst_ebb(inst);
|
|
if inst_ebb != Some(ebb) {
|
|
return err!(inst, "should belong to {} not {:?}", ebb, inst_ebb);
|
|
}
|
|
|
|
// Arguments belong to the correct ebb.
|
|
for &arg in self.func.dfg.ebb_args(ebb) {
|
|
match self.func.dfg.value_def(arg) {
|
|
ValueDef::Arg(arg_ebb, _) => {
|
|
if ebb != arg_ebb {
|
|
return err!(arg, "does not belong to {}", ebb);
|
|
}
|
|
}
|
|
_ => {
|
|
return err!(arg, "expected an argument, found a result");
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn instruction_integrity(&self, inst: Inst) -> Result {
|
|
let inst_data = &self.func.dfg[inst];
|
|
let dfg = &self.func.dfg;
|
|
|
|
// The instruction format matches the opcode
|
|
if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
|
|
return err!(inst, "instruction opcode doesn't match instruction format");
|
|
}
|
|
|
|
let fixed_results = inst_data.opcode().constraints().fixed_results();
|
|
// var_results is 0 if we aren't a call instruction
|
|
let var_results = dfg.call_signature(inst)
|
|
.map(|sig| dfg.signatures[sig].return_types.len())
|
|
.unwrap_or(0);
|
|
let total_results = fixed_results + var_results;
|
|
|
|
// All result values for multi-valued instructions are created
|
|
let got_results = dfg.inst_results(inst).len();
|
|
if got_results != total_results {
|
|
return err!(inst,
|
|
"expected {} result values, found {}",
|
|
total_results,
|
|
got_results);
|
|
}
|
|
|
|
self.verify_entity_references(inst)
|
|
}
|
|
|
|
fn verify_entity_references(&self, inst: Inst) -> Result {
|
|
use ir::instructions::InstructionData::*;
|
|
|
|
for &arg in self.func.dfg.inst_args(inst) {
|
|
self.verify_value(inst, arg)?;
|
|
|
|
// All used values must be attached to something.
|
|
let original = self.func.dfg.resolve_aliases(arg);
|
|
if !self.func.dfg.value_is_attached(original) {
|
|
return err!(inst, "argument {} -> {} is not attached", arg, original);
|
|
}
|
|
}
|
|
|
|
for &res in self.func.dfg.inst_results(inst) {
|
|
self.verify_value(inst, res)?;
|
|
}
|
|
|
|
match &self.func.dfg[inst] {
|
|
&MultiAry { ref args, .. } => {
|
|
self.verify_value_list(inst, args)?;
|
|
}
|
|
&Jump {
|
|
destination,
|
|
ref args,
|
|
..
|
|
} |
|
|
&Branch {
|
|
destination,
|
|
ref args,
|
|
..
|
|
} |
|
|
&BranchIcmp {
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
self.verify_ebb(inst, destination)?;
|
|
self.verify_value_list(inst, args)?;
|
|
}
|
|
&BranchTable { table, .. } => {
|
|
self.verify_jump_table(inst, table)?;
|
|
}
|
|
&Call { func_ref, ref args, .. } => {
|
|
self.verify_func_ref(inst, func_ref)?;
|
|
self.verify_value_list(inst, args)?;
|
|
}
|
|
&IndirectCall { sig_ref, ref args, .. } => {
|
|
self.verify_sig_ref(inst, sig_ref)?;
|
|
self.verify_value_list(inst, args)?;
|
|
}
|
|
&StackLoad { stack_slot, .. } |
|
|
&StackStore { stack_slot, .. } => {
|
|
self.verify_stack_slot(inst, stack_slot)?;
|
|
}
|
|
|
|
// Exhaustive list so we can't forget to add new formats
|
|
&Nullary { .. } |
|
|
&Unary { .. } |
|
|
&UnaryImm { .. } |
|
|
&UnaryIeee32 { .. } |
|
|
&UnaryIeee64 { .. } |
|
|
&Binary { .. } |
|
|
&BinaryImm { .. } |
|
|
&Ternary { .. } |
|
|
&InsertLane { .. } |
|
|
&ExtractLane { .. } |
|
|
&IntCompare { .. } |
|
|
&IntCompareImm { .. } |
|
|
&FloatCompare { .. } |
|
|
&HeapLoad { .. } |
|
|
&HeapStore { .. } |
|
|
&Load { .. } |
|
|
&Store { .. } => {}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_ebb(&self, inst: Inst, e: Ebb) -> Result {
|
|
if !self.func.dfg.ebb_is_valid(e) {
|
|
err!(inst, "invalid ebb reference {}", e)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_sig_ref(&self, inst: Inst, s: SigRef) -> Result {
|
|
if !self.func.dfg.signatures.is_valid(s) {
|
|
err!(inst, "invalid signature reference {}", s)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_func_ref(&self, inst: Inst, f: FuncRef) -> Result {
|
|
if !self.func.dfg.ext_funcs.is_valid(f) {
|
|
err!(inst, "invalid function reference {}", f)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_stack_slot(&self, inst: Inst, ss: StackSlot) -> Result {
|
|
if !self.func.stack_slots.is_valid(ss) {
|
|
err!(inst, "invalid stack slot {}", ss)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_value_list(&self, inst: Inst, l: &ValueList) -> Result {
|
|
if !l.is_valid(&self.func.dfg.value_lists) {
|
|
err!(inst, "invalid value list reference {:?}", l)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_jump_table(&self, inst: Inst, j: JumpTable) -> Result {
|
|
if !self.func.jump_tables.is_valid(j) {
|
|
err!(inst, "invalid jump table reference {}", j)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_value(&self, loc_inst: Inst, v: Value) -> Result {
|
|
let dfg = &self.func.dfg;
|
|
if !dfg.value_is_valid(v) {
|
|
return err!(loc_inst, "invalid value reference {}", v);
|
|
}
|
|
|
|
// SSA form
|
|
match dfg.value_def(v) {
|
|
ValueDef::Res(def_inst, _) => {
|
|
// Value is defined by an instruction that exists.
|
|
if !dfg.inst_is_valid(def_inst) {
|
|
return err!(loc_inst,
|
|
"{} is defined by invalid instruction {}",
|
|
v,
|
|
def_inst);
|
|
}
|
|
// Defining instruction is inserted in an EBB.
|
|
if self.func.layout.inst_ebb(def_inst) == None {
|
|
return err!(loc_inst,
|
|
"{} is defined by {} which has no EBB",
|
|
v,
|
|
def_inst);
|
|
}
|
|
// Defining instruction dominates the instruction that uses the value.
|
|
if !self.domtree
|
|
.dominates(def_inst, loc_inst, &self.func.layout) {
|
|
return err!(loc_inst, "uses value from non-dominating {}", def_inst);
|
|
}
|
|
}
|
|
ValueDef::Arg(ebb, _) => {
|
|
// Value is defined by an existing EBB.
|
|
if !dfg.ebb_is_valid(ebb) {
|
|
return err!(loc_inst, "{} is defined by invalid EBB {}", v, ebb);
|
|
}
|
|
// Defining EBB is inserted in the layout
|
|
if !self.func.layout.is_ebb_inserted(ebb) {
|
|
return err!(loc_inst,
|
|
"{} is defined by {} which is not in the layout",
|
|
v,
|
|
ebb);
|
|
}
|
|
// The defining EBB dominates the instruction using this value.
|
|
if !self.domtree
|
|
.ebb_dominates(ebb, loc_inst, &self.func.layout) {
|
|
return err!(loc_inst, "uses value arg from non-dominating {}", ebb);
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn domtree_integrity(&self, domtree: &DominatorTree) -> Result {
|
|
// We consider two `DominatorTree`s to be equal if they return the same immediate
|
|
// dominator for each EBB. Therefore the current domtree is valid if it matches the freshly
|
|
// computed one.
|
|
for ebb in self.func.layout.ebbs() {
|
|
let expected = domtree.idom(ebb);
|
|
let got = self.domtree.idom(ebb);
|
|
if got != expected {
|
|
return err!(ebb,
|
|
"invalid domtree, expected idom({}) = {:?}, got {:?}",
|
|
ebb,
|
|
expected,
|
|
got);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_entry_block_arguments(&self) -> Result {
|
|
if let Some(ebb) = self.func.layout.entry_block() {
|
|
let expected_types = &self.func.signature.argument_types;
|
|
let ebb_arg_count = self.func.dfg.num_ebb_args(ebb);
|
|
|
|
if ebb_arg_count != expected_types.len() {
|
|
return err!(ebb, "entry block arguments must match function signature");
|
|
}
|
|
|
|
for (i, &arg) in self.func.dfg.ebb_args(ebb).iter().enumerate() {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
if arg_type != expected_types[i].value_type {
|
|
return err!(ebb,
|
|
"entry block argument {} expected to have type {}, got {}",
|
|
i,
|
|
expected_types[i],
|
|
arg_type);
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck(&self, inst: Inst) -> Result {
|
|
let inst_data = &self.func.dfg[inst];
|
|
let constraints = inst_data.opcode().constraints();
|
|
|
|
let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
|
|
// For polymorphic opcodes, determine the controlling type variable first.
|
|
let ctrl_type = self.func.dfg.ctrl_typevar(inst);
|
|
|
|
if !value_typeset.contains(ctrl_type) {
|
|
return err!(inst, "has an invalid controlling type {}", ctrl_type);
|
|
}
|
|
|
|
ctrl_type
|
|
} else {
|
|
// Non-polymorphic instructions don't check the controlling type variable, so `Option`
|
|
// is unnecessary and we can just make it `VOID`.
|
|
types::VOID
|
|
};
|
|
|
|
self.typecheck_results(inst, ctrl_type)?;
|
|
self.typecheck_fixed_args(inst, ctrl_type)?;
|
|
self.typecheck_variable_args(inst)?;
|
|
self.typecheck_return(inst)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_results(&self, inst: Inst, ctrl_type: Type) -> Result {
|
|
let mut i = 0;
|
|
for &result in self.func.dfg.inst_results(inst) {
|
|
let result_type = self.func.dfg.value_type(result);
|
|
let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
|
|
if let Some(expected_type) = expected_type {
|
|
if result_type != expected_type {
|
|
return err!(inst,
|
|
"expected result {} ({}) to have type {}, found {}",
|
|
i,
|
|
result,
|
|
expected_type,
|
|
result_type);
|
|
}
|
|
} else {
|
|
return err!(inst, "has more result values than expected");
|
|
}
|
|
i += 1;
|
|
}
|
|
|
|
// There aren't any more result types left.
|
|
if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
|
|
return err!(inst, "has fewer result values than expected");
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_fixed_args(&self, inst: Inst, ctrl_type: Type) -> Result {
|
|
let constraints = self.func.dfg[inst].opcode().constraints();
|
|
|
|
for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
match constraints.value_argument_constraint(i, ctrl_type) {
|
|
ResolvedConstraint::Bound(expected_type) => {
|
|
if arg_type != expected_type {
|
|
return err!(inst,
|
|
"arg {} ({}) has type {}, expected {}",
|
|
i,
|
|
arg,
|
|
arg_type,
|
|
expected_type);
|
|
}
|
|
}
|
|
ResolvedConstraint::Free(type_set) => {
|
|
if !type_set.contains(arg_type) {
|
|
return err!(inst,
|
|
"arg {} ({}) with type {} failed to satisfy type set {:?}",
|
|
i,
|
|
arg,
|
|
arg_type,
|
|
type_set);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_variable_args(&self, inst: Inst) -> Result {
|
|
match self.func.dfg[inst].analyze_branch(&self.func.dfg.value_lists) {
|
|
BranchInfo::SingleDest(ebb, _) => {
|
|
let iter = self.func
|
|
.dfg
|
|
.ebb_args(ebb)
|
|
.iter()
|
|
.map(|&v| self.func.dfg.value_type(v));
|
|
self.typecheck_variable_args_iterator(inst, iter)?;
|
|
}
|
|
BranchInfo::Table(table) => {
|
|
for (_, ebb) in self.func.jump_tables[table].entries() {
|
|
let arg_count = self.func.dfg.num_ebb_args(ebb);
|
|
if arg_count != 0 {
|
|
return err!(inst,
|
|
"takes no arguments, but had target {} with {} arguments",
|
|
ebb,
|
|
arg_count);
|
|
}
|
|
}
|
|
}
|
|
BranchInfo::NotABranch => {}
|
|
}
|
|
|
|
match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
|
|
CallInfo::Direct(func_ref, _) => {
|
|
let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
|
|
let arg_types = self.func.dfg.signatures[sig_ref]
|
|
.argument_types
|
|
.iter()
|
|
.map(|a| a.value_type);
|
|
self.typecheck_variable_args_iterator(inst, arg_types)?;
|
|
}
|
|
CallInfo::Indirect(sig_ref, _) => {
|
|
let arg_types = self.func.dfg.signatures[sig_ref]
|
|
.argument_types
|
|
.iter()
|
|
.map(|a| a.value_type);
|
|
self.typecheck_variable_args_iterator(inst, arg_types)?;
|
|
}
|
|
CallInfo::NotACall => {}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(&self,
|
|
inst: Inst,
|
|
iter: I)
|
|
-> Result {
|
|
let variable_args = self.func.dfg.inst_variable_args(inst);
|
|
let mut i = 0;
|
|
|
|
for expected_type in iter {
|
|
if i >= variable_args.len() {
|
|
// Result count mismatch handled below, we want the full argument count first though
|
|
i += 1;
|
|
continue;
|
|
}
|
|
let arg = variable_args[i];
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
if expected_type != arg_type {
|
|
return err!(inst,
|
|
"arg {} ({}) has type {}, expected {}",
|
|
i,
|
|
variable_args[i],
|
|
arg_type,
|
|
expected_type);
|
|
}
|
|
i += 1;
|
|
}
|
|
if i != variable_args.len() {
|
|
return err!(inst,
|
|
"mismatched argument count, got {}, expected {}",
|
|
variable_args.len(),
|
|
i);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_return(&self, inst: Inst) -> Result {
|
|
if self.func.dfg[inst].opcode().is_return() {
|
|
let args = self.func.dfg.inst_variable_args(inst);
|
|
let expected_types = &self.func.signature.return_types;
|
|
if args.len() != expected_types.len() {
|
|
return err!(inst, "arguments of return must match function signature");
|
|
}
|
|
for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
if arg_type != expected_type.value_type {
|
|
return err!(inst,
|
|
"arg {} ({}) has type {}, must match function signature of {}",
|
|
i,
|
|
arg,
|
|
arg_type,
|
|
expected_type);
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn cfg_integrity(&self, cfg: &ControlFlowGraph) -> Result {
|
|
let mut expected_succs = BTreeSet::<Ebb>::new();
|
|
let mut got_succs = BTreeSet::<Ebb>::new();
|
|
let mut expected_preds = BTreeSet::<Inst>::new();
|
|
let mut got_preds = BTreeSet::<Inst>::new();
|
|
|
|
for ebb in self.func.layout.ebbs() {
|
|
expected_succs.extend(self.cfg.get_successors(ebb));
|
|
got_succs.extend(cfg.get_successors(ebb));
|
|
|
|
let missing_succs: Vec<Ebb> = expected_succs.difference(&got_succs).cloned().collect();
|
|
if missing_succs.len() != 0 {
|
|
return err!(ebb,
|
|
"cfg lacked the following successor(s) {:?}",
|
|
missing_succs);
|
|
}
|
|
|
|
let excess_succs: Vec<Ebb> = got_succs.difference(&expected_succs).cloned().collect();
|
|
if excess_succs.len() != 0 {
|
|
return err!(ebb, "cfg had unexpected successor(s) {:?}", excess_succs);
|
|
}
|
|
|
|
expected_preds.extend(self.cfg
|
|
.get_predecessors(ebb)
|
|
.iter()
|
|
.map(|&(_, inst)| inst));
|
|
got_preds.extend(cfg.get_predecessors(ebb).iter().map(|&(_, inst)| inst));
|
|
|
|
let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
|
|
if missing_preds.len() != 0 {
|
|
return err!(ebb,
|
|
"cfg lacked the following predecessor(s) {:?}",
|
|
missing_preds);
|
|
}
|
|
|
|
let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
|
|
if excess_preds.len() != 0 {
|
|
return err!(ebb, "cfg had unexpected predecessor(s) {:?}", excess_preds);
|
|
}
|
|
|
|
expected_succs.clear();
|
|
got_succs.clear();
|
|
expected_preds.clear();
|
|
got_preds.clear();
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub fn run(&self) -> Result {
|
|
self.typecheck_entry_block_arguments()?;
|
|
for ebb in self.func.layout.ebbs() {
|
|
for inst in self.func.layout.ebb_insts(ebb) {
|
|
self.ebb_integrity(ebb, inst)?;
|
|
self.instruction_integrity(inst)?;
|
|
self.typecheck(inst)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::{Verifier, Error};
|
|
use ir::Function;
|
|
use ir::instructions::{InstructionData, Opcode};
|
|
|
|
macro_rules! assert_err_with_msg {
|
|
($e:expr, $msg:expr) => (
|
|
match $e {
|
|
Ok(_) => { panic!("Expected an error!") },
|
|
Err(Error { message, .. } ) => {
|
|
if !message.contains($msg) {
|
|
panic!(format!("'{}' did not contain the substring '{}'", message, $msg));
|
|
}
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
#[test]
|
|
fn empty() {
|
|
let func = Function::new();
|
|
let verifier = Verifier::new(&func);
|
|
assert_eq!(verifier.run(), Ok(()));
|
|
}
|
|
|
|
#[test]
|
|
fn bad_instruction_format() {
|
|
let mut func = Function::new();
|
|
let ebb0 = func.dfg.make_ebb();
|
|
func.layout.append_ebb(ebb0);
|
|
let nullary_with_bad_opcode =
|
|
func.dfg
|
|
.make_inst(InstructionData::Nullary { opcode: Opcode::Jump });
|
|
func.layout.append_inst(nullary_with_bad_opcode, ebb0);
|
|
let verifier = Verifier::new(&func);
|
|
assert_err_with_msg!(verifier.run(), "instruction format");
|
|
}
|
|
}
|