Files
wasmtime/cranelift/filetests/parser/tiny.cton
Tyler McMullen f636d795c5 load_complex and store_complex instructions (#309)
* Start adding the load_complex and store_complex instructions.

N.b.:
The text format is not correct yet. Requires changes to the lexer and parser.
I'm not sure why I needed to change the RuntimeError to Exception yet. Will fix.

* Get first few encodings of load_complex working. Still needs var args type checking.

* Clean up ModRM helper functions in binemit.

* Implement 32-bit displace for load_complex

* Use encoding helpers instead of doing them all by hand

* Initial implementation of store_complex

* Parse value list for load/store_complex with + as delimiter. Looks nice.

* Add sign/zero-extension and size variants for load_complex.

* Add size variants of store_complex.

* Add asm helper lines to load/store complex bin tests.

* Example of length-checking the instruction ValueList for an encoding. Extremely questionable implementation.

* Fix Python linting issues

* First draft of postopt pass to fold adds and loads into load_complex. Just simple loads for now.

* Optimization pass now works with all types of loads.

* Add store+add -> store_complex to postopt pass

* Put complex address optimization behind ISA flag.

* Add load/store complex for f32 and f64

* Fixes changes to lexer that broke NaN parsing.

Abstracts away the repeated checks for whether or not the characters
following a + or - are going to be parsed as a number or not.

* Fix formatting issues

* Fix register restrictions for complex addresses.

* Encoding tests for x86-32.

* Add documentation for newly added instructions, recipes, and cdsl changes.

* Fix python formatting again

* Apply value-list length predicates to all LoadComplex and StoreComplex instructions.

* Add predicate types to new encoding helpers for mypy.

* Import FieldPredicate to satisfy mypy.

* Add and fix some "asm" strings in the encoding tests.

* Line-up 'bin' comments in x86/binary64 test

* Test parsing of offset-less store_complex instruction.

* 'sNaN' not 'sNan'

* Bounds check the lookup for polymorphic typevar operand.

* Fix encodings for istore16_complex.
2018-05-09 14:07:00 -05:00

242 lines
6.1 KiB
Plaintext

test cat
; The smallest possible function.
function %minimal() {
ebb0:
trap user0
}
; sameln: function %minimal() fast {
; nextln: ebb0:
; nextln: trap user0
; nextln: }
; Create and use values.
; Polymorphic instructions with type suffix.
function %ivalues() {
ebb0:
v0 = iconst.i32 2
v1 = iconst.i8 6
v2 = ishl v0, v1
}
; sameln: function %ivalues() fast {
; nextln: ebb0:
; nextln: v0 = iconst.i32 2
; nextln: v1 = iconst.i8 6
; nextln: v2 = ishl v0, v1
; nextln: }
; Create and use values.
; Polymorphic instructions with type suffix.
function %bvalues() {
ebb0:
v0 = bconst.b32 true
v1 = bconst.b8 false
v2 = bextend.b32 v1
v3 = bxor v0, v2
}
; sameln: function %bvalues() fast {
; nextln: ebb0:
; nextln: v0 = bconst.b32 true
; nextln: v1 = bconst.b8 false
; nextln: v2 = bextend.b32 v1
; nextln: v3 = bxor v0, v2
; nextln: }
; Polymorphic instruction controlled by second operand.
function %select() {
ebb0(v90: i32, v91: i32, v92: b1):
v0 = select v92, v90, v91
}
; sameln: function %select() fast {
; nextln: ebb0(v90: i32, v91: i32, v92: b1):
; nextln: v0 = select v92, v90, v91
; nextln: }
; Polymorphic instruction controlled by third operand.
function %selectif() system_v {
ebb0(v95: i32, v96: i32, v97: b1):
v98 = selectif.i32 eq v97, v95, v96
}
; sameln: function %selectif() system_v {
; nextln: ebb0(v95: i32, v96: i32, v97: b1):
; nextln: v98 = selectif.i32 eq v97, v95, v96
; nextln: }
; Lane indexes.
function %lanes() {
ebb0:
v0 = iconst.i32x4 2
v1 = extractlane v0, 3
v2 = insertlane v0, 1, v1
}
; sameln: function %lanes() fast {
; nextln: ebb0:
; nextln: v0 = iconst.i32x4 2
; nextln: v1 = extractlane v0, 3
; nextln: v2 = insertlane v0, 1, v1
; nextln: }
; Integer condition codes.
function %icmp(i32, i32) {
ebb0(v90: i32, v91: i32):
v0 = icmp eq v90, v91
v1 = icmp ult v90, v91
v2 = icmp_imm sge v90, -12
v3 = irsub_imm v91, 45
br_icmp eq v90, v91, ebb0(v91, v90)
}
; sameln: function %icmp(i32, i32) fast {
; nextln: ebb0(v90: i32, v91: i32):
; nextln: v0 = icmp eq v90, v91
; nextln: v1 = icmp ult v90, v91
; nextln: v2 = icmp_imm sge v90, -12
; nextln: v3 = irsub_imm v91, 45
; nextln: br_icmp eq v90, v91, ebb0(v91, v90)
; nextln: }
; Floating condition codes.
function %fcmp(f32, f32) {
ebb0(v90: f32, v91: f32):
v0 = fcmp eq v90, v91
v1 = fcmp uno v90, v91
v2 = fcmp lt v90, v91
}
; sameln: function %fcmp(f32, f32) fast {
; nextln: ebb0(v90: f32, v91: f32):
; nextln: v0 = fcmp eq v90, v91
; nextln: v1 = fcmp uno v90, v91
; nextln: v2 = fcmp lt v90, v91
; nextln: }
; The bitcast instruction has two type variables: The controlling type variable
; controls the outout type, and the input type is a free variable.
function %bitcast(i32, f32) {
ebb0(v90: i32, v91: f32):
v0 = bitcast.i8x4 v90
v1 = bitcast.i32 v91
}
; sameln: function %bitcast(i32, f32) fast {
; nextln: ebb0(v90: i32, v91: f32):
; nextln: v0 = bitcast.i8x4 v90
; nextln: v1 = bitcast.i32 v91
; nextln: }
; Stack slot references
function %stack() {
ss10 = spill_slot 8
ss2 = explicit_slot 4
ss3 = incoming_arg 4, offset 8
ss4 = outgoing_arg 4
ss5 = emergency_slot 4
ebb0:
v1 = stack_load.i32 ss10
v2 = stack_load.i32 ss10+4
stack_store v1, ss10+2
stack_store v2, ss2
}
; sameln: function %stack() fast {
; check: ss2 = explicit_slot 4
; check: ss3 = incoming_arg 4, offset 8
; check: ss4 = outgoing_arg 4
; check: ss5 = emergency_slot 4
; check: ss10 = spill_slot 8
; check: ebb0:
; nextln: v1 = stack_load.i32 ss10
; nextln: v2 = stack_load.i32 ss10+4
; nextln: stack_store v1, ss10+2
; nextln: stack_store v2, ss2
; Memory access instructions.
function %memory(i32) {
ebb0(v1: i32):
v2 = load.i64 v1
v3 = load.i64 aligned v1
v4 = load.i64 notrap v1
v5 = load.i64 notrap aligned v1
v6 = load.i64 aligned notrap v1
v7 = load.i64 v1-12
v8 = load.i64 notrap v1+0x1_0000
v9 = load_complex.i64 v1+v2
v10 = load_complex.i64 v1+v2+0x1
store v2, v1
store aligned v3, v1+12
store notrap aligned v3, v1-12
store_complex v3, v1+v2
store_complex v3, v1+v2+0x1
}
; sameln: function %memory(i32) fast {
; nextln: ebb0(v1: i32):
; nextln: v2 = load.i64 v1
; nextln: v3 = load.i64 aligned v1
; nextln: v4 = load.i64 notrap v1
; nextln: v5 = load.i64 notrap aligned v1
; nextln: v6 = load.i64 notrap aligned v1
; nextln: v7 = load.i64 v1-12
; nextln: v8 = load.i64 notrap v1+0x0001_0000
; nextln: v9 = load_complex.i64 v1+v2
; nextln: v10 = load_complex.i64 v1+v2+1
; nextln: store v2, v1
; nextln: store aligned v3, v1+12
; nextln: store notrap aligned v3, v1-12
; nextln: store_complex v3, v1+v2
; nextln: store_complex v3, v1+v2+1
; Register diversions.
; This test file has no ISA, so we can unly use register unit numbers.
function %diversion(i32) {
ss0 = spill_slot 4
ebb0(v1: i32):
regmove v1, %10 -> %20
regmove v1, %20 -> %10
regspill v1, %10 -> ss0
regfill v1, ss0 -> %10
return
}
; sameln: function %diversion(i32) fast {
; nextln: ss0 = spill_slot 4
; check: ebb0(v1: i32):
; nextln: regmove v1, %10 -> %20
; nextln: regmove v1, %20 -> %10
; nextln: regspill v1, %10 -> ss0
; nextln: regfill v1, ss0 -> %10
; nextln: return
; nextln: }
; Register copies.
function %copy_special() {
ebb0:
copy_special %10 -> %20
copy_special %20 -> %10
return
}
; sameln: function %copy_special() fast {
; nextln: ebb0:
; nextln: copy_special %10 -> %20
; nextln: copy_special %20 -> %10
; nextln: return
; nextln: }
function %cond_traps(i32) {
ebb0(v0: i32):
trapz v0, stk_ovf
v1 = ifcmp_imm v0, 5
trapif ugt v1, oob
v2 = bitcast.f32 v1
v3 = ffcmp v2, v2
trapff uno v3, int_ovf
return
}
; sameln: function %cond_traps(i32)
; nextln: ebb0(v0: i32):
; nextln: trapz v0, stk_ovf
; nextln: v1 = ifcmp_imm v0, 5
; nextln: trapif ugt v1, oob
; nextln: v2 = bitcast.f32 v1
; nextln: v3 = ffcmp v2, v2
; nextln: trapff uno v3, int_ovf
; nextln: return
; nextln: }