The main issue with the InstSize enum was that it was used both for GPR and SIMD & FP operands, even though machine instructions do not mix them in general (as in a destination register is either a GPR or not). As a result it had methods such as sf_bit() that made sense only for one type of operand. Another issue was that the enum name was not reflecting its purpose accurately - it was meant to represent an instruction operand size, not an instruction size, which is fixed in A64 (always 4 bytes). Now the enum is split into one for GPR operands and another for scalar SIMD & FP operands. Copyright (c) 2020, Arm Limited.
952 lines
29 KiB
Rust
952 lines
29 KiB
Rust
//! AArch64 ISA definitions: immediate constants.
|
|
|
|
// Some variants are never constructed, but we still want them as options in the future.
|
|
#[allow(dead_code)]
|
|
use crate::ir::types::*;
|
|
use crate::ir::Type;
|
|
use crate::isa::aarch64::inst::OperandSize;
|
|
use crate::machinst::*;
|
|
|
|
use regalloc::RealRegUniverse;
|
|
|
|
use core::convert::TryFrom;
|
|
use std::string::String;
|
|
|
|
/// An immediate that represents the NZCV flags.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct NZCV {
|
|
/// The negative condition flag.
|
|
n: bool,
|
|
/// The zero condition flag.
|
|
z: bool,
|
|
/// The carry condition flag.
|
|
c: bool,
|
|
/// The overflow condition flag.
|
|
v: bool,
|
|
}
|
|
|
|
impl NZCV {
|
|
pub fn new(n: bool, z: bool, c: bool, v: bool) -> NZCV {
|
|
NZCV { n, z, c, v }
|
|
}
|
|
|
|
/// Bits for encoding.
|
|
pub fn bits(&self) -> u32 {
|
|
(u32::from(self.n) << 3)
|
|
| (u32::from(self.z) << 2)
|
|
| (u32::from(self.c) << 1)
|
|
| u32::from(self.v)
|
|
}
|
|
}
|
|
|
|
/// An unsigned 5-bit immediate.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct UImm5 {
|
|
/// The value.
|
|
value: u8,
|
|
}
|
|
|
|
impl UImm5 {
|
|
pub fn maybe_from_u8(value: u8) -> Option<UImm5> {
|
|
if value < 32 {
|
|
Some(UImm5 { value })
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Bits for encoding.
|
|
pub fn bits(&self) -> u32 {
|
|
u32::from(self.value)
|
|
}
|
|
}
|
|
|
|
/// A signed, scaled 7-bit offset.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct SImm7Scaled {
|
|
/// The value.
|
|
pub value: i16,
|
|
/// multiplied by the size of this type
|
|
pub scale_ty: Type,
|
|
}
|
|
|
|
impl SImm7Scaled {
|
|
/// Create a SImm7Scaled from a raw offset and the known scale type, if
|
|
/// possible.
|
|
pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<SImm7Scaled> {
|
|
assert!(scale_ty == I64 || scale_ty == I32);
|
|
let scale = scale_ty.bytes();
|
|
assert!(scale.is_power_of_two());
|
|
let scale = i64::from(scale);
|
|
let upper_limit = 63 * scale;
|
|
let lower_limit = -(64 * scale);
|
|
if value >= lower_limit && value <= upper_limit && (value & (scale - 1)) == 0 {
|
|
Some(SImm7Scaled {
|
|
value: i16::try_from(value).unwrap(),
|
|
scale_ty,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Create a zero immediate of this format.
|
|
pub fn zero(scale_ty: Type) -> SImm7Scaled {
|
|
SImm7Scaled { value: 0, scale_ty }
|
|
}
|
|
|
|
/// Bits for encoding.
|
|
pub fn bits(&self) -> u32 {
|
|
let ty_bytes: i16 = self.scale_ty.bytes() as i16;
|
|
let scaled: i16 = self.value / ty_bytes;
|
|
assert!(scaled <= 63 && scaled >= -64);
|
|
let scaled: i8 = scaled as i8;
|
|
let encoded: u32 = scaled as u32;
|
|
encoded & 0x7f
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct FPULeftShiftImm {
|
|
pub amount: u8,
|
|
pub lane_size_in_bits: u8,
|
|
}
|
|
|
|
impl FPULeftShiftImm {
|
|
pub fn maybe_from_u8(amount: u8, lane_size_in_bits: u8) -> Option<Self> {
|
|
debug_assert!(lane_size_in_bits == 32 || lane_size_in_bits == 64);
|
|
if amount < lane_size_in_bits {
|
|
Some(Self {
|
|
amount,
|
|
lane_size_in_bits,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub fn enc(&self) -> u32 {
|
|
debug_assert!(self.lane_size_in_bits.is_power_of_two());
|
|
debug_assert!(self.lane_size_in_bits > self.amount);
|
|
// The encoding of the immediate follows the table below,
|
|
// where xs encode the shift amount.
|
|
//
|
|
// | lane_size_in_bits | encoding |
|
|
// +------------------------------+
|
|
// | 8 | 0001xxx |
|
|
// | 16 | 001xxxx |
|
|
// | 32 | 01xxxxx |
|
|
// | 64 | 1xxxxxx |
|
|
//
|
|
// The highest one bit is represented by `lane_size_in_bits`. Since
|
|
// `lane_size_in_bits` is a power of 2 and `amount` is less
|
|
// than `lane_size_in_bits`, they can be ORed
|
|
// together to produced the encoded value.
|
|
u32::from(self.lane_size_in_bits | self.amount)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct FPURightShiftImm {
|
|
pub amount: u8,
|
|
pub lane_size_in_bits: u8,
|
|
}
|
|
|
|
impl FPURightShiftImm {
|
|
pub fn maybe_from_u8(amount: u8, lane_size_in_bits: u8) -> Option<Self> {
|
|
debug_assert!(lane_size_in_bits == 32 || lane_size_in_bits == 64);
|
|
if amount > 0 && amount <= lane_size_in_bits {
|
|
Some(Self {
|
|
amount,
|
|
lane_size_in_bits,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub fn enc(&self) -> u32 {
|
|
debug_assert_ne!(0, self.amount);
|
|
// The encoding of the immediate follows the table below,
|
|
// where xs encodes the negated shift amount.
|
|
//
|
|
// | lane_size_in_bits | encoding |
|
|
// +------------------------------+
|
|
// | 8 | 0001xxx |
|
|
// | 16 | 001xxxx |
|
|
// | 32 | 01xxxxx |
|
|
// | 64 | 1xxxxxx |
|
|
//
|
|
// The shift amount is negated such that a shift ammount
|
|
// of 1 (in 64-bit) is encoded as 0b111111 and a shift
|
|
// amount of 64 is encoded as 0b000000,
|
|
// in the bottom 6 bits.
|
|
u32::from((self.lane_size_in_bits * 2) - self.amount)
|
|
}
|
|
}
|
|
|
|
/// a 9-bit signed offset.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct SImm9 {
|
|
/// The value.
|
|
pub value: i16,
|
|
}
|
|
|
|
impl SImm9 {
|
|
/// Create a signed 9-bit offset from a full-range value, if possible.
|
|
pub fn maybe_from_i64(value: i64) -> Option<SImm9> {
|
|
if value >= -256 && value <= 255 {
|
|
Some(SImm9 {
|
|
value: value as i16,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Create a zero immediate of this format.
|
|
pub fn zero() -> SImm9 {
|
|
SImm9 { value: 0 }
|
|
}
|
|
|
|
/// Bits for encoding.
|
|
pub fn bits(&self) -> u32 {
|
|
(self.value as u32) & 0x1ff
|
|
}
|
|
|
|
/// Signed value of immediate.
|
|
pub fn value(&self) -> i32 {
|
|
self.value as i32
|
|
}
|
|
}
|
|
|
|
/// An unsigned, scaled 12-bit offset.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct UImm12Scaled {
|
|
/// The value.
|
|
pub value: u16,
|
|
/// multiplied by the size of this type
|
|
pub scale_ty: Type,
|
|
}
|
|
|
|
impl UImm12Scaled {
|
|
/// Create a UImm12Scaled from a raw offset and the known scale type, if
|
|
/// possible.
|
|
pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<UImm12Scaled> {
|
|
// Ensure the type is at least one byte.
|
|
let scale_ty = if scale_ty == B1 { B8 } else { scale_ty };
|
|
|
|
let scale = scale_ty.bytes();
|
|
assert!(scale.is_power_of_two());
|
|
let scale = scale as i64;
|
|
let limit = 4095 * scale;
|
|
if value >= 0 && value <= limit && (value & (scale - 1)) == 0 {
|
|
Some(UImm12Scaled {
|
|
value: value as u16,
|
|
scale_ty,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Create a zero immediate of this format.
|
|
pub fn zero(scale_ty: Type) -> UImm12Scaled {
|
|
UImm12Scaled { value: 0, scale_ty }
|
|
}
|
|
|
|
/// Encoded bits.
|
|
pub fn bits(&self) -> u32 {
|
|
(self.value as u32 / self.scale_ty.bytes()) & 0xfff
|
|
}
|
|
|
|
/// Value after scaling.
|
|
pub fn value(&self) -> u32 {
|
|
self.value as u32
|
|
}
|
|
|
|
/// The value type which is the scaling base.
|
|
pub fn scale_ty(&self) -> Type {
|
|
self.scale_ty
|
|
}
|
|
}
|
|
|
|
/// A shifted immediate value in 'imm12' format: supports 12 bits, shifted
|
|
/// left by 0 or 12 places.
|
|
#[derive(Clone, Debug)]
|
|
pub struct Imm12 {
|
|
/// The immediate bits.
|
|
pub bits: u16,
|
|
/// Whether the immediate bits are shifted left by 12 or not.
|
|
pub shift12: bool,
|
|
}
|
|
|
|
impl Imm12 {
|
|
/// Compute a Imm12 from raw bits, if possible.
|
|
pub fn maybe_from_u64(val: u64) -> Option<Imm12> {
|
|
if val == 0 {
|
|
Some(Imm12 {
|
|
bits: 0,
|
|
shift12: false,
|
|
})
|
|
} else if val < 0xfff {
|
|
Some(Imm12 {
|
|
bits: val as u16,
|
|
shift12: false,
|
|
})
|
|
} else if val < 0xfff_000 && (val & 0xfff == 0) {
|
|
Some(Imm12 {
|
|
bits: (val >> 12) as u16,
|
|
shift12: true,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Create a zero immediate of this format.
|
|
pub fn zero() -> Self {
|
|
Imm12 {
|
|
bits: 0,
|
|
shift12: false,
|
|
}
|
|
}
|
|
|
|
/// Bits for 2-bit "shift" field in e.g. AddI.
|
|
pub fn shift_bits(&self) -> u32 {
|
|
if self.shift12 {
|
|
0b01
|
|
} else {
|
|
0b00
|
|
}
|
|
}
|
|
|
|
/// Bits for 12-bit "imm" field in e.g. AddI.
|
|
pub fn imm_bits(&self) -> u32 {
|
|
self.bits as u32
|
|
}
|
|
}
|
|
|
|
/// An immediate for logical instructions.
|
|
#[derive(Clone, Debug)]
|
|
#[cfg_attr(test, derive(PartialEq))]
|
|
pub struct ImmLogic {
|
|
/// The actual value.
|
|
value: u64,
|
|
/// `N` flag.
|
|
pub n: bool,
|
|
/// `S` field: element size and element bits.
|
|
pub r: u8,
|
|
/// `R` field: rotate amount.
|
|
pub s: u8,
|
|
/// Was this constructed for a 32-bit or 64-bit instruction?
|
|
pub size: OperandSize,
|
|
}
|
|
|
|
impl ImmLogic {
|
|
/// Compute an ImmLogic from raw bits, if possible.
|
|
pub fn maybe_from_u64(value: u64, ty: Type) -> Option<ImmLogic> {
|
|
// Note: This function is a port of VIXL's Assembler::IsImmLogical.
|
|
|
|
if ty != I64 && ty != I32 {
|
|
return None;
|
|
}
|
|
let operand_size = OperandSize::from_ty(ty);
|
|
|
|
let original_value = value;
|
|
|
|
let value = if ty == I32 {
|
|
// To handle 32-bit logical immediates, the very easiest thing is to repeat
|
|
// the input value twice to make a 64-bit word. The correct encoding of that
|
|
// as a logical immediate will also be the correct encoding of the 32-bit
|
|
// value.
|
|
|
|
// Avoid making the assumption that the most-significant 32 bits are zero by
|
|
// shifting the value left and duplicating it.
|
|
let value = value << 32;
|
|
value | value >> 32
|
|
} else {
|
|
value
|
|
};
|
|
|
|
// Logical immediates are encoded using parameters n, imm_s and imm_r using
|
|
// the following table:
|
|
//
|
|
// N imms immr size S R
|
|
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
|
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
|
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
|
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
|
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
|
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
|
// (s bits must not be all set)
|
|
//
|
|
// A pattern is constructed of size bits, where the least significant S+1 bits
|
|
// are set. The pattern is rotated right by R, and repeated across a 32 or
|
|
// 64-bit value, depending on destination register width.
|
|
//
|
|
// Put another way: the basic format of a logical immediate is a single
|
|
// contiguous stretch of 1 bits, repeated across the whole word at intervals
|
|
// given by a power of 2. To identify them quickly, we first locate the
|
|
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
|
|
// is different for every logical immediate, so it gives us all the
|
|
// information we need to identify the only logical immediate that our input
|
|
// could be, and then we simply check if that's the value we actually have.
|
|
//
|
|
// (The rotation parameter does give the possibility of the stretch of 1 bits
|
|
// going 'round the end' of the word. To deal with that, we observe that in
|
|
// any situation where that happens the bitwise NOT of the value is also a
|
|
// valid logical immediate. So we simply invert the input whenever its low bit
|
|
// is set, and then we know that the rotated case can't arise.)
|
|
let (value, inverted) = if value & 1 == 1 {
|
|
(!value, true)
|
|
} else {
|
|
(value, false)
|
|
};
|
|
|
|
if value == 0 {
|
|
return None;
|
|
}
|
|
|
|
// The basic analysis idea: imagine our input word looks like this.
|
|
//
|
|
// 0011111000111110001111100011111000111110001111100011111000111110
|
|
// c b a
|
|
// |<--d-->|
|
|
//
|
|
// We find the lowest set bit (as an actual power-of-2 value, not its index)
|
|
// and call it a. Then we add a to our original number, which wipes out the
|
|
// bottommost stretch of set bits and replaces it with a 1 carried into the
|
|
// next zero bit. Then we look for the new lowest set bit, which is in
|
|
// position b, and subtract it, so now our number is just like the original
|
|
// but with the lowest stretch of set bits completely gone. Now we find the
|
|
// lowest set bit again, which is position c in the diagram above. Then we'll
|
|
// measure the distance d between bit positions a and c (using CLZ), and that
|
|
// tells us that the only valid logical immediate that could possibly be equal
|
|
// to this number is the one in which a stretch of bits running from a to just
|
|
// below b is replicated every d bits.
|
|
fn lowest_set_bit(value: u64) -> u64 {
|
|
let bit = value.trailing_zeros();
|
|
1u64.checked_shl(bit).unwrap_or(0)
|
|
}
|
|
let a = lowest_set_bit(value);
|
|
assert_ne!(0, a);
|
|
let value_plus_a = value.wrapping_add(a);
|
|
let b = lowest_set_bit(value_plus_a);
|
|
let value_plus_a_minus_b = value_plus_a - b;
|
|
let c = lowest_set_bit(value_plus_a_minus_b);
|
|
|
|
let (d, clz_a, out_n, mask) = if c != 0 {
|
|
// The general case, in which there is more than one stretch of set bits.
|
|
// Compute the repeat distance d, and set up a bitmask covering the basic
|
|
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
|
|
// of these cases the N bit of the output will be zero.
|
|
let clz_a = a.leading_zeros();
|
|
let clz_c = c.leading_zeros();
|
|
let d = clz_a - clz_c;
|
|
let mask = (1 << d) - 1;
|
|
(d, clz_a, 0, mask)
|
|
} else {
|
|
(64, a.leading_zeros(), 1, u64::max_value())
|
|
};
|
|
|
|
// If the repeat period d is not a power of two, it can't be encoded.
|
|
if !d.is_power_of_two() {
|
|
return None;
|
|
}
|
|
|
|
if ((b.wrapping_sub(a)) & !mask) != 0 {
|
|
// If the bit stretch (b - a) does not fit within the mask derived from the
|
|
// repeat period, then fail.
|
|
return None;
|
|
}
|
|
|
|
// The only possible option is b - a repeated every d bits. Now we're going to
|
|
// actually construct the valid logical immediate derived from that
|
|
// specification, and see if it equals our original input.
|
|
//
|
|
// To repeat a value every d bits, we multiply it by a number of the form
|
|
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
|
|
// be derived using a table lookup on CLZ(d).
|
|
const MULTIPLIERS: [u64; 6] = [
|
|
0x0000000000000001,
|
|
0x0000000100000001,
|
|
0x0001000100010001,
|
|
0x0101010101010101,
|
|
0x1111111111111111,
|
|
0x5555555555555555,
|
|
];
|
|
let multiplier = MULTIPLIERS[(u64::from(d).leading_zeros() - 57) as usize];
|
|
let candidate = b.wrapping_sub(a) * multiplier;
|
|
|
|
if value != candidate {
|
|
// The candidate pattern doesn't match our input value, so fail.
|
|
return None;
|
|
}
|
|
|
|
// We have a match! This is a valid logical immediate, so now we have to
|
|
// construct the bits and pieces of the instruction encoding that generates
|
|
// it.
|
|
|
|
// Count the set bits in our basic stretch. The special case of clz(0) == -1
|
|
// makes the answer come out right for stretches that reach the very top of
|
|
// the word (e.g. numbers like 0xffffc00000000000).
|
|
let clz_b = if b == 0 {
|
|
u32::max_value() // -1
|
|
} else {
|
|
b.leading_zeros()
|
|
};
|
|
let s = clz_a.wrapping_sub(clz_b);
|
|
|
|
// Decide how many bits to rotate right by, to put the low bit of that basic
|
|
// stretch in position a.
|
|
let (s, r) = if inverted {
|
|
// If we inverted the input right at the start of this function, here's
|
|
// where we compensate: the number of set bits becomes the number of clear
|
|
// bits, and the rotation count is based on position b rather than position
|
|
// a (since b is the location of the 'lowest' 1 bit after inversion).
|
|
// Need wrapping for when clz_b is max_value() (for when b == 0).
|
|
(d - s, clz_b.wrapping_add(1) & (d - 1))
|
|
} else {
|
|
(s, (clz_a + 1) & (d - 1))
|
|
};
|
|
|
|
// Now we're done, except for having to encode the S output in such a way that
|
|
// it gives both the number of set bits and the length of the repeated
|
|
// segment. The s field is encoded like this:
|
|
//
|
|
// imms size S
|
|
// ssssss 64 UInt(ssssss)
|
|
// 0sssss 32 UInt(sssss)
|
|
// 10ssss 16 UInt(ssss)
|
|
// 110sss 8 UInt(sss)
|
|
// 1110ss 4 UInt(ss)
|
|
// 11110s 2 UInt(s)
|
|
//
|
|
// So we 'or' (2 * -d) with our computed s to form imms.
|
|
let s = ((d * 2).wrapping_neg() | (s - 1)) & 0x3f;
|
|
debug_assert!(u8::try_from(r).is_ok());
|
|
debug_assert!(u8::try_from(s).is_ok());
|
|
Some(ImmLogic {
|
|
value: original_value,
|
|
n: out_n != 0,
|
|
r: r as u8,
|
|
s: s as u8,
|
|
size: operand_size,
|
|
})
|
|
}
|
|
|
|
/// Returns bits ready for encoding: (N:1, R:6, S:6)
|
|
pub fn enc_bits(&self) -> u32 {
|
|
((self.n as u32) << 12) | ((self.r as u32) << 6) | (self.s as u32)
|
|
}
|
|
|
|
/// Returns the value that this immediate represents.
|
|
pub fn value(&self) -> u64 {
|
|
self.value
|
|
}
|
|
|
|
/// Return an immediate for the bitwise-inverted value.
|
|
pub fn invert(&self) -> ImmLogic {
|
|
// For every ImmLogical immediate, the inverse can also be encoded.
|
|
Self::maybe_from_u64(!self.value, self.size.to_ty()).unwrap()
|
|
}
|
|
}
|
|
|
|
/// An immediate for shift instructions.
|
|
#[derive(Clone, Debug)]
|
|
pub struct ImmShift {
|
|
/// 6-bit shift amount.
|
|
pub imm: u8,
|
|
}
|
|
|
|
impl ImmShift {
|
|
/// Create an ImmShift from raw bits, if possible.
|
|
pub fn maybe_from_u64(val: u64) -> Option<ImmShift> {
|
|
if val < 64 {
|
|
Some(ImmShift { imm: val as u8 })
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Get the immediate value.
|
|
pub fn value(&self) -> u8 {
|
|
self.imm
|
|
}
|
|
}
|
|
|
|
/// A 16-bit immediate for a MOVZ instruction, with a {0,16,32,48}-bit shift.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct MoveWideConst {
|
|
/// The value.
|
|
pub bits: u16,
|
|
/// Result is `bits` shifted 16*shift bits to the left.
|
|
pub shift: u8,
|
|
}
|
|
|
|
impl MoveWideConst {
|
|
/// Construct a MoveWideConst from an arbitrary 64-bit constant if possible.
|
|
pub fn maybe_from_u64(value: u64) -> Option<MoveWideConst> {
|
|
let mask0 = 0x0000_0000_0000_ffffu64;
|
|
let mask1 = 0x0000_0000_ffff_0000u64;
|
|
let mask2 = 0x0000_ffff_0000_0000u64;
|
|
let mask3 = 0xffff_0000_0000_0000u64;
|
|
|
|
if value == (value & mask0) {
|
|
return Some(MoveWideConst {
|
|
bits: (value & mask0) as u16,
|
|
shift: 0,
|
|
});
|
|
}
|
|
if value == (value & mask1) {
|
|
return Some(MoveWideConst {
|
|
bits: ((value >> 16) & mask0) as u16,
|
|
shift: 1,
|
|
});
|
|
}
|
|
if value == (value & mask2) {
|
|
return Some(MoveWideConst {
|
|
bits: ((value >> 32) & mask0) as u16,
|
|
shift: 2,
|
|
});
|
|
}
|
|
if value == (value & mask3) {
|
|
return Some(MoveWideConst {
|
|
bits: ((value >> 48) & mask0) as u16,
|
|
shift: 3,
|
|
});
|
|
}
|
|
None
|
|
}
|
|
|
|
pub fn maybe_with_shift(imm: u16, shift: u8) -> Option<MoveWideConst> {
|
|
let shift_enc = shift / 16;
|
|
if shift_enc > 3 {
|
|
None
|
|
} else {
|
|
Some(MoveWideConst {
|
|
bits: imm,
|
|
shift: shift_enc,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Returns the value that this constant represents.
|
|
pub fn value(&self) -> u64 {
|
|
(self.bits as u64) << (16 * self.shift)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for NZCV {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
let fmt = |c: char, v| if v { c.to_ascii_uppercase() } else { c };
|
|
format!(
|
|
"#{}{}{}{}",
|
|
fmt('n', self.n),
|
|
fmt('z', self.z),
|
|
fmt('c', self.c),
|
|
fmt('v', self.v)
|
|
)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for UImm5 {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
format!("#{}", self.value)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for Imm12 {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
let shift = if self.shift12 { 12 } else { 0 };
|
|
let value = u32::from(self.bits) << shift;
|
|
format!("#{}", value)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for SImm7Scaled {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
format!("#{}", self.value)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for FPULeftShiftImm {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
format!("#{}", self.amount)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for FPURightShiftImm {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
format!("#{}", self.amount)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for SImm9 {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
format!("#{}", self.value)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for UImm12Scaled {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
format!("#{}", self.value)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for ImmLogic {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
format!("#{}", self.value())
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for ImmShift {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
format!("#{}", self.imm)
|
|
}
|
|
}
|
|
|
|
impl ShowWithRRU for MoveWideConst {
|
|
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
|
|
if self.shift == 0 {
|
|
format!("#{}", self.bits)
|
|
} else {
|
|
format!("#{}, LSL #{}", self.bits, self.shift * 16)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn imm_logical_test() {
|
|
assert_eq!(None, ImmLogic::maybe_from_u64(0, I64));
|
|
assert_eq!(None, ImmLogic::maybe_from_u64(u64::max_value(), I64));
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 1,
|
|
n: true,
|
|
r: 0,
|
|
s: 0,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(1, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 2,
|
|
n: true,
|
|
r: 63,
|
|
s: 0,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(2, I64)
|
|
);
|
|
|
|
assert_eq!(None, ImmLogic::maybe_from_u64(5, I64));
|
|
|
|
assert_eq!(None, ImmLogic::maybe_from_u64(11, I64));
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 248,
|
|
n: true,
|
|
r: 61,
|
|
s: 4,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(248, I64)
|
|
);
|
|
|
|
assert_eq!(None, ImmLogic::maybe_from_u64(249, I64));
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 1920,
|
|
n: true,
|
|
r: 57,
|
|
s: 3,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(1920, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 0x7ffe,
|
|
n: true,
|
|
r: 63,
|
|
s: 13,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(0x7ffe, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 0x30000,
|
|
n: true,
|
|
r: 48,
|
|
s: 1,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(0x30000, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 0x100000,
|
|
n: true,
|
|
r: 44,
|
|
s: 0,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(0x100000, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: u64::max_value() - 1,
|
|
n: true,
|
|
r: 63,
|
|
s: 62,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(u64::max_value() - 1, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 0xaaaaaaaaaaaaaaaa,
|
|
n: false,
|
|
r: 1,
|
|
s: 60,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(0xaaaaaaaaaaaaaaaa, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 0x8181818181818181,
|
|
n: false,
|
|
r: 1,
|
|
s: 49,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(0x8181818181818181, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 0xffc3ffc3ffc3ffc3,
|
|
n: false,
|
|
r: 10,
|
|
s: 43,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(0xffc3ffc3ffc3ffc3, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 0x100000001,
|
|
n: false,
|
|
r: 0,
|
|
s: 0,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(0x100000001, I64)
|
|
);
|
|
|
|
assert_eq!(
|
|
Some(ImmLogic {
|
|
value: 0x1111111111111111,
|
|
n: false,
|
|
r: 0,
|
|
s: 56,
|
|
size: OperandSize::Size64,
|
|
}),
|
|
ImmLogic::maybe_from_u64(0x1111111111111111, I64)
|
|
);
|
|
|
|
for n in 0..2 {
|
|
let types = if n == 0 { vec![I64, I32] } else { vec![I64] };
|
|
for s in 0..64 {
|
|
for r in 0..64 {
|
|
let imm = get_logical_imm(n, s, r);
|
|
for &ty in &types {
|
|
match ImmLogic::maybe_from_u64(imm, ty) {
|
|
Some(ImmLogic { value, .. }) => {
|
|
assert_eq!(imm, value);
|
|
ImmLogic::maybe_from_u64(!value, ty).unwrap();
|
|
}
|
|
None => assert_eq!(0, imm),
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Repeat a value that has `width` bits, across a 64-bit value.
|
|
fn repeat(value: u64, width: u64) -> u64 {
|
|
let mut result = value & ((1 << width) - 1);
|
|
let mut i = width;
|
|
while i < 64 {
|
|
result |= result << i;
|
|
i *= 2;
|
|
}
|
|
result
|
|
}
|
|
|
|
// Get the logical immediate, from the encoding N/R/S bits.
|
|
fn get_logical_imm(n: u32, s: u32, r: u32) -> u64 {
|
|
// An integer is constructed from the n, imm_s and imm_r bits according to
|
|
// the following table:
|
|
//
|
|
// N imms immr size S R
|
|
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
|
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
|
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
|
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
|
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
|
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
|
// (s bits must not be all set)
|
|
//
|
|
// A pattern is constructed of size bits, where the least significant S+1
|
|
// bits are set. The pattern is rotated right by R, and repeated across a
|
|
// 64-bit value.
|
|
|
|
if n == 1 {
|
|
if s == 0x3f {
|
|
return 0;
|
|
}
|
|
let bits = (1u64 << (s + 1)) - 1;
|
|
bits.rotate_right(r)
|
|
} else {
|
|
if (s >> 1) == 0x1f {
|
|
return 0;
|
|
}
|
|
let mut width = 0x20;
|
|
while width >= 0x2 {
|
|
if (s & width) == 0 {
|
|
let mask = width - 1;
|
|
if (s & mask) == mask {
|
|
return 0;
|
|
}
|
|
let bits = (1u64 << ((s & mask) + 1)) - 1;
|
|
return repeat(bits.rotate_right(r & mask), width.into());
|
|
}
|
|
width >>= 1;
|
|
}
|
|
unreachable!();
|
|
}
|
|
}
|
|
}
|