A priory, an EBB argument value only gets an affinity if it is used directly by a non-ghost instruction. A use by a branch passing arguments to an EBB doesn't count. When an EBB argument value does have an affinity, the values passed by all the predecessors must also have affinities. This can cause EBB argument values to get affinities recursively. - Add a second pass to the liveness computation for propagating EBB argument affinities, possibly recursively. - Verify EBB argument affinities correctly: A value passed to a branch must have an affinity only if the corresponding EBB argument value in the destination has an affinity.
241 lines
8.8 KiB
Rust
241 lines
8.8 KiB
Rust
//! Liveness verifier.
|
|
|
|
use flowgraph::ControlFlowGraph;
|
|
use ir::{Function, Inst, Value, ProgramOrder, ProgramPoint, ExpandedProgramPoint};
|
|
use ir::entities::AnyEntity;
|
|
use isa::TargetIsa;
|
|
use regalloc::liveness::Liveness;
|
|
use regalloc::liverange::LiveRange;
|
|
use std::cmp::Ordering;
|
|
use verifier::Result;
|
|
|
|
/// Verify liveness information for `func`.
|
|
///
|
|
/// The provided control flow graph is assumed to be sound.
|
|
///
|
|
/// - All values in the program must have a live range.
|
|
/// - The live range def point must match where the value is defined.
|
|
/// - The live range must reach all uses.
|
|
/// - When a live range is live-in to an EBB, it must be live at all the predecessors.
|
|
/// - The live range affinity must be compatible with encoding constraints.
|
|
///
|
|
/// We don't verify that live ranges are minimal. This would require recomputing live ranges for
|
|
/// all values.
|
|
pub fn verify_liveness(isa: &TargetIsa,
|
|
func: &Function,
|
|
cfg: &ControlFlowGraph,
|
|
liveness: &Liveness)
|
|
-> Result {
|
|
let verifier = LivenessVerifier {
|
|
isa,
|
|
func,
|
|
cfg,
|
|
liveness,
|
|
};
|
|
verifier.check_ebbs()?;
|
|
verifier.check_insts()?;
|
|
Ok(())
|
|
}
|
|
|
|
struct LivenessVerifier<'a> {
|
|
isa: &'a TargetIsa,
|
|
func: &'a Function,
|
|
cfg: &'a ControlFlowGraph,
|
|
liveness: &'a Liveness,
|
|
}
|
|
|
|
impl<'a> LivenessVerifier<'a> {
|
|
/// Check all EBB arguments.
|
|
fn check_ebbs(&self) -> Result {
|
|
for ebb in self.func.layout.ebbs() {
|
|
for &val in self.func.dfg.ebb_args(ebb) {
|
|
let lr = match self.liveness.get(val) {
|
|
Some(lr) => lr,
|
|
None => return err!(ebb, "EBB arg {} has no live range", val),
|
|
};
|
|
self.check_lr(ebb.into(), val, lr)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Check all instructions.
|
|
fn check_insts(&self) -> Result {
|
|
for ebb in self.func.layout.ebbs() {
|
|
for inst in self.func.layout.ebb_insts(ebb) {
|
|
let encoding = self.func.encodings.get_or_default(inst);
|
|
|
|
// Check the defs.
|
|
for &val in self.func.dfg.inst_results(inst) {
|
|
let lr = match self.liveness.get(val) {
|
|
Some(lr) => lr,
|
|
None => return err!(inst, "{} has no live range", val),
|
|
};
|
|
self.check_lr(inst.into(), val, lr)?;
|
|
|
|
if encoding.is_legal() {
|
|
// A legal instruction is not allowed to define ghost values.
|
|
if lr.affinity.is_none() {
|
|
return err!(inst,
|
|
"{} is a ghost value defined by a real [{}] instruction",
|
|
val,
|
|
self.isa.encoding_info().display(encoding));
|
|
}
|
|
} else {
|
|
// A non-encoded instruction can only define ghost values.
|
|
if !lr.affinity.is_none() {
|
|
return err!(inst,
|
|
"{} is a real {} value defined by a ghost instruction",
|
|
val,
|
|
lr.affinity.display(&self.isa.register_info()));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the uses.
|
|
for (idx, &val) in self.func.dfg.inst_args(inst).iter().enumerate() {
|
|
let lr = match self.liveness.get(val) {
|
|
Some(lr) => lr,
|
|
None => return err!(inst, "{} has no live range", val),
|
|
};
|
|
if !self.live_at_use(lr, inst) {
|
|
return err!(inst, "{} is not live at this use", val);
|
|
}
|
|
|
|
if encoding.is_legal() {
|
|
// A legal instruction is not allowed to depend on ghost values.
|
|
//
|
|
// A branch argument can be a ghost value if the corresponding destination
|
|
// EBB argument is a ghost value.
|
|
if lr.affinity.is_none() && !self.is_ghost_branch_argument(inst, idx) {
|
|
return err!(inst,
|
|
"{} is a ghost value used by a real [{}] instruction",
|
|
val,
|
|
self.isa.encoding_info().display(encoding));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Is `lr` live at the use `inst`?
|
|
fn live_at_use(&self, lr: &LiveRange, inst: Inst) -> bool {
|
|
let l = &self.func.layout;
|
|
|
|
// Check if `inst` is in the def range, not including the def itself.
|
|
if l.cmp(lr.def(), inst) == Ordering::Less &&
|
|
l.cmp(inst, lr.def_local_end()) != Ordering::Greater {
|
|
return true;
|
|
}
|
|
|
|
// Otherwise see if `inst` is in one of the live-in ranges.
|
|
match lr.livein_local_end(l.inst_ebb(inst).unwrap(), l) {
|
|
Some(end) => l.cmp(inst, end) != Ordering::Greater,
|
|
None => false,
|
|
}
|
|
}
|
|
|
|
/// Is argument `argnum` on `inst` a branch argument that leads to a ghost EBB argument?
|
|
fn is_ghost_branch_argument(&self, inst: Inst, argnum: usize) -> bool {
|
|
let dest = match self.func.dfg[inst].branch_destination() {
|
|
Some(d) => d,
|
|
None => return false,
|
|
};
|
|
|
|
let fixed_args = self.func.dfg[inst]
|
|
.opcode()
|
|
.constraints()
|
|
.fixed_value_arguments();
|
|
if argnum < fixed_args {
|
|
return false;
|
|
}
|
|
|
|
// If the EBB argument value in the destination is a ghost value, we'll allow a ghost
|
|
// branch argument.
|
|
self.func
|
|
.dfg
|
|
.ebb_args(dest)
|
|
.get(argnum - fixed_args)
|
|
.and_then(|&v| self.liveness.get(v))
|
|
.map(|lr| lr.affinity.is_none())
|
|
.unwrap_or(false)
|
|
}
|
|
|
|
/// Check the integrity of the live range `lr`.
|
|
fn check_lr(&self, def: ProgramPoint, val: Value, lr: &LiveRange) -> Result {
|
|
let l = &self.func.layout;
|
|
|
|
let loc: AnyEntity = match def.into() {
|
|
ExpandedProgramPoint::Ebb(e) => e.into(),
|
|
ExpandedProgramPoint::Inst(i) => i.into(),
|
|
};
|
|
if lr.def() != def {
|
|
return err!(loc, "Wrong live range def ({}) for {}", lr.def(), val);
|
|
}
|
|
if lr.is_dead() {
|
|
if !lr.is_local() {
|
|
return err!(loc, "Dead live range {} should be local", val);
|
|
} else {
|
|
return Ok(());
|
|
}
|
|
}
|
|
let def_ebb = match def.into() {
|
|
ExpandedProgramPoint::Ebb(e) => e,
|
|
ExpandedProgramPoint::Inst(i) => l.inst_ebb(i).unwrap(),
|
|
};
|
|
match lr.def_local_end().into() {
|
|
ExpandedProgramPoint::Ebb(e) => {
|
|
return err!(loc, "Def local range for {} can't end at {}", val, e)
|
|
}
|
|
ExpandedProgramPoint::Inst(i) => {
|
|
if self.func.layout.inst_ebb(i) != Some(def_ebb) {
|
|
return err!(loc, "Def local end for {} in wrong ebb", val);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now check the live-in intervals against the CFG.
|
|
for &livein in lr.liveins() {
|
|
let mut ebb = livein.begin;
|
|
if !l.is_ebb_inserted(ebb) {
|
|
return err!(loc, "{} livein at {} which is not in the layout", val, ebb);
|
|
}
|
|
let end_ebb = match l.inst_ebb(livein.end) {
|
|
Some(e) => e,
|
|
None => {
|
|
return err!(loc,
|
|
"{} livein for {} ends at {} which is not in the layout",
|
|
val,
|
|
ebb,
|
|
livein.end)
|
|
}
|
|
};
|
|
|
|
// Check all the EBBs in the interval independently.
|
|
loop {
|
|
// If `val` is live-in at `ebb`, it must be live at all the predecessors.
|
|
for &(_, pred) in self.cfg.get_predecessors(ebb) {
|
|
if !self.live_at_use(lr, pred) {
|
|
return err!(pred,
|
|
"{} is live in to {} but not live at predecessor",
|
|
val,
|
|
ebb);
|
|
}
|
|
}
|
|
|
|
if ebb == end_ebb {
|
|
break;
|
|
}
|
|
ebb = match l.next_ebb(ebb) {
|
|
Some(e) => e,
|
|
None => return err!(loc, "end of {} livein ({}) never reached", val, end_ebb),
|
|
};
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|