Files
wasmtime/crates/wast/src/wast.rs
Alex Crichton 57dca934ad Upgrade wasm-tools crates, namely the component model (#4715)
* Upgrade wasm-tools crates, namely the component model

This commit pulls in the latest versions of all of the `wasm-tools`
family of crates. There were two major changes that happened in
`wasm-tools` in the meantime:

* bytecodealliance/wasm-tools#697 - this commit introduced a new API for
  more efficiently reading binary operators from a wasm binary. The old
  `Operator`-based reading was left in place, however, and continues to
  be what Wasmtime uses. I hope to update Wasmtime in a future PR to use
  this new API, but for now the biggest change is...

* bytecodealliance/wasm-tools#703 - this commit was a major update to
  the component model AST. This commit almost entirely deals with the
  fallout of this change.

The changes made to the component model were:

1. The `unit` type no longer exists. This was generally a simple change
   where the `Unit` case in a few different locations were all removed.
2. The `expected` type was renamed to `result`. This similarly was
   relatively lightweight and mostly just a renaming on the surface. I
   took this opportunity to rename `val::Result` to `val::ResultVal` and
   `types::Result` to `types::ResultType` to avoid clashing with the
   standard library types. The `Option`-based types were handled with
   this as well.
3. The payload type of `variant` and `result` types are now optional.
   This affected many locations that calculate flat type
   representations, ABI information, etc. The `#[derive(ComponentType)]`
   macro now specifically handles Rust-defined `enum` types which have
   no payload to the equivalent in the component model.
4. Functions can now return multiple parameters. This changed the
   signature of invoking component functions because the return value is
   now bound by `ComponentNamedList` (renamed from `ComponentParams`).
   This had a large effect in the tests, fuzz test case generation, etc.
5. Function types with 2-or-more parameters/results must uniquely name
   all parameters/results. This mostly affected the text format used
   throughout the tests.

I haven't added specifically new tests for multi-return but I changed a
number of tests to use it. Additionally I've updated the fuzzers to all
exercise multi-return as well so I think we should get some good
coverage with that.

* Update version numbers

* Use crates.io
2022-08-17 16:17:34 +00:00

490 lines
18 KiB
Rust

#[cfg(feature = "component-model")]
use crate::component;
use crate::core;
use crate::spectest::*;
use anyhow::{anyhow, bail, Context as _, Result};
use std::path::Path;
use std::str;
use wasmtime::*;
use wast::lexer::Lexer;
use wast::parser::{self, ParseBuffer};
use wast::{QuoteWat, Wast, WastArg, WastDirective, WastExecute, WastInvoke, WastRet, Wat};
/// The wast test script language allows modules to be defined and actions
/// to be performed on them.
pub struct WastContext<T> {
/// Wast files have a concept of a "current" module, which is the most
/// recently defined.
current: Option<InstanceKind>,
core_linker: Linker<T>,
#[cfg(feature = "component-model")]
component_linker: component::Linker<T>,
store: Store<T>,
}
enum Outcome<T = Results> {
Ok(T),
Trap(Trap),
}
impl<T> Outcome<T> {
fn map<U>(self, map: impl FnOnce(T) -> U) -> Outcome<U> {
match self {
Outcome::Ok(t) => Outcome::Ok(map(t)),
Outcome::Trap(t) => Outcome::Trap(t),
}
}
fn into_result(self) -> Result<T, Trap> {
match self {
Outcome::Ok(t) => Ok(t),
Outcome::Trap(t) => Err(t),
}
}
}
#[derive(Debug)]
enum Results {
Core(Vec<Val>),
#[cfg(feature = "component-model")]
Component(Vec<component::Val>),
}
enum InstanceKind {
Core(Instance),
#[cfg(feature = "component-model")]
Component(component::Instance),
}
enum Export {
Core(Extern),
#[cfg(feature = "component-model")]
Component(component::Func),
}
impl<T> WastContext<T> {
/// Construct a new instance of `WastContext`.
pub fn new(store: Store<T>) -> Self {
// Spec tests will redefine the same module/name sometimes, so we need
// to allow shadowing in the linker which picks the most recent
// definition as what to link when linking.
let mut core_linker = Linker::new(store.engine());
core_linker.allow_shadowing(true);
Self {
current: None,
core_linker,
#[cfg(feature = "component-model")]
component_linker: {
let mut linker = component::Linker::new(store.engine());
linker.allow_shadowing(true);
linker
},
store,
}
}
fn get_export(&mut self, module: Option<&str>, name: &str) -> Result<Export> {
if let Some(module) = module {
return Ok(Export::Core(
self.core_linker
.get(&mut self.store, module, name)
.ok_or_else(|| anyhow!("no item named `{}::{}` found", module, name))?,
));
}
let cur = self
.current
.as_ref()
.ok_or_else(|| anyhow!("no previous instance found"))?;
Ok(match cur {
InstanceKind::Core(i) => Export::Core(
i.get_export(&mut self.store, name)
.ok_or_else(|| anyhow!("no item named `{}` found", name))?,
),
#[cfg(feature = "component-model")]
InstanceKind::Component(i) => Export::Component(
i.get_func(&mut self.store, name)
.ok_or_else(|| anyhow!("no func named `{}` found", name))?,
),
})
}
fn instantiate_module(&mut self, module: &[u8]) -> Result<Outcome<Instance>> {
let module = Module::new(self.store.engine(), module)?;
let instance = match self.core_linker.instantiate(&mut self.store, &module) {
Ok(i) => i,
Err(e) => return e.downcast::<Trap>().map(Outcome::Trap),
};
Ok(Outcome::Ok(instance))
}
#[cfg(feature = "component-model")]
fn instantiate_component(&mut self, module: &[u8]) -> Result<Outcome<component::Instance>> {
let engine = self.store.engine();
let module = component::Component::new(engine, module)?;
let instance = match self.component_linker.instantiate(&mut self.store, &module) {
Ok(i) => i,
Err(e) => return e.downcast::<Trap>().map(Outcome::Trap),
};
Ok(Outcome::Ok(instance))
}
/// Register "spectest" which is used by the spec testsuite.
pub fn register_spectest(&mut self) -> Result<()> {
link_spectest(&mut self.core_linker, &mut self.store)?;
#[cfg(feature = "component-model")]
link_component_spectest(&mut self.component_linker)?;
Ok(())
}
/// Perform the action portion of a command.
fn perform_execute(&mut self, exec: WastExecute<'_>) -> Result<Outcome> {
match exec {
WastExecute::Invoke(invoke) => self.perform_invoke(invoke),
WastExecute::Wat(mut module) => Ok(match &mut module {
Wat::Module(m) => self
.instantiate_module(&m.encode()?)?
.map(|_| Results::Core(Vec::new())),
#[cfg(feature = "component-model")]
Wat::Component(m) => self
.instantiate_component(&m.encode()?)?
.map(|_| Results::Component(Vec::new())),
#[cfg(not(feature = "component-model"))]
Wat::Component(_) => bail!("component-model support not enabled"),
}),
WastExecute::Get { module, global } => self.get(module.map(|s| s.name()), global),
}
}
fn perform_invoke(&mut self, exec: WastInvoke<'_>) -> Result<Outcome> {
match self.get_export(exec.module.map(|i| i.name()), exec.name)? {
Export::Core(export) => {
let func = export
.into_func()
.ok_or_else(|| anyhow!("no function named `{}`", exec.name))?;
let values = exec
.args
.iter()
.map(|v| match v {
WastArg::Core(v) => core::val(v),
WastArg::Component(_) => bail!("expected component function, found core"),
})
.collect::<Result<Vec<_>>>()?;
let mut results = vec![Val::null(); func.ty(&self.store).results().len()];
Ok(match func.call(&mut self.store, &values, &mut results) {
Ok(()) => Outcome::Ok(Results::Core(results.into())),
Err(e) => Outcome::Trap(e.downcast()?),
})
}
#[cfg(feature = "component-model")]
Export::Component(func) => {
let params = func.params(&self.store);
if exec.args.len() != params.len() {
bail!("mismatched number of parameters")
}
let values = exec
.args
.iter()
.zip(params.iter())
.map(|(v, t)| match v {
WastArg::Component(v) => component::val(v, t),
WastArg::Core(_) => bail!("expected core function, found component"),
})
.collect::<Result<Vec<_>>>()?;
let mut results =
vec![component::Val::Bool(false); func.results(&self.store).len()];
Ok(match func.call(&mut self.store, &values, &mut results) {
Ok(()) => {
func.post_return(&mut self.store)?;
Outcome::Ok(Results::Component(results.into()))
}
Err(e) => Outcome::Trap(e.downcast()?),
})
}
}
}
/// Define a module and register it.
fn wat(&mut self, mut wat: QuoteWat<'_>) -> Result<()> {
let (is_module, name) = match &wat {
QuoteWat::Wat(Wat::Module(m)) => (true, m.id),
QuoteWat::QuoteModule(..) => (true, None),
QuoteWat::Wat(Wat::Component(m)) => (false, m.id),
QuoteWat::QuoteComponent(..) => (false, None),
};
let bytes = wat.encode()?;
if is_module {
let instance = match self.instantiate_module(&bytes)? {
Outcome::Ok(i) => i,
Outcome::Trap(e) => return Err(e).context("instantiation failed"),
};
if let Some(name) = name {
self.core_linker
.instance(&mut self.store, name.name(), instance)?;
}
self.current = Some(InstanceKind::Core(instance));
} else {
#[cfg(feature = "component-model")]
{
let instance = match self.instantiate_component(&bytes)? {
Outcome::Ok(i) => i,
Outcome::Trap(e) => return Err(e).context("instantiation failed"),
};
if let Some(name) = name {
// TODO: should ideally reflect more than just modules into
// the linker's namespace but that's not easily supported
// today for host functions due to the inability to take a
// function from one instance and put it into the linker
// (must go through the host right now).
let mut linker = self.component_linker.instance(name.name())?;
for (name, module) in instance.exports(&mut self.store).root().modules() {
linker.module(name, module)?;
}
}
self.current = Some(InstanceKind::Component(instance));
}
#[cfg(not(feature = "component-model"))]
bail!("component-model support not enabled");
}
Ok(())
}
/// Register an instance to make it available for performing actions.
fn register(&mut self, name: Option<&str>, as_name: &str) -> Result<()> {
match name {
Some(name) => self.core_linker.alias_module(name, as_name),
None => {
let current = self
.current
.as_ref()
.ok_or(anyhow!("no previous instance"))?;
match current {
InstanceKind::Core(current) => {
self.core_linker
.instance(&mut self.store, as_name, *current)?;
}
#[cfg(feature = "component-model")]
InstanceKind::Component(_) => {
bail!("register not implemented for components");
}
}
Ok(())
}
}
}
/// Get the value of an exported global from an instance.
fn get(&mut self, instance_name: Option<&str>, field: &str) -> Result<Outcome> {
let global = match self.get_export(instance_name, field)? {
Export::Core(e) => e
.into_global()
.ok_or_else(|| anyhow!("no global named `{field}`"))?,
#[cfg(feature = "component-model")]
Export::Component(_) => bail!("no global named `{field}`"),
};
Ok(Outcome::Ok(Results::Core(
vec![global.get(&mut self.store)],
)))
}
fn assert_return(&self, result: Outcome, results: &[WastRet<'_>]) -> Result<()> {
match result.into_result()? {
Results::Core(values) => {
if values.len() != results.len() {
bail!("expected {} results found {}", results.len(), values.len());
}
for (i, (v, e)) in values.iter().zip(results).enumerate() {
let e = match e {
WastRet::Core(core) => core,
WastRet::Component(_) => {
bail!("expected component value found core value")
}
};
core::match_val(v, e).with_context(|| format!("result {} didn't match", i))?;
}
}
#[cfg(feature = "component-model")]
Results::Component(values) => {
if values.len() != results.len() {
bail!("expected {} results found {}", results.len(), values.len());
}
for (i, (v, e)) in values.iter().zip(results).enumerate() {
let e = match e {
WastRet::Core(_) => {
bail!("expected component value found core value")
}
WastRet::Component(val) => val,
};
component::match_val(e, v)
.with_context(|| format!("result {} didn't match", i))?;
}
}
}
Ok(())
}
fn assert_trap(&self, result: Outcome, expected: &str) -> Result<()> {
let trap = match result {
Outcome::Ok(values) => bail!("expected trap, got {:?}", values),
Outcome::Trap(t) => t,
};
let actual = trap.to_string();
if actual.contains(expected)
// `bulk-memory-operations/bulk.wast` checks for a message that
// specifies which element is uninitialized, but our traps don't
// shepherd that information out.
|| (expected.contains("uninitialized element 2") && actual.contains("uninitialized element"))
{
return Ok(());
}
bail!("expected '{}', got '{}'", expected, actual)
}
/// Run a wast script from a byte buffer.
pub fn run_buffer(&mut self, filename: &str, wast: &[u8]) -> Result<()> {
let wast = str::from_utf8(wast)?;
let adjust_wast = |mut err: wast::Error| {
err.set_path(filename.as_ref());
err.set_text(wast);
err
};
let mut lexer = Lexer::new(wast);
lexer.allow_confusing_unicode(filename.ends_with("names.wast"));
let buf = ParseBuffer::new_with_lexer(lexer).map_err(adjust_wast)?;
let ast = parser::parse::<Wast>(&buf).map_err(adjust_wast)?;
for directive in ast.directives {
let sp = directive.span();
if log::log_enabled!(log::Level::Debug) {
let (line, col) = sp.linecol_in(wast);
log::debug!("failed directive on {}:{}:{}", filename, line + 1, col);
}
self.run_directive(directive)
.map_err(|e| match e.downcast() {
Ok(err) => adjust_wast(err).into(),
Err(e) => e,
})
.with_context(|| {
let (line, col) = sp.linecol_in(wast);
format!("failed directive on {}:{}:{}", filename, line + 1, col)
})?;
}
Ok(())
}
fn run_directive(&mut self, directive: WastDirective) -> Result<()> {
use wast::WastDirective::*;
match directive {
Wat(module) => self.wat(module)?,
Register {
span: _,
name,
module,
} => {
self.register(module.map(|s| s.name()), name)?;
}
Invoke(i) => {
self.perform_invoke(i)?;
}
AssertReturn {
span: _,
exec,
results,
} => {
let result = self.perform_execute(exec)?;
self.assert_return(result, &results)?;
}
AssertTrap {
span: _,
exec,
message,
} => {
let result = self.perform_execute(exec)?;
self.assert_trap(result, message)?;
}
AssertExhaustion {
span: _,
call,
message,
} => {
let result = self.perform_invoke(call)?;
self.assert_trap(result, message)?;
}
AssertInvalid {
span: _,
module,
message,
} => {
let err = match self.wat(module) {
Ok(()) => bail!("expected module to fail to build"),
Err(e) => e,
};
let error_message = format!("{:?}", err);
if !is_matching_assert_invalid_error_message(&message, &error_message) {
bail!(
"assert_invalid: expected \"{}\", got \"{}\"",
message,
error_message
)
}
}
AssertMalformed {
module,
span: _,
message: _,
} => {
if let Ok(_) = self.wat(module) {
bail!("expected malformed module to fail to instantiate");
}
}
AssertUnlinkable {
span: _,
module,
message,
} => {
let err = match self.wat(QuoteWat::Wat(module)) {
Ok(()) => bail!("expected module to fail to link"),
Err(e) => e,
};
let error_message = format!("{:?}", err);
if !error_message.contains(&message) {
bail!(
"assert_unlinkable: expected {}, got {}",
message,
error_message
)
}
}
AssertException { .. } => bail!("unimplemented assert_exception"),
}
Ok(())
}
/// Run a wast script from a file.
pub fn run_file(&mut self, path: &Path) -> Result<()> {
let bytes =
std::fs::read(path).with_context(|| format!("failed to read `{}`", path.display()))?;
self.run_buffer(path.to_str().unwrap(), &bytes)
}
}
fn is_matching_assert_invalid_error_message(expected: &str, actual: &str) -> bool {
actual.contains(expected)
// `elem.wast` and `proposals/bulk-memory-operations/elem.wast` disagree
// on the expected error message for the same error.
|| (expected.contains("out of bounds") && actual.contains("does not fit"))
// slight difference in error messages
|| (expected.contains("unknown elem segment") && actual.contains("unknown element segment"))
// The same test here is asserted to have one error message in
// `memory.wast` and a different error message in
// `memory64/memory.wast`, so we equate these two error messages to get
// the memory64 tests to pass.
|| (expected.contains("memory size must be at most 65536 pages") && actual.contains("invalid u32 number"))
}