Files
wasmtime/src/tests.rs
2019-03-12 16:26:58 +01:00

1987 lines
56 KiB
Rust

use super::{module::ExecutionError, translate, ExecutableModule};
use wabt;
fn translate_wat(wat: &str) -> ExecutableModule {
let wasm = wabt::wat2wasm(wat).unwrap();
let compiled = translate(&wasm).unwrap();
compiled
}
/// Execute the first function in the module.
fn execute_wat(wat: &str, a: u32, b: u32) -> u32 {
let translated = translate_wat(wat);
translated.disassemble();
translated.execute_func(0, (a, b)).unwrap()
}
#[test]
fn empty() {
let _ = translate_wat("(module (func))");
}
mod op32 {
use super::{translate_wat, ExecutableModule};
macro_rules! binop_test {
($op:ident, $func:expr) => {
mod $op {
use super::{translate_wat, ExecutableModule};
use std::sync::Once;
const OP: &str = stringify!($op);
lazy_static! {
static ref AS_PARAMS: ExecutableModule = translate_wat(&format!(
"(module (func (param i32) (param i32) (result i32)
(i32.{op} (get_local 0) (get_local 1))))",
op = OP
));
}
quickcheck! {
fn as_params(a: i32, b: i32) -> bool {
AS_PARAMS.execute_func::<(i32, i32), i32>(0, (a, b)) == Ok($func(a, b))
}
fn lit_lit(a: i32, b: i32) -> bool {
let translated = translate_wat(&format!("
(module (func (result i32)
(i32.{op} (i32.const {left}) (i32.const {right}))))
", op = OP, left = a, right = b));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(), i32>(0, ()) == Ok($func(a, b))
}
fn lit_reg(a: i32, b: i32) -> bool {
let translated = translate_wat(&format!("
(module (func (param i32) (result i32)
(i32.{op} (i32.const {left}) (get_local 0))))
", op = OP, left = a));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(i32,), i32>(0, (b,)) == Ok($func(a, b))
}
fn reg_lit(a: i32, b: i32) -> bool {
let translated = translate_wat(&format!("
(module (func (param i32) (result i32)
(i32.{op} (get_local 0) (i32.const {right}))))
", op = OP, right = b));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(i32,), i32>(0, (a,)) == Ok($func(a, b))
}
}
}
};
}
macro_rules! unop_test {
($name:ident, $func:expr) => {
mod $name {
use super::{translate_wat, ExecutableModule};
use std::sync::Once;
lazy_static! {
static ref AS_PARAM: ExecutableModule = translate_wat(concat!(
"(module (func (param i32) (result i32)
(i32.",
stringify!($name),
" (get_local 0))))"
),);
}
quickcheck! {
fn as_param(a: u32) -> bool {
AS_PARAM.execute_func::<(u32,), u32>(0, (a,)) == Ok($func(a))
}
fn lit(a: u32) -> bool {
let translated = translate_wat(&format!(concat!("
(module (func (result i32)
(i32.",stringify!($name)," (i32.const {val}))))
"), val = a));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(), u32>(0, ()) == Ok($func(a))
}
}
}
};
}
unop_test!(clz, u32::leading_zeros);
unop_test!(ctz, u32::trailing_zeros);
unop_test!(popcnt, u32::count_ones);
unop_test!(eqz, |a: u32| if a == 0 { 1 } else { 0 });
binop_test!(add, i32::wrapping_add);
binop_test!(sub, i32::wrapping_sub);
binop_test!(and, std::ops::BitAnd::bitand);
binop_test!(or, std::ops::BitOr::bitor);
binop_test!(xor, std::ops::BitXor::bitxor);
binop_test!(mul, i32::wrapping_mul);
binop_test!(eq, |a, b| if a == b { 1 } else { 0 });
binop_test!(ne, |a, b| if a != b { 1 } else { 0 });
binop_test!(lt_u, |a, b| if (a as u32) < (b as u32) { 1 } else { 0 });
binop_test!(le_u, |a, b| if (a as u32) <= (b as u32) { 1 } else { 0 });
binop_test!(gt_u, |a, b| if (a as u32) > (b as u32) { 1 } else { 0 });
binop_test!(ge_u, |a, b| if (a as u32) >= (b as u32) { 1 } else { 0 });
binop_test!(lt_s, |a, b| if a < b { 1 } else { 0 });
binop_test!(le_s, |a, b| if a <= b { 1 } else { 0 });
binop_test!(gt_s, |a, b| if a > b { 1 } else { 0 });
binop_test!(ge_s, |a, b| if a >= b { 1 } else { 0 });
binop_test!(shl, |a, b| (a as i32).wrapping_shl(b as _));
binop_test!(shr_s, |a, b| (a as i32).wrapping_shr(b as _));
binop_test!(shr_u, |a, b| (a as u32).wrapping_shr(b as _) as i32);
binop_test!(rotl, |a, b| (a as u32).rotate_left(b as _) as i32);
binop_test!(rotr, |a, b| (a as u32).rotate_right(b as _) as i32);
}
mod op64 {
use super::{translate_wat, ExecutableModule};
macro_rules! binop_test {
($op:ident, $func:expr) => {
binop_test!($op, $func, i64);
};
($op:ident, $func:expr, $retty:ident) => {
mod $op {
use super::{translate_wat, ExecutableModule};
const RETTY: &str = stringify!($retty);
const OP: &str = stringify!($op);
lazy_static! {
static ref AS_PARAMS: ExecutableModule = translate_wat(&format!("
(module (func (param i64) (param i64) (result {retty})
(i64.{op} (get_local 0) (get_local 1))))
", retty = RETTY, op = OP));
}
quickcheck! {
fn as_params(a: i64, b: i64) -> bool {
AS_PARAMS.execute_func::<(i64, i64), $retty>(0, (a, b)) == Ok($func(a, b) as $retty)
}
fn lit_lit(a: i64, b: i64) -> bool {
translate_wat(&format!("
(module (func (result {retty})
(i64.{op} (i64.const {left}) (i64.const {right}))))
", retty = RETTY, op = OP, left = a, right = b)).execute_func::<(), $retty>(0, ()) == Ok($func(a, b) as $retty)
}
fn lit_reg(a: i64, b: i64) -> bool {
use std::sync::Once;
let translated = translate_wat(&format!("
(module (func (param i64) (result {retty})
(i64.{op} (i64.const {left}) (get_local 0))))
", retty = RETTY, op = OP, left = a));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(i64,), $retty>(0, (b,)) == Ok($func(a, b) as $retty)
}
fn reg_lit(a: i64, b: i64) -> bool {
use std::sync::Once;
let translated = translate_wat(&format!("
(module (func (param i64) (result {retty})
(i64.{op} (get_local 0) (i64.const {right}))))
", retty = RETTY, op = OP, right = b));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(i64,), $retty>(0, (a,)) == Ok($func(a, b) as $retty)
}
}
}
};
}
macro_rules! unop_test {
($name:ident, $func:expr) => {
unop_test!($name, $func, i64);
};
($name:ident, $func:expr, $out_ty:ty) => {
mod $name {
use super::{translate_wat, ExecutableModule};
use std::sync::Once;
lazy_static! {
static ref AS_PARAM: ExecutableModule = translate_wat(concat!(
"(module (func (param i64) (result ",
stringify!($out_ty),
")
(i64.",
stringify!($name),
" (get_local 0))))"
),);
}
quickcheck! {
fn as_param(a: u64) -> bool {
AS_PARAM.execute_func::<(u64,), $out_ty>(0, (a,)) == Ok($func(a))
}
fn lit(a: u64) -> bool {
let translated = translate_wat(&format!(concat!("
(module (func (result ",stringify!($out_ty),")
(i64.",stringify!($name)," (i64.const {val}))))
"), val = a));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(), $out_ty>(0, ()) == Ok($func(a))
}
}
}
};
}
unop_test!(clz, |a: u64| a.leading_zeros() as _);
unop_test!(ctz, |a: u64| a.trailing_zeros() as _);
unop_test!(popcnt, |a: u64| a.count_ones() as _);
unop_test!(eqz, |a: u64| if a == 0 { 1 } else { 0 }, i32);
binop_test!(add, i64::wrapping_add);
binop_test!(sub, i64::wrapping_sub);
binop_test!(and, std::ops::BitAnd::bitand);
binop_test!(or, std::ops::BitOr::bitor);
binop_test!(xor, std::ops::BitXor::bitxor);
binop_test!(mul, i64::wrapping_mul);
binop_test!(eq, |a, b| if a == b { 1 } else { 0 }, i32);
binop_test!(ne, |a, b| if a != b { 1 } else { 0 }, i32);
binop_test!(
lt_u,
|a, b| if (a as u64) < (b as u64) { 1 } else { 0 },
i32
);
binop_test!(
le_u,
|a, b| if (a as u64) <= (b as u64) { 1 } else { 0 },
i32
);
binop_test!(
gt_u,
|a, b| if (a as u64) > (b as u64) { 1 } else { 0 },
i32
);
binop_test!(
ge_u,
|a, b| if (a as u64) >= (b as u64) { 1 } else { 0 },
i32
);
binop_test!(lt_s, |a, b| if a < b { 1 } else { 0 }, i32);
binop_test!(le_s, |a, b| if a <= b { 1 } else { 0 }, i32);
binop_test!(gt_s, |a, b| if a > b { 1 } else { 0 }, i32);
binop_test!(ge_s, |a, b| if a >= b { 1 } else { 0 }, i32);
binop_test!(shl, |a, b| (a as i64).wrapping_shl(b as _));
binop_test!(shr_s, |a, b| (a as i64).wrapping_shr(b as _));
binop_test!(shr_u, |a, b| (a as u64).wrapping_shr(b as _) as i64);
binop_test!(rotl, |a, b| (a as u64).rotate_left(b as _) as i64);
binop_test!(rotr, |a, b| (a as u64).rotate_right(b as _) as i64);
}
mod opf32 {
use super::{translate_wat, ExecutableModule};
macro_rules! binop_test {
($op:ident, $func:expr) => {
binop_test!($op, $func, f32);
};
($op:ident, $func:expr, $retty:ident) => {
mod $op {
use super::{translate_wat, ExecutableModule};
const RETTY: &str = stringify!($retty);
const OP: &str = stringify!($op);
lazy_static! {
static ref AS_PARAMS: ExecutableModule = translate_wat(&format!("
(module (func (param f32) (param f32) (result {retty})
(f32.{op} (get_local 0) (get_local 1))))
", retty = RETTY, op = OP));
}
quickcheck! {
fn as_params(a: f32, b: f32) -> bool {
AS_PARAMS.execute_func::<(f32, f32), $retty>(0, (a, b)) == Ok($func(a, b) as $retty)
}
fn lit_lit(a: f32, b: f32) -> bool {
translate_wat(&format!("
(module (func (result {retty})
(f32.{op} (f32.const {left}) (f32.const {right}))))
", retty = RETTY, op = OP, left = a, right = b)).execute_func::<(), $retty>(0, ()) == Ok($func(a, b) as $retty)
}
fn lit_reg(a: f32, b: f32) -> bool {
use std::sync::Once;
let translated = translate_wat(&format!("
(module (func (param f32) (result {retty})
(f32.{op} (f32.const {left}) (get_local 0))))
", retty = RETTY, op = OP, left = a));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(f32,), $retty>(0, (b,)) == Ok($func(a, b) as $retty)
}
fn reg_lit(a: f32, b: f32) -> bool {
use std::sync::Once;
let translated = translate_wat(&format!("
(module (func (param f32) (result {retty})
(f32.{op} (get_local 0) (f32.const {right}))))
", retty = RETTY, op = OP, right = b));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(f32,), $retty>(0, (a,)) == Ok($func(a, b) as $retty)
}
}
}
};
}
macro_rules! unop_test {
($name:ident, $func:expr) => {
unop_test!($name, $func, f32);
};
($name:ident, $func:expr, $out_ty:ty) => {
mod $name {
use super::{translate_wat, ExecutableModule};
use std::sync::Once;
lazy_static! {
static ref AS_PARAM: ExecutableModule = translate_wat(concat!(
"(module (func (param f32) (result ",
stringify!($out_ty),
")
(f32.",
stringify!($name),
" (get_local 0))))"
),);
}
quickcheck! {
fn as_param(a: f32) -> bool {
static ONCE: Once = Once::new();
ONCE.call_once(|| AS_PARAM.disassemble());
AS_PARAM.execute_func::<(f32,), $out_ty>(0, (a,)) == Ok($func(a))
}
fn lit(a: f32) -> bool {
let translated = translate_wat(&format!(concat!("
(module (func (result ",stringify!($out_ty),")
(f32.",stringify!($name)," (f32.const {val}))))
"), val = a));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(), $out_ty>(0, ()) == Ok($func(a))
}
}
}
};
}
binop_test!(add, |a, b| a + b);
binop_test!(mul, |a, b| a * b);
binop_test!(sub, |a, b| a - b);
binop_test!(gt, |a, b| a > b, i32);
binop_test!(lt, |a, b| a < b, i32);
binop_test!(ge, |a, b| a >= b, i32);
binop_test!(le, |a, b| a <= b, i32);
unop_test!(neg, |a: f32| -a);
}
mod opf64 {
use super::{translate_wat, ExecutableModule};
macro_rules! binop_test {
($op:ident, $func:expr) => {
binop_test!($op, $func, f64);
};
($op:ident, $func:expr, $retty:ident) => {
mod $op {
use super::{translate_wat, ExecutableModule};
const RETTY: &str = stringify!($retty);
const OP: &str = stringify!($op);
lazy_static! {
static ref AS_PARAMS: ExecutableModule = translate_wat(&format!("
(module (func (param f64) (param f64) (result {retty})
(f64.{op} (get_local 0) (get_local 1))))
", retty = RETTY, op = OP));
}
quickcheck! {
fn as_params(a: f64, b: f64) -> bool {
AS_PARAMS.execute_func::<(f64, f64), $retty>(0, (a, b)) == Ok($func(a, b) as $retty)
}
fn lit_lit(a: f64, b: f64) -> bool {
translate_wat(&format!("
(module (func (result {retty})
(f64.{op} (f64.const {left}) (f64.const {right}))))
", retty = RETTY, op = OP, left = a, right = b)).execute_func::<(), $retty>(0, ()) == Ok($func(a, b) as $retty)
}
fn lit_reg(a: f64, b: f64) -> bool {
use std::sync::Once;
let translated = translate_wat(&format!("
(module (func (param f64) (result {retty})
(f64.{op} (f64.const {left}) (get_local 0))))
", retty = RETTY, op = OP, left = a));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(f64,), $retty>(0, (b,)) == Ok($func(a, b) as $retty)
}
fn reg_lit(a: f64, b: f64) -> bool {
use std::sync::Once;
let translated = translate_wat(&format!("
(module (func (param f64) (result {retty})
(f64.{op} (get_local 0) (f64.const {right}))))
", retty = RETTY, op = OP, right = b));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(f64,), $retty>(0, (a,)) == Ok($func(a, b) as $retty)
}
}
}
};
}
macro_rules! unop_test {
($name:ident, $func:expr) => {
unop_test!($name, $func, f64);
};
($name:ident, $func:expr, $out_ty:ty) => {
mod $name {
use super::{translate_wat, ExecutableModule};
use std::sync::Once;
lazy_static! {
static ref AS_PARAM: ExecutableModule = translate_wat(concat!(
"(module (func (param f64) (result ",
stringify!($out_ty),
")
(f64.",
stringify!($name),
" (get_local 0))))"
),);
}
quickcheck! {
fn as_param(a: f64) -> bool {
static ONCE: Once = Once::new();
ONCE.call_once(|| AS_PARAM.disassemble());
AS_PARAM.execute_func::<(f64,), $out_ty>(0, (a,)) == Ok($func(a))
}
fn lit(a: f64) -> bool {
let translated = translate_wat(&format!(concat!("
(module (func (result ",stringify!($out_ty),")
(f64.",stringify!($name)," (f64.const {val}))))
"), val = a));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<(), $out_ty>(0, ()) == Ok($func(a))
}
}
}
};
}
binop_test!(add, |a, b| a + b);
binop_test!(mul, |a, b| a * b);
binop_test!(sub, |a, b| a - b);
binop_test!(gt, |a, b| a > b, i32);
binop_test!(lt, |a, b| a < b, i32);
binop_test!(ge, |a, b| a >= b, i32);
binop_test!(le, |a, b| a <= b, i32);
unop_test!(neg, |a: f64| -a);
}
quickcheck! {
fn if_then_else(a: u32, b: u32) -> bool {
const CODE: &str = r#"
(module
(func (param i32) (param i32) (result i32)
(if (result i32)
(i32.eq
(get_local 0)
(get_local 1)
)
(then (get_local 0))
(else (get_local 1))
)
)
)
"#;
lazy_static! {
static ref TRANSLATED: ExecutableModule = {let out = translate_wat(CODE); out.disassemble(); out};
}
let out = TRANSLATED.execute_func::<(u32, u32), u32>(0, (a, b));
out == Ok(if a == b { a } else { b })
}
}
#[test]
fn if_without_result() {
let code = r#"
(module
(func (param i32) (param i32) (result i32)
(if
(i32.eq
(get_local 0)
(get_local 1)
)
(then (unreachable))
)
(get_local 0)
)
)
"#;
assert_eq!(execute_wat(code, 2, 3), 2);
}
#[test]
fn function_call() {
let code = r#"
(module
(func (param i32) (param i32) (result i32)
(call $assert_zero
(get_local 1)
)
(get_local 0)
)
(func $assert_zero (param $v i32)
(local i32)
(if (get_local $v)
(unreachable)
)
)
)
"#;
assert_eq!(execute_wat(code, 2, 0), 2);
}
#[test]
fn large_function() {
let code = r#"
(module
(func (param i32) (param i32) (param i32) (param i32)
(param i32) (param i32)
(result i32)
(call $assert_zero
(get_local 5)
)
(get_local 0)
)
(func $assert_zero (param $v i32)
(local i32)
(if (get_local $v)
(unreachable)
)
)
)
"#;
assert_eq!(
{
let translated = translate_wat(code);
translated.disassemble();
let out: Result<u32, _> = translated.execute_func(0, (5, 4, 3, 2, 1, 0));
out
},
Ok(5)
);
}
#[test]
fn function_read_args_spill_to_stack() {
let code = r#"
(module
(func (param i32) (param i32) (param i32) (param i32)
(param i32) (param i32) (param i32) (param i32)
(param i32) (param i32) (param i32) (param i32)
(result i32)
(call $assert_zero
(get_local 7)
)
(get_local 0)
)
(func $assert_zero (param $v i32)
(local i32)
(if (get_local $v)
(unreachable)
)
)
)
"#;
assert_eq!(
{
let translated = translate_wat(code);
translated.disassemble();
translated.execute_func(
0,
(
7u32, 6u32, 5u32, 4u32, 3u32, 2u32, 1u32, 0u32, 1u32, 2u32, 3u32, 4u32,
),
)
},
Ok(7u32)
);
}
macro_rules! mk_function_write_args_spill_to_stack {
($name:ident, $typ:ty) => {
#[test]
fn $name() {
let code = format!(
"
(module
(func (param {typ}) (param {typ}) (param {typ}) (param {typ})
(param {typ}) (param {typ}) (param {typ}) (param {typ})
(param {typ}) (param {typ}) (param {typ}) (param {typ})
(result {typ})
(call $called
(get_local 0)
(get_local 1)
(get_local 2)
(get_local 3)
(get_local 4)
(get_local 5)
(get_local 6)
(get_local 7)
(get_local 8)
(get_local 9)
(get_local 10)
(get_local 11)
)
)
(func $called
(param {typ}) (param {typ}) (param {typ}) (param {typ})
(param {typ}) (param {typ}) (param {typ}) (param {typ})
(param {typ}) (param {typ}) (param {typ}) (param {typ})
(result {typ})
(call $assert_zero
(get_local 11)
)
(get_local 0)
)
(func $assert_zero (param $v {typ})
(local {typ})
(if ({typ}.ne (get_local $v) ({typ}.const 0))
(unreachable)
)
)
)
",
typ = stringify!($typ)
);
assert_eq!(
{
let translated = translate_wat(&code);
translated.disassemble();
let out: Result<$typ, _> = translated.execute_func(
0,
(
11 as $typ, 10 as $typ, 9 as $typ, 8 as $typ, 7 as $typ, 6 as $typ,
5 as $typ, 4 as $typ, 3 as $typ, 2 as $typ, 1 as $typ, 0 as $typ,
),
);
out
},
Ok(11)
);
}
};
}
mk_function_write_args_spill_to_stack!(function_write_args_spill_to_stack_i32, i32);
mk_function_write_args_spill_to_stack!(function_write_args_spill_to_stack_i64, i64);
#[test]
fn block() {
let code = r#"
(module
(func (param i32) (param i32) (result i32)
(block (result i32)
get_local 0
)
)
)
"#;
assert_eq!(execute_wat(code, 10, 20), 10);
}
#[test]
fn br_block() {
let code = r#"
(module
(func (param i32) (param i32) (result i32)
get_local 1
(block (result i32)
get_local 0
get_local 0
br 0
unreachable
)
i32.add
)
)
"#;
let translated = translate_wat(code);
translated.disassemble();
assert_eq!(
translated.execute_func::<(i32, i32), i32>(0, (5, 7)),
Ok(12)
);
}
// Tests discarding values on the value stack, while
// carrying over the result using a conditional branch.
#[test]
fn brif_block() {
let code = r#"
(module
(func (param i32) (param i32) (result i32)
get_local 1
(block (result i32)
get_local 0
get_local 0
br_if 0
unreachable
)
i32.add
)
)
"#;
assert_eq!(execute_wat(code, 5, 7), 12);
}
#[test]
fn spec_loop() {
let code = r#"
(module
(func
(call $assert-eq (call $as-binary-operand) (i32.const 12))
(call $assert-eq (call $break-bare) (i32.const 19))
(call $assert-eq (call $break-value) (i32.const 18))
(call $assert-eq (call $break-repeated) (i32.const 18))
(call $assert-eq (call $break-inner) (i32.const 0x7))
)
(func $dummy)
(func $as-binary-operand (result i32)
(i32.mul
(loop (result i32) (call $dummy) (i32.const 3))
(loop (result i32) (call $dummy) (i32.const 4))
)
)
(func $break-bare (result i32)
(block (loop (br 1) (br 0) (unreachable)))
(block (loop (br_if 1 (i32.const 1)) (unreachable)))
(i32.const 19)
)
(func $break-value (result i32)
(block (result i32)
(loop (result i32) (br 1 (i32.const 18)) (br 0) (i32.const 19))
)
)
(func $break-repeated (result i32)
(block (result i32)
(loop (result i32)
(br 1 (i32.const 18))
(br 1 (i32.const 19))
(drop (br_if 1 (i32.const 20) (i32.const 0)))
(drop (br_if 1 (i32.const 20) (i32.const 1)))
(br 1 (i32.const 21))
(i32.const 21)
)
)
)
(func $break-inner (result i32)
(local i32)
(set_local 0 (i32.const 0))
(set_local 0 (i32.add (get_local 0) (block (result i32) (loop (result i32) (block (result i32) (br 2 (i32.const 0x1)))))))
(set_local 0 (i32.add (get_local 0) (block (result i32) (loop (result i32) (loop (result i32) (br 2 (i32.const 0x2)))))))
(set_local 0 (i32.add (get_local 0) (block (result i32) (loop (result i32) (block (result i32) (loop (result i32) (br 1 (i32.const 0x4))))))))
(get_local 0)
)
(func $assert-eq (param i32) (param i32)
(if (i32.ne (get_local 0) (get_local 1))
(unreachable)
)
)
)
"#;
let translated = translate_wat(code);
translated.disassemble();
translated.execute_func::<(), ()>(0, ()).unwrap();
}
quickcheck! {
fn spec_fac(n: i8) -> bool {
const CODE: &str = r#"
(module
(func (param i32) (result i32)
(local i32)
(set_local 1 (call $fac-iter (get_local 0)))
(call $assert-eq (get_local 1) (call $fac-opt (get_local 0)))
(get_local 1)
)
(func $assert-eq (param i32) (param i32)
(if (i32.ne (get_local 0) (get_local 1))
(unreachable)
)
)
;; Iterative factorial
(func $fac-iter (param i32) (result i32)
(local i32 i32)
(set_local 1 (get_local 0))
(set_local 2 (i32.const 1))
(block
(loop
(if
(i32.lt_s (get_local 1) (i32.const 2))
(then (br 2))
(else
(set_local 2 (i32.mul (get_local 1) (get_local 2)))
(set_local 1 (i32.sub (get_local 1) (i32.const 1)))
)
)
(br 0)
)
)
(get_local 2)
)
;; Optimized factorial.
(func $fac-opt (param i32) (result i32)
(local i32)
(set_local 1 (i32.const 1))
(block
(br_if 0 (i32.lt_s (get_local 0) (i32.const 2)))
(loop
(set_local 1 (i32.mul (get_local 1) (get_local 0)))
(set_local 0 (i32.add (get_local 0) (i32.const -1)))
(br_if 0 (i32.gt_s (get_local 0) (i32.const 1)))
)
)
(get_local 1)
)
)"#;
fn fac(mut n: i32) -> i32 {
let mut a = 1i32;
while n > 1 {
a = a.wrapping_mul(n);
n -= 1;
}
a
}
lazy_static! {
static ref TRANSLATED: ExecutableModule = {
let out = translate_wat(CODE);
out.disassemble();
out
};
}
let n = n as i32;
assert_eq!(TRANSLATED.execute_func::<(i32,), i32>(2, (n,)), Ok(fac(n)));
assert_eq!(TRANSLATED.execute_func::<(i32,), i32>(3, (n,)), Ok(fac(n)));
true
}
}
// Tests that br_if keeps values in the case if the branch
// hasn't been taken.
#[test]
fn brif_block_passthru() {
let code = r#"
(module
(func (param i32) (param i32) (result i32)
(block (result i32)
get_local 1
get_local 0
br_if 0
get_local 1
i32.add
)
)
)
"#;
assert_eq!(execute_wat(code, 0, 3), 6);
}
quickcheck! {
#[test]
fn literals(a: i32, b: i64, c: i32, d: i64) -> bool {
let code = format!(r#"
(module
(func (result i32)
(i32.const {})
)
(func (result i64)
(i64.const {})
)
(func (result f32)
(f32.const {})
)
(func (result f64)
(f64.const {})
)
)
"#, a, b, c, d);
let translated = translate_wat(&code);
assert_eq!(translated.execute_func::<(), i32>(0, ()), Ok(a));
assert_eq!(translated.execute_func::<(), i64>(1, ()), Ok(b));
assert_eq!(translated.execute_func::<(), f32>(2, ()), Ok(c as _));
assert_eq!(translated.execute_func::<(), f64>(3, ()), Ok(d as _));
true
}
}
quickcheck! {
#[test]
fn params(a: i32, b: i64, c: i32, d: i64) -> bool {
let code = r#"
(module
(func (param i32) (param i64) (param f32) (param f64) (result i32)
(get_local 0)
)
(func (param i32) (param i64) (param f32) (param f64) (result i64)
(get_local 1)
)
(func (param i32) (param i64) (param f32) (param f64) (result f32)
(get_local 2)
)
(func (param i32) (param i64) (param f32) (param f64) (result f64)
(get_local 3)
)
)
"#;
let c = c as f32;
let d = d as f64;
let translated = translate_wat(&code);
assert_eq!(translated.execute_func::<(i32, i64, f32, f64), i32>(0, (a, b, c, d)), Ok(a));
assert_eq!(translated.execute_func::<(i32, i64, f32, f64), i64>(1, (a, b, c, d)), Ok(b));
assert_eq!(translated.execute_func::<(i32, i64, f32, f64), f32>(2, (a, b, c, d)), Ok(c));
assert_eq!(translated.execute_func::<(i32, i64, f32, f64), f64>(3, (a, b, c, d)), Ok(d));
true
}
}
#[test]
fn wrong_type() {
let code = r#"
(module
(func (param i32) (param i64) (result i32)
(i32.const 228)
)
)
"#;
let translated = translate_wat(code);
assert_eq!(
translated
.execute_func::<_, ()>(0, (0u32, 0u32))
.unwrap_err(),
ExecutionError::TypeMismatch
);
}
#[test]
fn wrong_index() {
let code = r#"
(module
(func (param i32) (param i64) (result i32)
(i32.const 228)
)
)
"#;
let translated = translate_wat(code);
assert_eq!(
translated
.execute_func::<_, ()>(10, (0u32, 0u32))
.unwrap_err(),
ExecutionError::FuncIndexOutOfBounds
);
}
fn iterative_fib_baseline(n: u32) -> u32 {
let (mut a, mut b) = (1, 1);
for _ in 0..n {
let old_a = a;
a = b;
b += old_a;
}
a
}
const FIBONACCI: &str = r#"
(module
(func $fib (param $n i32) (result i32)
(if (result i32)
(i32.eq
(i32.const 0)
(get_local $n)
)
(then
(i32.const 1)
)
(else
(if (result i32)
(i32.eq
(i32.const 1)
(get_local $n)
)
(then
(i32.const 1)
)
(else
(i32.add
;; fib(n - 1)
(call $fib
(i32.add
(get_local $n)
(i32.const -1)
)
)
;; fib(n - 2)
(call $fib
(i32.add
(get_local $n)
(i32.const -2)
)
)
)
)
)
)
)
)
)
"#;
#[test]
fn fib_unopt() {
let translated = translate_wat(FIBONACCI);
translated.disassemble();
for x in 0..30 {
assert_eq!(
translated.execute_func::<_, u32>(0, (x,)),
Ok(iterative_fib_baseline(x)),
"Failed for x={}",
x
);
}
}
// Generated by Rust for the `fib` function in `bench_fibonacci_baseline`
const FIBONACCI_OPT: &str = r"
(module
(func $fib (param $p0 i32) (result i32)
(local $l1 i32)
(set_local $l1
(i32.const 1))
(block $B0
(br_if $B0
(i32.lt_u
(get_local $p0)
(i32.const 2)))
(set_local $l1
(i32.const 1))
(loop $L1
(set_local $l1
(i32.add
(call $fib
(i32.add
(get_local $p0)
(i32.const -1)))
(get_local $l1)))
(br_if $L1
(i32.gt_u
(tee_local $p0
(i32.add
(get_local $p0)
(i32.const -2)))
(i32.const 1)))))
(get_local $l1)))";
#[test]
fn fib_opt() {
let translated = translate_wat(FIBONACCI_OPT);
translated.disassemble();
for x in 0..30 {
assert_eq!(
translated.execute_func::<_, u32>(0, (x,)),
Ok(iterative_fib_baseline(x)),
"Failed for x={}",
x
);
}
}
#[test]
fn i32_div() {
const CODE: &str = r"
(module
(func (param i32) (param i32) (result i32)
(i32.div_s (get_local 0) (get_local 1))
)
)";
let translated = translate_wat(CODE);
translated.disassemble();
assert_eq!(translated.execute_func::<_, u32>(0, (-1, -1)), Ok(1));
}
#[test]
fn i32_rem() {
const CODE: &str = r"
(module
(func (param i32) (param i32) (result i32)
(i32.rem_s (get_local 0) (get_local 1))
)
)";
let translated = translate_wat(CODE);
translated.disassemble();
assert_eq!(translated.execute_func::<_, u32>(0, (123121, -1)), Ok(0));
}
#[test]
fn br_table() {
const CODE: &str = r"
(func (param $i i32) (result i32)
(return
(block $2 (result i32)
(i32.add (i32.const 10)
(block $1 (result i32)
(i32.add (i32.const 100)
(block $0 (result i32)
(i32.add (i32.const 1000)
(block $default (result i32)
(br_table $0 $1 $2 $default
(i32.mul (i32.const 2) (get_local $i))
(i32.and (i32.const 3) (get_local $i))
)
)
)
)
)
)
)
)
)
)
";
let translated = translate_wat(CODE);
translated.disassemble();
assert_eq!(translated.execute_func::<_, u32>(0, (0u32,)), Ok(110));
assert_eq!(translated.execute_func::<_, u32>(0, (1u32,)), Ok(12));
assert_eq!(translated.execute_func::<_, u32>(0, (2u32,)), Ok(4));
assert_eq!(translated.execute_func::<_, u32>(0, (3u32,)), Ok(1116));
assert_eq!(translated.execute_func::<_, u32>(0, (4u32,)), Ok(118));
assert_eq!(translated.execute_func::<_, u32>(0, (5u32,)), Ok(20));
assert_eq!(translated.execute_func::<_, u32>(0, (6u32,)), Ok(12));
assert_eq!(translated.execute_func::<_, u32>(0, (7u32,)), Ok(1124));
assert_eq!(translated.execute_func::<_, u32>(0, (8u32,)), Ok(126));
}
#[test]
fn f32_storage() {
const CODE: &str = r#"
(module
(memory (data "\00\00\a0\7f"))
(func (result f32)
(f32.load (i32.const 0))
)
(func (result i32)
(i32.load (i32.const 0))
)
(func
(f32.store (i32.const 0) (f32.const nan:0x200000))
)
(func
(i32.store (i32.const 0) (i32.const 0x7fa00000))
)
(func
(i32.store (i32.const 0) (i32.const 0))
)
)
"#;
const EXPECTED: u32 = 0x7fa00000;
let translated = translate_wat(CODE);
translated.disassemble();
// TODO: We don't support the data section with Lightbeam's test runtime
assert!(translated.execute_func::<(), ()>(2, ()).is_ok());
assert_eq!(translated.execute_func::<(), u32>(1, ()), Ok(EXPECTED));
assert_eq!(
translated
.execute_func::<(), f32>(0, ())
.map(|f| f.to_bits()),
Ok(EXPECTED)
);
assert!(translated.execute_func::<(), ()>(4, ()).is_ok());
assert_eq!(translated.execute_func::<(), u32>(1, ()), Ok(0));
assert_eq!(
translated
.execute_func::<(), f32>(0, ())
.map(|f| f.to_bits()),
Ok(0)
);
assert!(translated.execute_func::<(), ()>(2, ()).is_ok());
assert_eq!(translated.execute_func::<(), u32>(1, ()), Ok(EXPECTED));
assert_eq!(
translated
.execute_func::<(), f32>(0, ())
.map(|f| f.to_bits()),
Ok(EXPECTED)
);
assert!(translated.execute_func::<(), ()>(4, ()).is_ok());
assert_eq!(translated.execute_func::<(), u32>(1, ()), Ok(0));
assert_eq!(
translated
.execute_func::<(), f32>(0, ())
.map(|f| f.to_bits()),
Ok(0)
);
assert!(translated.execute_func::<(), ()>(3, ()).is_ok());
assert_eq!(translated.execute_func::<(), u32>(1, ()), Ok(EXPECTED));
assert_eq!(
translated
.execute_func::<(), f32>(0, ())
.map(|f| f.to_bits()),
Ok(EXPECTED)
);
}
#[test]
fn f64_storage() {
const CODE: &str = r#"
(module
(memory (data "\00\00\00\00\00\00\f4\7f"))
(func (export "f64.load") (result f64) (f64.load (i32.const 0)))
(func (export "i64.load") (result i64) (i64.load (i32.const 0)))
(func (export "f64.store") (f64.store (i32.const 0) (f64.const nan:0x4000000000000)))
(func (export "i64.store") (i64.store (i32.const 0) (i64.const 0x7ff4000000000000)))
(func (export "reset") (i64.store (i32.const 0) (i64.const 0)))
)
"#;
const EXPECTED: u64 = 0x7ff4000000000000;
let translated = translate_wat(CODE);
translated.disassemble();
// TODO: We don't support the data section with Lightbeam's test runtime
assert!(translated.execute_func::<(), ()>(2, ()).is_ok());
assert_eq!(translated.execute_func::<(), u64>(1, ()), Ok(EXPECTED));
assert_eq!(
translated
.execute_func::<(), f64>(0, ())
.map(|f| f.to_bits()),
Ok(EXPECTED)
);
assert!(translated.execute_func::<(), ()>(4, ()).is_ok());
assert_eq!(translated.execute_func::<(), u64>(1, ()), Ok(0));
assert_eq!(
translated
.execute_func::<(), f64>(0, ())
.map(|f| f.to_bits()),
Ok(0)
);
assert!(translated.execute_func::<(), ()>(2, ()).is_ok());
assert_eq!(translated.execute_func::<(), u64>(1, ()), Ok(EXPECTED));
assert_eq!(
translated
.execute_func::<(), f64>(0, ())
.map(|f| f.to_bits()),
Ok(EXPECTED)
);
assert!(translated.execute_func::<(), ()>(4, ()).is_ok());
assert_eq!(translated.execute_func::<(), u64>(1, ()), Ok(0));
assert_eq!(
translated
.execute_func::<(), f64>(0, ())
.map(|f| f.to_bits()),
Ok(0)
);
assert!(translated.execute_func::<(), ()>(3, ()).is_ok());
assert_eq!(translated.execute_func::<(), u64>(1, ()), Ok(EXPECTED));
assert_eq!(
translated
.execute_func::<(), f64>(0, ())
.map(|f| f.to_bits()),
Ok(EXPECTED)
);
}
#[test]
fn storage() {
const CODE: &str = r#"
(module
(memory 1 1)
(func (result i32)
(local i32 i32 i32)
(set_local 0 (i32.const 10))
(block
(loop
(if
(i32.eq (get_local 0) (i32.const 0))
(then (br 2))
)
(set_local 2 (i32.mul (get_local 0) (i32.const 4)))
(i32.store (get_local 2) (get_local 0))
(set_local 1 (i32.load (get_local 2)))
(if
(i32.ne (get_local 0) (get_local 1))
(then (return (i32.const 0)))
)
(set_local 0 (i32.sub (get_local 0) (i32.const 1)))
(br 0)
)
)
(i32.const 1)
)
)"#;
let translated = translate_wat(CODE);
translated.disassemble();
assert_eq!(translated.execute_func::<(), i32>(0, ()), Ok(1));
}
#[test]
fn nested_storage_calls() {
const CODE: &str = r#"
(module
(memory 1 1)
(func (result i32)
(local i32 i32 i32)
(set_local 0 (i32.const 10))
(block
(loop
(if
(i32.eq (get_local 0) (i32.const 0))
(then (br 2))
)
(set_local 2 (i32.mul (get_local 0) (i32.const 4)))
(call $assert_eq (call $inner) (i32.const 1))
(i32.store (get_local 2) (get_local 0))
(set_local 1 (i32.load (get_local 2)))
(if
(i32.ne (get_local 0) (get_local 1))
(then (return (i32.const 0)))
)
(set_local 0 (i32.sub (get_local 0) (i32.const 1)))
(br 0)
)
)
(i32.const 1)
)
(func $assert_eq (param $a i32) (param $b i32)
(if (i32.ne (get_local $a) (get_local $b))
(unreachable)
)
)
(func $inner (result i32)
(local i32 i32 i32)
(set_local 0 (i32.const 10))
(block
(loop
(if
(i32.eq (get_local 0) (i32.const 0))
(then (br 2))
)
(set_local 2 (i32.mul (get_local 0) (i32.const 4)))
(i32.store (get_local 2) (get_local 0))
(set_local 1 (i32.load (get_local 2)))
(if
(i32.ne (get_local 0) (get_local 1))
(then (return (i32.const 0)))
)
(set_local 0 (i32.sub (get_local 0) (i32.const 1)))
(br 0)
)
)
(i32.const 1)
)
)"#;
let translated = translate_wat(CODE);
translated.disassemble();
assert_eq!(translated.execute_func::<(), i32>(0, ()), Ok(1));
}
// TODO: Signature mismatches correctly fail at time of writing this comment,
// but we can't add a test for that until we implement traps properly.
#[test]
fn call_indirect() {
const CODE: &str = r#"
(module
(type $over-i64 (func (param i64) (result i64)))
(table anyfunc
(elem
$fac $fib
)
)
(func $dispatch (param i32 i64) (result i64)
(call_indirect (type $over-i64) (get_local 1) (get_local 0))
)
(func $fac (type $over-i64)
(if (result i64) (i64.eqz (get_local 0))
(then (i64.const 1))
(else
(i64.mul
(get_local 0)
(call_indirect (type $over-i64)
(i64.sub (get_local 0) (i64.const 1))
(i32.const 0)
)
)
)
)
)
(func $fib (type $over-i64)
(if (result i64) (i64.le_u (get_local 0) (i64.const 1))
(then (i64.const 1))
(else
(i64.add
(call_indirect (type $over-i64)
(i64.sub (get_local 0) (i64.const 2))
(i32.const 1)
)
(call_indirect (type $over-i64)
(i64.sub (get_local 0) (i64.const 1))
(i32.const 1)
)
)
)
)
)
)"#;
let wasm = wabt::wat2wasm(CODE).unwrap();
let module = translate(&wasm).unwrap();
module.disassemble();
assert_eq!(
module.execute_func::<(i32, i64), i64>(0, (0, 10)).unwrap(),
3628800
);
assert_eq!(
module.execute_func::<(i32, i64), i64>(0, (1, 10)).unwrap(),
89
);
}
macro_rules! test_select {
($name:ident, $ty:ident) => {
mod $name {
use super::{translate_wat, ExecutableModule};
use std::sync::Once;
lazy_static! {
static ref AS_PARAMS: ExecutableModule = translate_wat(&format!(
"
(module
(func (param {ty}) (param {ty}) (param i32) (result {ty})
(select (get_local 0) (get_local 1) (get_local 2))
)
)",
ty = stringify!($ty)
));
}
quickcheck! {
fn as_param(cond: bool, then: $ty, else_: $ty) -> bool {
let icond: i32 = if cond { 1 } else { 0 };
AS_PARAMS.execute_func::<($ty, $ty, i32), $ty>(0, (then, else_, icond)) ==
Ok(if cond { then } else { else_ })
}
fn lit(cond: bool, then: $ty, else_: $ty) -> bool {
let icond: i32 = if cond { 1 } else { 0 };
let translated = translate_wat(&format!("
(module (func (param {ty}) (param {ty}) (result {ty})
(select (get_local 0) (get_local 1) (i32.const {val}))))
",
val = icond,
ty = stringify!($ty)
));
static ONCE: Once = Once::new();
ONCE.call_once(|| translated.disassemble());
translated.execute_func::<($ty, $ty), $ty>(0, (then, else_)) ==
Ok(if cond { then } else { else_ })
}
}
}
};
}
test_select!(select32, i32);
test_select!(select64, i64);
#[bench]
fn bench_fibonacci_compile(b: &mut test::Bencher) {
let wasm = wabt::wat2wasm(FIBONACCI).unwrap();
b.iter(|| test::black_box(translate(&wasm).unwrap()));
}
#[bench]
fn bench_fibonacci_run(b: &mut test::Bencher) {
let wasm = wabt::wat2wasm(FIBONACCI_OPT).unwrap();
let module = translate(&wasm).unwrap();
b.iter(|| module.execute_func::<_, u32>(0, (20,)));
}
#[bench]
fn bench_fibonacci_compile_run(b: &mut test::Bencher) {
let wasm = wabt::wat2wasm(FIBONACCI).unwrap();
b.iter(|| translate(&wasm).unwrap().execute_func::<_, u32>(0, (20,)));
}
#[bench]
fn bench_fibonacci_baseline(b: &mut test::Bencher) {
fn fib(n: i32) -> i32 {
if n == 0 || n == 1 {
1
} else {
fib(n - 1) + fib(n - 2)
}
}
b.iter(|| test::black_box(fib(test::black_box(20))));
}
// #[test]
#[allow(dead_code)]
fn sieve() {
const CODE: &str = r#"
(module
(type $t0 (func (param i32 i32)))
(type $t1 (func (param i32 i32 i32) (result i32)))
(type $t2 (func (param i32 i32 i32)))
(type $t3 (func (param i32)))
(type $t4 (func (param i32 i32 i32 i32 i32 i32 i32 i32 i32 i32)))
(type $t5 (func (param i32 i32) (result i32)))
(func $optimized_sieve (export "optimized_sieve") (type $t0) (param $p0 i32) (param $p1 i32)
(local $l0 i32) (local $l1 i32) (local $l2 i32) (local $l3 i32) (local $l4 i32) (local $l5 i32) (local $l6 i32) (local $l7 i32) (local $l8 i32) (local $l9 i32) (local $l10 i32) (local $l11 i32) (local $l12 i32) (local $l13 i32) (local $l14 i32) (local $l15 i32) (local $l16 i32) (local $l17 i32) (local $l18 f64)
get_global $g0
i32.const 64
i32.sub
tee_local $l0
set_global $g0
i32.const 0
set_local $l1
get_local $l0
i32.const 0
i32.const 64
call $memset
set_local $l0
block $B0
block $B1
block $B2
block $B3
get_local $p1
i32.const 2
i32.gt_u
br_if $B3
i32.const -1
i32.const 0
get_local $p1
i32.const 2
i32.eq
select
set_local $p1
i32.const 0
set_local $l2
i32.const 0
set_local $l3
i32.const 0
set_local $l4
i32.const 0
set_local $l5
i32.const 0
set_local $l6
i32.const 0
set_local $l7
i32.const 0
set_local $l8
i32.const 0
set_local $l9
i32.const 0
set_local $l10
i32.const 0
set_local $l11
i32.const 0
set_local $l12
i32.const 0
set_local $l13
i32.const 0
set_local $l14
i32.const 0
set_local $l15
i32.const 0
set_local $l16
i32.const 0
set_local $l17
br $B2
end
get_local $p1
i32.const -3
i32.add
i32.const 1
i32.shr_u
set_local $l3
block $B4
block $B5
get_local $p1
f64.convert_u/i32
f64.sqrt
tee_local $l18
f64.const 0x1p+32 (;=4.29497e+09;)
f64.lt
get_local $l18
f64.const 0x0p+0 (;=0;)
f64.ge
i32.and
br_if $B5
i32.const 0
set_local $p1
br $B4
end
get_local $l18
i32.trunc_u/f64
set_local $p1
end
get_local $l3
i32.const 1
i32.add
set_local $l17
get_local $p1
i32.const -3
i32.add
i32.const 1
i32.shr_u
set_local $l5
i32.const 0
set_local $p1
loop $L6
get_local $p1
tee_local $l4
i32.const 5
i32.shr_u
set_local $p1
get_local $l4
i32.const 511
i32.gt_u
br_if $B0
block $B7
get_local $l0
get_local $p1
i32.const 2
i32.shl
i32.add
i32.load
i32.const 1
get_local $l4
i32.const 31
i32.and
i32.shl
i32.and
br_if $B7
get_local $l4
i32.const 1
i32.shl
i32.const 3
i32.add
tee_local $l2
get_local $l2
i32.mul
i32.const -3
i32.add
i32.const 1
i32.shr_u
tee_local $p1
get_local $l3
i32.gt_u
br_if $B7
loop $L8
get_local $p1
i32.const 5
i32.shr_u
set_local $l1
get_local $p1
i32.const 511
i32.gt_u
br_if $B1
get_local $l0
get_local $l1
i32.const 2
i32.shl
i32.add
tee_local $l1
get_local $l1
i32.load
i32.const 1
get_local $p1
i32.const 31
i32.and
i32.shl
i32.or
i32.store
get_local $p1
get_local $l2
i32.add
tee_local $p1
get_local $l3
i32.le_u
br_if $L8
end
end
get_local $l4
i32.const 1
i32.add
set_local $p1
get_local $l4
get_local $l5
i32.lt_u
br_if $L6
end
i32.const -1
set_local $p1
get_local $l0
i32.load offset=60
set_local $l1
get_local $l0
i32.load offset=56
set_local $l2
get_local $l0
i32.load offset=52
set_local $l3
get_local $l0
i32.load offset=48
set_local $l4
get_local $l0
i32.load offset=44
set_local $l5
get_local $l0
i32.load offset=40
set_local $l6
get_local $l0
i32.load offset=36
set_local $l7
get_local $l0
i32.load offset=32
set_local $l8
get_local $l0
i32.load offset=28
set_local $l9
get_local $l0
i32.load offset=24
set_local $l10
get_local $l0
i32.load offset=20
set_local $l11
get_local $l0
i32.load offset=16
set_local $l12
get_local $l0
i32.load offset=12
set_local $l13
get_local $l0
i32.load offset=8
set_local $l14
get_local $l0
i32.load offset=4
set_local $l15
get_local $l0
i32.load
set_local $l16
end
get_local $p0
get_local $l1
i32.store offset=68
get_local $p0
get_local $l2
i32.store offset=64
get_local $p0
get_local $l3
i32.store offset=60
get_local $p0
get_local $l4
i32.store offset=56
get_local $p0
get_local $l5
i32.store offset=52
get_local $p0
get_local $l6
i32.store offset=48
get_local $p0
get_local $l7
i32.store offset=44
get_local $p0
get_local $l8
i32.store offset=40
get_local $p0
get_local $l9
i32.store offset=36
get_local $p0
get_local $l10
i32.store offset=32
get_local $p0
get_local $l11
i32.store offset=28
get_local $p0
get_local $l12
i32.store offset=24
get_local $p0
get_local $l13
i32.store offset=20
get_local $p0
get_local $l14
i32.store offset=16
get_local $p0
get_local $l15
i32.store offset=12
get_local $p0
get_local $l16
i32.store offset=8
get_local $p0
get_local $l17
i32.store offset=4
get_local $p0
get_local $p1
i32.store
get_local $l0
i32.const 64
i32.add
set_global $g0
return
end
i32.const 1396
get_local $l1
i32.const 16
unreachable
end
i32.const 1380
get_local $p1
i32.const 16
unreachable)
(func $memset (type $t1) (param $p0 i32) (param $p1 i32) (param $p2 i32) (result i32)
(local $l0 i32)
block $B0
get_local $p2
i32.eqz
br_if $B0
get_local $p0
set_local $l0
loop $L1
get_local $l0
get_local $p1
i32.store8
get_local $l0
i32.const 1
i32.add
set_local $l0
get_local $p2
i32.const -1
i32.add
tee_local $p2
br_if $L1
end
end
get_local $p0)
(memory $memory (export "memory") 17 17)
(global $g0 (mut i32) (i32.const 1050032)))
"#;
translate(&wabt::wat2wasm(CODE).unwrap()).unwrap();
}