The implementation is pretty straightforward. Wasm atomic instructions fall
into 5 groups
* atomic read-modify-write
* atomic compare-and-swap
* atomic loads
* atomic stores
* fences
and the implementation mirrors that structure, at both the CLIF and AArch64
levels.
At the CLIF level, there are five new instructions, one for each group. Some
comments about these:
* for those that take addresses (all except fences), the address is contained
entirely in a single `Value`; there is no offset field as there is with
normal loads and stores. Wasm atomics require alignment checks, and
removing the offset makes implementation of those checks a bit simpler.
* atomic loads and stores get their own instructions, rather than reusing the
existing load and store instructions, for two reasons:
- per above comment, makes alignment checking simpler
- reuse of existing loads and stores would require extension of `MemFlags`
to indicate atomicity, which sounds semantically unclean. For example,
then *any* instruction carrying `MemFlags` could be marked as atomic, even
in cases where it is meaningless or ambiguous.
* I tried to specify, in comments, the behaviour of these instructions as
tightly as I could. Unfortunately there is no way (per my limited CLIF
knowledge) to enforce the constraint that they may only be used on I8, I16,
I32 and I64 types, and in particular not on floating point or vector types.
The translation from Wasm to CLIF, in `code_translator.rs` is unremarkable.
At the AArch64 level, there are also five new instructions, one for each
group. All of them except `::Fence` contain multiple real machine
instructions. Atomic r-m-w and atomic c-a-s are emitted as the usual
load-linked store-conditional loops, guarded at both ends by memory fences.
Atomic loads and stores are emitted as a load preceded by a fence, and a store
followed by a fence, respectively. The amount of fencing may be overkill, but
it reflects exactly what the SM Wasm baseline compiler for AArch64 does.
One reason to implement r-m-w and c-a-s as a single insn which is expanded
only at emission time is that we must be very careful what instructions we
allow in between the load-linked and store-conditional. In particular, we
cannot allow *any* extra memory transactions in there, since -- particularly
on low-end hardware -- that might cause the transaction to fail, hence
deadlocking the generated code. That implies that we can't present the LL/SC
loop to the register allocator as its constituent instructions, since it might
insert spills anywhere. Hence we must present it as a single indivisible
unit, as we do here. It also has the benefit of reducing the total amount of
work the RA has to do.
The only other notable feature of the r-m-w and c-a-s translations into
AArch64 code, is that they both need a scratch register internally. Rather
than faking one up by claiming, in `get_regs` that it modifies an extra
scratch register, and having to have a dummy initialisation of it, these new
instructions (`::LLSC` and `::CAS`) simply use fixed registers in the range
x24-x28. We rely on the RA's ability to coalesce V<-->R copies to make the
cost of the resulting extra copies zero or almost zero. x24-x28 are chosen so
as to be call-clobbered, hence their use is less likely to interfere with long
live ranges that span calls.
One subtlety regarding the use of completely fixed input and output registers
is that we must be careful how the surrounding copy from/to of the arg/result
registers is done. In particular, it is not safe to simply emit copies in
some arbitrary order if one of the arg registers is a real reg. For that
reason, the arguments are first moved into virtual regs if they are not
already there, using a new method `<LowerCtx for Lower>::ensure_in_vreg`.
Again, we rely on coalescing to turn them into no-ops in the common case.
There is also a ridealong fix for the AArch64 lowering case for
`Opcode::Trapif | Opcode::Trapff`, which removes a bug in which two trap insns
in a row were generated.
In the patch as submitted there are 6 "FIXME JRS" comments, which mark things
which I believe to be correct, but for which I would appreciate a second
opinion. Unless otherwise directed, I will remove them for the final commit
but leave the associated code/comments unchanged.
2187 lines
76 KiB
Rust
2187 lines
76 KiB
Rust
//! A verifier for ensuring that functions are well formed.
|
|
//! It verifies:
|
|
//!
|
|
//! block integrity
|
|
//!
|
|
//! - All instructions reached from the `block_insts` iterator must belong to
|
|
//! the block as reported by `inst_block()`.
|
|
//! - Every block must end in a terminator instruction, and no other instruction
|
|
//! can be a terminator.
|
|
//! - Every value in the `block_params` iterator belongs to the block as reported by `value_block`.
|
|
//!
|
|
//! Instruction integrity
|
|
//!
|
|
//! - The instruction format must match the opcode.
|
|
//! - All result values must be created for multi-valued instructions.
|
|
//! - All referenced entities must exist. (Values, blocks, stack slots, ...)
|
|
//! - Instructions must not reference (eg. branch to) the entry block.
|
|
//!
|
|
//! SSA form
|
|
//!
|
|
//! - Values must be defined by an instruction that exists and that is inserted in
|
|
//! a block, or be an argument of an existing block.
|
|
//! - Values used by an instruction must dominate the instruction.
|
|
//!
|
|
//! Control flow graph and dominator tree integrity:
|
|
//!
|
|
//! - All predecessors in the CFG must be branches to the block.
|
|
//! - All branches to a block must be present in the CFG.
|
|
//! - A recomputed dominator tree is identical to the existing one.
|
|
//!
|
|
//! Type checking
|
|
//!
|
|
//! - Compare input and output values against the opcode's type constraints.
|
|
//! For polymorphic opcodes, determine the controlling type variable first.
|
|
//! - Branches and jumps must pass arguments to destination blocks that match the
|
|
//! expected types exactly. The number of arguments must match.
|
|
//! - All blocks in a jump table must take no arguments.
|
|
//! - Function calls are type checked against their signature.
|
|
//! - The entry block must take arguments that match the signature of the current
|
|
//! function.
|
|
//! - All return instructions must have return value operands matching the current
|
|
//! function signature.
|
|
//!
|
|
//! Global values
|
|
//!
|
|
//! - Detect cycles in global values.
|
|
//! - Detect use of 'vmctx' global value when no corresponding parameter is defined.
|
|
//!
|
|
//! TODO:
|
|
//! Ad hoc checking
|
|
//!
|
|
//! - Stack slot loads and stores must be in-bounds.
|
|
//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
|
|
//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
|
|
//! range for their polymorphic type.
|
|
//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
|
|
//! of arguments must match the destination type, and the lane indexes must be in range.
|
|
|
|
use self::flags::verify_flags;
|
|
use crate::dbg::DisplayList;
|
|
use crate::dominator_tree::DominatorTree;
|
|
use crate::entity::SparseSet;
|
|
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
|
|
use crate::ir;
|
|
use crate::ir::entities::AnyEntity;
|
|
use crate::ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint};
|
|
use crate::ir::{
|
|
types, ArgumentLoc, ArgumentPurpose, Block, Constant, FuncRef, Function, GlobalValue, Inst,
|
|
InstructionData, JumpTable, Opcode, SigRef, StackSlot, StackSlotKind, Type, Value, ValueDef,
|
|
ValueList, ValueLoc,
|
|
};
|
|
use crate::isa::TargetIsa;
|
|
use crate::iterators::IteratorExtras;
|
|
use crate::print_errors::pretty_verifier_error;
|
|
use crate::settings::FlagsOrIsa;
|
|
use crate::timing;
|
|
use alloc::collections::BTreeSet;
|
|
use alloc::string::{String, ToString};
|
|
use alloc::vec::Vec;
|
|
use core::cmp::Ordering;
|
|
use core::fmt::{self, Display, Formatter, Write};
|
|
use log::debug;
|
|
use thiserror::Error;
|
|
|
|
pub use self::cssa::verify_cssa;
|
|
pub use self::liveness::verify_liveness;
|
|
pub use self::locations::verify_locations;
|
|
|
|
mod cssa;
|
|
mod flags;
|
|
mod liveness;
|
|
mod locations;
|
|
|
|
/// A verifier error.
|
|
#[derive(Error, Debug, PartialEq, Eq, Clone)]
|
|
#[error("{}{}: {}", .location, format_context(.context), .message)]
|
|
pub struct VerifierError {
|
|
/// The entity causing the verifier error.
|
|
pub location: AnyEntity,
|
|
/// Optionally provide some context for the given location; e.g., for `inst42` provide
|
|
/// `Some("v3 = iconst.i32 0")` for more comprehensible errors.
|
|
pub context: Option<String>,
|
|
/// The error message.
|
|
pub message: String,
|
|
}
|
|
|
|
/// Helper for formatting Verifier::Error context.
|
|
fn format_context(context: &Option<String>) -> String {
|
|
match context {
|
|
None => "".to_string(),
|
|
Some(c) => format!(" ({})", c),
|
|
}
|
|
}
|
|
|
|
/// Convenience converter for making error-reporting less verbose.
|
|
///
|
|
/// Converts a tuple of `(location, context, message)` to a `VerifierError`.
|
|
/// ```
|
|
/// use cranelift_codegen::verifier::VerifierErrors;
|
|
/// use cranelift_codegen::ir::Inst;
|
|
/// let mut errors = VerifierErrors::new();
|
|
/// errors.report((Inst::from_u32(42), "v3 = iadd v1, v2", "iadd cannot be used with values of this type"));
|
|
/// // note the double parenthenses to use this syntax
|
|
/// ```
|
|
impl<L, C, M> From<(L, C, M)> for VerifierError
|
|
where
|
|
L: Into<AnyEntity>,
|
|
C: Into<String>,
|
|
M: Into<String>,
|
|
{
|
|
fn from(items: (L, C, M)) -> Self {
|
|
let (location, context, message) = items;
|
|
Self {
|
|
location: location.into(),
|
|
context: Some(context.into()),
|
|
message: message.into(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Convenience converter for making error-reporting less verbose.
|
|
///
|
|
/// Same as above but without `context`.
|
|
impl<L, M> From<(L, M)> for VerifierError
|
|
where
|
|
L: Into<AnyEntity>,
|
|
M: Into<String>,
|
|
{
|
|
fn from(items: (L, M)) -> Self {
|
|
let (location, message) = items;
|
|
Self {
|
|
location: location.into(),
|
|
context: None,
|
|
message: message.into(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Result of a step in the verification process.
|
|
///
|
|
/// Functions that return `VerifierStepResult<()>` should also take a
|
|
/// mutable reference to `VerifierErrors` as argument in order to report
|
|
/// errors.
|
|
///
|
|
/// Here, `Ok` represents a step that **did not lead to a fatal error**,
|
|
/// meaning that the verification process may continue. However, other (non-fatal)
|
|
/// errors might have been reported through the previously mentioned `VerifierErrors`
|
|
/// argument.
|
|
pub type VerifierStepResult<T> = Result<T, ()>;
|
|
|
|
/// Result of a verification operation.
|
|
///
|
|
/// Unlike `VerifierStepResult<()>` which may be `Ok` while still having reported
|
|
/// errors, this type always returns `Err` if an error (fatal or not) was reported.
|
|
pub type VerifierResult<T> = Result<T, VerifierErrors>;
|
|
|
|
/// List of verifier errors.
|
|
#[derive(Error, Debug, Default, PartialEq, Eq, Clone)]
|
|
pub struct VerifierErrors(pub Vec<VerifierError>);
|
|
|
|
impl VerifierErrors {
|
|
/// Return a new `VerifierErrors` struct.
|
|
#[inline]
|
|
pub fn new() -> Self {
|
|
Self(Vec::new())
|
|
}
|
|
|
|
/// Return whether no errors were reported.
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.0.is_empty()
|
|
}
|
|
|
|
/// Return whether one or more errors were reported.
|
|
#[inline]
|
|
pub fn has_error(&self) -> bool {
|
|
!self.0.is_empty()
|
|
}
|
|
|
|
/// Return a `VerifierStepResult` that is fatal if at least one error was reported,
|
|
/// and non-fatal otherwise.
|
|
#[inline]
|
|
pub fn as_result(&self) -> VerifierStepResult<()> {
|
|
if self.is_empty() {
|
|
Ok(())
|
|
} else {
|
|
Err(())
|
|
}
|
|
}
|
|
|
|
/// Report an error, adding it to the list of errors.
|
|
pub fn report(&mut self, error: impl Into<VerifierError>) {
|
|
self.0.push(error.into());
|
|
}
|
|
|
|
/// Report a fatal error and return `Err`.
|
|
pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
|
|
self.report(error);
|
|
Err(())
|
|
}
|
|
|
|
/// Report a non-fatal error and return `Ok`.
|
|
pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
|
|
self.report(error);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl From<Vec<VerifierError>> for VerifierErrors {
|
|
fn from(v: Vec<VerifierError>) -> Self {
|
|
Self(v)
|
|
}
|
|
}
|
|
|
|
impl Into<Vec<VerifierError>> for VerifierErrors {
|
|
fn into(self) -> Vec<VerifierError> {
|
|
self.0
|
|
}
|
|
}
|
|
|
|
impl Into<VerifierResult<()>> for VerifierErrors {
|
|
fn into(self) -> VerifierResult<()> {
|
|
if self.is_empty() {
|
|
Ok(())
|
|
} else {
|
|
Err(self)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Display for VerifierErrors {
|
|
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
|
for err in &self.0 {
|
|
writeln!(f, "- {}", err)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Verify `func`.
|
|
pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
|
|
func: &Function,
|
|
fisa: FOI,
|
|
) -> VerifierResult<()> {
|
|
let _tt = timing::verifier();
|
|
let mut errors = VerifierErrors::default();
|
|
let verifier = Verifier::new(func, fisa.into());
|
|
let result = verifier.run(&mut errors);
|
|
if errors.is_empty() {
|
|
result.unwrap();
|
|
Ok(())
|
|
} else {
|
|
Err(errors)
|
|
}
|
|
}
|
|
|
|
/// Verify `func` after checking the integrity of associated context data structures `cfg` and
|
|
/// `domtree`.
|
|
pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
|
|
func: &Function,
|
|
cfg: &ControlFlowGraph,
|
|
domtree: &DominatorTree,
|
|
fisa: FOI,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let _tt = timing::verifier();
|
|
let verifier = Verifier::new(func, fisa.into());
|
|
if cfg.is_valid() {
|
|
verifier.cfg_integrity(cfg, errors)?;
|
|
}
|
|
if domtree.is_valid() {
|
|
verifier.domtree_integrity(domtree, errors)?;
|
|
}
|
|
verifier.run(errors)
|
|
}
|
|
|
|
struct Verifier<'a> {
|
|
func: &'a Function,
|
|
expected_cfg: ControlFlowGraph,
|
|
expected_domtree: DominatorTree,
|
|
isa: Option<&'a dyn TargetIsa>,
|
|
}
|
|
|
|
impl<'a> Verifier<'a> {
|
|
pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self {
|
|
let expected_cfg = ControlFlowGraph::with_function(func);
|
|
let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
|
|
Self {
|
|
func,
|
|
expected_cfg,
|
|
expected_domtree,
|
|
isa: fisa.isa,
|
|
}
|
|
}
|
|
|
|
/// Determine a contextual error string for an instruction.
|
|
#[inline]
|
|
fn context(&self, inst: Inst) -> String {
|
|
self.func.dfg.display_inst(inst, self.isa).to_string()
|
|
}
|
|
|
|
// Check for:
|
|
// - cycles in the global value declarations.
|
|
// - use of 'vmctx' when no special parameter declares it.
|
|
fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
let mut cycle_seen = false;
|
|
let mut seen = SparseSet::new();
|
|
|
|
'gvs: for gv in self.func.global_values.keys() {
|
|
seen.clear();
|
|
seen.insert(gv);
|
|
|
|
let mut cur = gv;
|
|
loop {
|
|
match self.func.global_values[cur] {
|
|
ir::GlobalValueData::Load { base, .. }
|
|
| ir::GlobalValueData::IAddImm { base, .. } => {
|
|
if seen.insert(base).is_some() {
|
|
if !cycle_seen {
|
|
errors.report((
|
|
gv,
|
|
format!("global value cycle: {}", DisplayList(seen.as_slice())),
|
|
));
|
|
// ensures we don't report the cycle multiple times
|
|
cycle_seen = true;
|
|
}
|
|
continue 'gvs;
|
|
}
|
|
|
|
cur = base;
|
|
}
|
|
_ => break,
|
|
}
|
|
}
|
|
|
|
match self.func.global_values[gv] {
|
|
ir::GlobalValueData::VMContext { .. } => {
|
|
if self
|
|
.func
|
|
.special_param(ir::ArgumentPurpose::VMContext)
|
|
.is_none()
|
|
{
|
|
errors.report((gv, format!("undeclared vmctx reference {}", gv)));
|
|
}
|
|
}
|
|
ir::GlobalValueData::IAddImm {
|
|
base, global_type, ..
|
|
} => {
|
|
if !global_type.is_int() {
|
|
errors.report((
|
|
gv,
|
|
format!("iadd_imm global value with non-int type {}", global_type),
|
|
));
|
|
} else if let Some(isa) = self.isa {
|
|
let base_type = self.func.global_values[base].global_type(isa);
|
|
if global_type != base_type {
|
|
errors.report((
|
|
gv,
|
|
format!(
|
|
"iadd_imm type {} differs from operand type {}",
|
|
global_type, base_type
|
|
),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
ir::GlobalValueData::Load { base, .. } => {
|
|
if let Some(isa) = self.isa {
|
|
let base_type = self.func.global_values[base].global_type(isa);
|
|
let pointer_type = isa.pointer_type();
|
|
if base_type != pointer_type {
|
|
errors.report((
|
|
gv,
|
|
format!(
|
|
"base {} has type {}, which is not the pointer type {}",
|
|
base, base_type, pointer_type
|
|
),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
// Invalid global values shouldn't stop us from verifying the rest of the function
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_heaps(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
if let Some(isa) = self.isa {
|
|
for (heap, heap_data) in &self.func.heaps {
|
|
let base = heap_data.base;
|
|
if !self.func.global_values.is_valid(base) {
|
|
return errors.nonfatal((heap, format!("invalid base global value {}", base)));
|
|
}
|
|
|
|
let pointer_type = isa.pointer_type();
|
|
let base_type = self.func.global_values[base].global_type(isa);
|
|
if base_type != pointer_type {
|
|
errors.report((
|
|
heap,
|
|
format!(
|
|
"heap base has type {}, which is not the pointer type {}",
|
|
base_type, pointer_type
|
|
),
|
|
));
|
|
}
|
|
|
|
if let ir::HeapStyle::Dynamic { bound_gv, .. } = heap_data.style {
|
|
if !self.func.global_values.is_valid(bound_gv) {
|
|
return errors
|
|
.nonfatal((heap, format!("invalid bound global value {}", bound_gv)));
|
|
}
|
|
|
|
let index_type = heap_data.index_type;
|
|
let bound_type = self.func.global_values[bound_gv].global_type(isa);
|
|
if index_type != bound_type {
|
|
errors.report((
|
|
heap,
|
|
format!(
|
|
"heap index type {} differs from the type of its bound, {}",
|
|
index_type, bound_type
|
|
),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
if let Some(isa) = self.isa {
|
|
for (table, table_data) in &self.func.tables {
|
|
let base = table_data.base_gv;
|
|
if !self.func.global_values.is_valid(base) {
|
|
return errors.nonfatal((table, format!("invalid base global value {}", base)));
|
|
}
|
|
|
|
let pointer_type = isa.pointer_type();
|
|
let base_type = self.func.global_values[base].global_type(isa);
|
|
if base_type != pointer_type {
|
|
errors.report((
|
|
table,
|
|
format!(
|
|
"table base has type {}, which is not the pointer type {}",
|
|
base_type, pointer_type
|
|
),
|
|
));
|
|
}
|
|
|
|
let bound_gv = table_data.bound_gv;
|
|
if !self.func.global_values.is_valid(bound_gv) {
|
|
return errors
|
|
.nonfatal((table, format!("invalid bound global value {}", bound_gv)));
|
|
}
|
|
|
|
let index_type = table_data.index_type;
|
|
let bound_type = self.func.global_values[bound_gv].global_type(isa);
|
|
if index_type != bound_type {
|
|
errors.report((
|
|
table,
|
|
format!(
|
|
"table index type {} differs from the type of its bound, {}",
|
|
index_type, bound_type
|
|
),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_jump_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
for (jt, jt_data) in &self.func.jump_tables {
|
|
for &block in jt_data.iter() {
|
|
self.verify_block(jt, block, errors)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Check that the given block can be encoded as a BB, by checking that only
|
|
/// branching instructions are ending the block.
|
|
fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
match self.func.is_block_basic(block) {
|
|
Ok(()) => Ok(()),
|
|
Err((inst, message)) => errors.fatal((inst, self.context(inst), message)),
|
|
}
|
|
}
|
|
|
|
fn block_integrity(
|
|
&self,
|
|
block: Block,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let is_terminator = self.func.dfg[inst].opcode().is_terminator();
|
|
let is_last_inst = self.func.layout.last_inst(block) == Some(inst);
|
|
|
|
if is_terminator && !is_last_inst {
|
|
// Terminating instructions only occur at the end of blocks.
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"a terminator instruction was encountered before the end of {}",
|
|
block
|
|
),
|
|
));
|
|
}
|
|
if is_last_inst && !is_terminator {
|
|
return errors.fatal((block, "block does not end in a terminator instruction"));
|
|
}
|
|
|
|
// Instructions belong to the correct block.
|
|
let inst_block = self.func.layout.inst_block(inst);
|
|
if inst_block != Some(block) {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!("should belong to {} not {:?}", block, inst_block),
|
|
));
|
|
}
|
|
|
|
// Parameters belong to the correct block.
|
|
for &arg in self.func.dfg.block_params(block) {
|
|
match self.func.dfg.value_def(arg) {
|
|
ValueDef::Param(arg_block, _) => {
|
|
if block != arg_block {
|
|
return errors.fatal((arg, format!("does not belong to {}", block)));
|
|
}
|
|
}
|
|
_ => {
|
|
return errors.fatal((arg, "expected an argument, found a result"));
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn instruction_integrity(
|
|
&self,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let inst_data = &self.func.dfg[inst];
|
|
let dfg = &self.func.dfg;
|
|
|
|
// The instruction format matches the opcode
|
|
if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
"instruction opcode doesn't match instruction format",
|
|
));
|
|
}
|
|
|
|
let num_fixed_results = inst_data.opcode().constraints().num_fixed_results();
|
|
// var_results is 0 if we aren't a call instruction
|
|
let var_results = dfg
|
|
.call_signature(inst)
|
|
.map_or(0, |sig| dfg.signatures[sig].returns.len());
|
|
let total_results = num_fixed_results + var_results;
|
|
|
|
// All result values for multi-valued instructions are created
|
|
let got_results = dfg.inst_results(inst).len();
|
|
if got_results != total_results {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"expected {} result values, found {}",
|
|
total_results, got_results,
|
|
),
|
|
));
|
|
}
|
|
|
|
self.verify_entity_references(inst, errors)
|
|
}
|
|
|
|
fn verify_entity_references(
|
|
&self,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
use crate::ir::instructions::InstructionData::*;
|
|
|
|
for &arg in self.func.dfg.inst_args(inst) {
|
|
self.verify_inst_arg(inst, arg, errors)?;
|
|
|
|
// All used values must be attached to something.
|
|
let original = self.func.dfg.resolve_aliases(arg);
|
|
if !self.func.dfg.value_is_attached(original) {
|
|
errors.report((
|
|
inst,
|
|
self.context(inst),
|
|
format!("argument {} -> {} is not attached", arg, original),
|
|
));
|
|
}
|
|
}
|
|
|
|
for &res in self.func.dfg.inst_results(inst) {
|
|
self.verify_inst_result(inst, res, errors)?;
|
|
}
|
|
|
|
match self.func.dfg[inst] {
|
|
MultiAry { ref args, .. } => {
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
Jump {
|
|
destination,
|
|
ref args,
|
|
..
|
|
}
|
|
| Branch {
|
|
destination,
|
|
ref args,
|
|
..
|
|
}
|
|
| BranchInt {
|
|
destination,
|
|
ref args,
|
|
..
|
|
}
|
|
| BranchFloat {
|
|
destination,
|
|
ref args,
|
|
..
|
|
}
|
|
| BranchIcmp {
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
self.verify_block(inst, destination, errors)?;
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
BranchTable {
|
|
table, destination, ..
|
|
} => {
|
|
self.verify_block(inst, destination, errors)?;
|
|
self.verify_jump_table(inst, table, errors)?;
|
|
}
|
|
BranchTableBase { table, .. }
|
|
| BranchTableEntry { table, .. }
|
|
| IndirectJump { table, .. } => {
|
|
self.verify_jump_table(inst, table, errors)?;
|
|
}
|
|
Call {
|
|
func_ref, ref args, ..
|
|
} => {
|
|
self.verify_func_ref(inst, func_ref, errors)?;
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
CallIndirect {
|
|
sig_ref, ref args, ..
|
|
} => {
|
|
self.verify_sig_ref(inst, sig_ref, errors)?;
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
FuncAddr { func_ref, .. } => {
|
|
self.verify_func_ref(inst, func_ref, errors)?;
|
|
}
|
|
StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
|
|
self.verify_stack_slot(inst, stack_slot, errors)?;
|
|
}
|
|
UnaryGlobalValue { global_value, .. } => {
|
|
self.verify_global_value(inst, global_value, errors)?;
|
|
}
|
|
HeapAddr { heap, .. } => {
|
|
self.verify_heap(inst, heap, errors)?;
|
|
}
|
|
TableAddr { table, .. } => {
|
|
self.verify_table(inst, table, errors)?;
|
|
}
|
|
RegSpill { dst, .. } => {
|
|
self.verify_stack_slot(inst, dst, errors)?;
|
|
}
|
|
RegFill { src, .. } => {
|
|
self.verify_stack_slot(inst, src, errors)?;
|
|
}
|
|
LoadComplex { ref args, .. } => {
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
StoreComplex { ref args, .. } => {
|
|
self.verify_value_list(inst, args, errors)?;
|
|
}
|
|
|
|
NullAry {
|
|
opcode: Opcode::GetPinnedReg,
|
|
}
|
|
| Unary {
|
|
opcode: Opcode::SetPinnedReg,
|
|
..
|
|
} => {
|
|
if let Some(isa) = &self.isa {
|
|
if !isa.flags().enable_pinned_reg() {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
"GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg",
|
|
));
|
|
}
|
|
} else {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
"GetPinnedReg/SetPinnedReg need an ISA!",
|
|
));
|
|
}
|
|
}
|
|
Unary {
|
|
opcode: Opcode::Bitcast,
|
|
arg,
|
|
} => {
|
|
self.verify_bitcast(inst, arg, errors)?;
|
|
}
|
|
UnaryConst {
|
|
opcode: Opcode::Vconst,
|
|
constant_handle,
|
|
..
|
|
} => {
|
|
self.verify_constant_size(inst, constant_handle, errors)?;
|
|
}
|
|
|
|
// Exhaustive list so we can't forget to add new formats
|
|
AtomicCas { .. }
|
|
| AtomicRmw { .. }
|
|
| LoadNoOffset { .. }
|
|
| StoreNoOffset { .. }
|
|
| Unary { .. }
|
|
| UnaryConst { .. }
|
|
| UnaryImm { .. }
|
|
| UnaryIeee32 { .. }
|
|
| UnaryIeee64 { .. }
|
|
| UnaryBool { .. }
|
|
| Binary { .. }
|
|
| BinaryImm8 { .. }
|
|
| BinaryImm64 { .. }
|
|
| Ternary { .. }
|
|
| TernaryImm8 { .. }
|
|
| Shuffle { .. }
|
|
| IntCompare { .. }
|
|
| IntCompareImm { .. }
|
|
| IntCond { .. }
|
|
| FloatCompare { .. }
|
|
| FloatCond { .. }
|
|
| IntSelect { .. }
|
|
| Load { .. }
|
|
| Store { .. }
|
|
| RegMove { .. }
|
|
| CopySpecial { .. }
|
|
| CopyToSsa { .. }
|
|
| Trap { .. }
|
|
| CondTrap { .. }
|
|
| IntCondTrap { .. }
|
|
| FloatCondTrap { .. }
|
|
| NullAry { .. } => {}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_block(
|
|
&self,
|
|
loc: impl Into<AnyEntity>,
|
|
e: Block,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.dfg.block_is_valid(e) || !self.func.layout.is_block_inserted(e) {
|
|
return errors.fatal((loc, format!("invalid block reference {}", e)));
|
|
}
|
|
if let Some(entry_block) = self.func.layout.entry_block() {
|
|
if e == entry_block {
|
|
return errors.fatal((loc, format!("invalid reference to entry block {}", e)));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_sig_ref(
|
|
&self,
|
|
inst: Inst,
|
|
s: SigRef,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.dfg.signatures.is_valid(s) {
|
|
errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!("invalid signature reference {}", s),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_func_ref(
|
|
&self,
|
|
inst: Inst,
|
|
f: FuncRef,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.dfg.ext_funcs.is_valid(f) {
|
|
errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!("invalid function reference {}", f),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_stack_slot(
|
|
&self,
|
|
inst: Inst,
|
|
ss: StackSlot,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.stack_slots.is_valid(ss) {
|
|
errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!("invalid stack slot {}", ss),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_global_value(
|
|
&self,
|
|
inst: Inst,
|
|
gv: GlobalValue,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.global_values.is_valid(gv) {
|
|
errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!("invalid global value {}", gv),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_heap(
|
|
&self,
|
|
inst: Inst,
|
|
heap: ir::Heap,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.heaps.is_valid(heap) {
|
|
errors.nonfatal((inst, self.context(inst), format!("invalid heap {}", heap)))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_table(
|
|
&self,
|
|
inst: Inst,
|
|
table: ir::Table,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.tables.is_valid(table) {
|
|
errors.nonfatal((inst, self.context(inst), format!("invalid table {}", table)))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_value_list(
|
|
&self,
|
|
inst: Inst,
|
|
l: &ValueList,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !l.is_valid(&self.func.dfg.value_lists) {
|
|
errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!("invalid value list reference {:?}", l),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_jump_table(
|
|
&self,
|
|
inst: Inst,
|
|
j: JumpTable,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if !self.func.jump_tables.is_valid(j) {
|
|
errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!("invalid jump table reference {}", j),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_value(
|
|
&self,
|
|
loc_inst: Inst,
|
|
v: Value,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let dfg = &self.func.dfg;
|
|
if !dfg.value_is_valid(v) {
|
|
errors.nonfatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("invalid value reference {}", v),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_inst_arg(
|
|
&self,
|
|
loc_inst: Inst,
|
|
v: Value,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
self.verify_value(loc_inst, v, errors)?;
|
|
|
|
let dfg = &self.func.dfg;
|
|
let loc_block = self.func.layout.pp_block(loc_inst);
|
|
let is_reachable = self.expected_domtree.is_reachable(loc_block);
|
|
|
|
// SSA form
|
|
match dfg.value_def(v) {
|
|
ValueDef::Result(def_inst, _) => {
|
|
// Value is defined by an instruction that exists.
|
|
if !dfg.inst_is_valid(def_inst) {
|
|
return errors.fatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("{} is defined by invalid instruction {}", v, def_inst),
|
|
));
|
|
}
|
|
// Defining instruction is inserted in a block.
|
|
if self.func.layout.inst_block(def_inst) == None {
|
|
return errors.fatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("{} is defined by {} which has no block", v, def_inst),
|
|
));
|
|
}
|
|
// Defining instruction dominates the instruction that uses the value.
|
|
if is_reachable {
|
|
if !self
|
|
.expected_domtree
|
|
.dominates(def_inst, loc_inst, &self.func.layout)
|
|
{
|
|
return errors.fatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("uses value {} from non-dominating {}", v, def_inst),
|
|
));
|
|
}
|
|
if def_inst == loc_inst {
|
|
return errors.fatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("uses value {} from itself", v),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
ValueDef::Param(block, _) => {
|
|
// Value is defined by an existing block.
|
|
if !dfg.block_is_valid(block) {
|
|
return errors.fatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("{} is defined by invalid block {}", v, block),
|
|
));
|
|
}
|
|
// Defining block is inserted in the layout
|
|
if !self.func.layout.is_block_inserted(block) {
|
|
return errors.fatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("{} is defined by {} which is not in the layout", v, block),
|
|
));
|
|
}
|
|
// The defining block dominates the instruction using this value.
|
|
if is_reachable
|
|
&& !self
|
|
.expected_domtree
|
|
.dominates(block, loc_inst, &self.func.layout)
|
|
{
|
|
return errors.fatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("uses value arg from non-dominating {}", block),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn verify_inst_result(
|
|
&self,
|
|
loc_inst: Inst,
|
|
v: Value,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
self.verify_value(loc_inst, v, errors)?;
|
|
|
|
match self.func.dfg.value_def(v) {
|
|
ValueDef::Result(def_inst, _) => {
|
|
if def_inst != loc_inst {
|
|
errors.fatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("instruction result {} is not defined by the instruction", v),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
ValueDef::Param(_, _) => errors.fatal((
|
|
loc_inst,
|
|
self.context(loc_inst),
|
|
format!("instruction result {} is not defined by the instruction", v),
|
|
)),
|
|
}
|
|
}
|
|
|
|
fn verify_bitcast(
|
|
&self,
|
|
inst: Inst,
|
|
arg: Value,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let typ = self.func.dfg.ctrl_typevar(inst);
|
|
let value_type = self.func.dfg.value_type(arg);
|
|
|
|
if typ.lane_bits() < value_type.lane_bits() {
|
|
errors.fatal((
|
|
inst,
|
|
format!(
|
|
"The bitcast argument {} doesn't fit in a type of {} bits",
|
|
arg,
|
|
typ.lane_bits()
|
|
),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn verify_constant_size(
|
|
&self,
|
|
inst: Inst,
|
|
constant: Constant,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let type_size = self.func.dfg.ctrl_typevar(inst).bytes() as usize;
|
|
let constant_size = self.func.dfg.constants.get(constant).len();
|
|
if type_size != constant_size {
|
|
errors.fatal((
|
|
inst,
|
|
format!(
|
|
"The instruction expects {} to have a size of {} bytes but it has {}",
|
|
constant, type_size, constant_size
|
|
),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn domtree_integrity(
|
|
&self,
|
|
domtree: &DominatorTree,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
// We consider two `DominatorTree`s to be equal if they return the same immediate
|
|
// dominator for each block. Therefore the current domtree is valid if it matches the freshly
|
|
// computed one.
|
|
for block in self.func.layout.blocks() {
|
|
let expected = self.expected_domtree.idom(block);
|
|
let got = domtree.idom(block);
|
|
if got != expected {
|
|
return errors.fatal((
|
|
block,
|
|
format!(
|
|
"invalid domtree, expected idom({}) = {:?}, got {:?}",
|
|
block, expected, got
|
|
),
|
|
));
|
|
}
|
|
}
|
|
// We also verify if the postorder defined by `DominatorTree` is sane
|
|
if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
|
|
return errors.fatal((
|
|
AnyEntity::Function,
|
|
"incorrect number of Blocks in postorder traversal",
|
|
));
|
|
}
|
|
for (index, (&test_block, &true_block)) in domtree
|
|
.cfg_postorder()
|
|
.iter()
|
|
.zip(self.expected_domtree.cfg_postorder().iter())
|
|
.enumerate()
|
|
{
|
|
if test_block != true_block {
|
|
return errors.fatal((
|
|
test_block,
|
|
format!(
|
|
"invalid domtree, postorder block number {} should be {}, got {}",
|
|
index, true_block, test_block
|
|
),
|
|
));
|
|
}
|
|
}
|
|
// We verify rpo_cmp on pairs of adjacent blocks in the postorder
|
|
for (&prev_block, &next_block) in domtree.cfg_postorder().iter().adjacent_pairs() {
|
|
if self
|
|
.expected_domtree
|
|
.rpo_cmp(prev_block, next_block, &self.func.layout)
|
|
!= Ordering::Greater
|
|
{
|
|
return errors.fatal((
|
|
next_block,
|
|
format!(
|
|
"invalid domtree, rpo_cmp does not says {} is greater than {}",
|
|
prev_block, next_block
|
|
),
|
|
));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
if let Some(block) = self.func.layout.entry_block() {
|
|
let expected_types = &self.func.signature.params;
|
|
let block_param_count = self.func.dfg.num_block_params(block);
|
|
|
|
if block_param_count != expected_types.len() {
|
|
return errors.fatal((
|
|
block,
|
|
format!(
|
|
"entry block parameters ({}) must match function signature ({})",
|
|
block_param_count,
|
|
expected_types.len()
|
|
),
|
|
));
|
|
}
|
|
|
|
for (i, &arg) in self.func.dfg.block_params(block).iter().enumerate() {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
if arg_type != expected_types[i].value_type {
|
|
errors.report((
|
|
block,
|
|
format!(
|
|
"entry block parameter {} expected to have type {}, got {}",
|
|
i, expected_types[i], arg_type
|
|
),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
errors.as_result()
|
|
}
|
|
|
|
fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
let inst_data = &self.func.dfg[inst];
|
|
let constraints = inst_data.opcode().constraints();
|
|
|
|
let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
|
|
// For polymorphic opcodes, determine the controlling type variable first.
|
|
let ctrl_type = self.func.dfg.ctrl_typevar(inst);
|
|
|
|
if !value_typeset.contains(ctrl_type) {
|
|
errors.report((
|
|
inst,
|
|
self.context(inst),
|
|
format!("has an invalid controlling type {}", ctrl_type),
|
|
));
|
|
}
|
|
|
|
ctrl_type
|
|
} else {
|
|
// Non-polymorphic instructions don't check the controlling type variable, so `Option`
|
|
// is unnecessary and we can just make it `INVALID`.
|
|
types::INVALID
|
|
};
|
|
|
|
// Typechecking instructions is never fatal
|
|
let _ = self.typecheck_results(inst, ctrl_type, errors);
|
|
let _ = self.typecheck_fixed_args(inst, ctrl_type, errors);
|
|
let _ = self.typecheck_variable_args(inst, errors);
|
|
let _ = self.typecheck_return(inst, errors);
|
|
let _ = self.typecheck_special(inst, ctrl_type, errors);
|
|
|
|
// Misuses of copy_nop instructions are fatal
|
|
self.typecheck_copy_nop(inst, errors)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_results(
|
|
&self,
|
|
inst: Inst,
|
|
ctrl_type: Type,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let mut i = 0;
|
|
for &result in self.func.dfg.inst_results(inst) {
|
|
let result_type = self.func.dfg.value_type(result);
|
|
let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
|
|
if let Some(expected_type) = expected_type {
|
|
if result_type != expected_type {
|
|
errors.report((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"expected result {} ({}) to have type {}, found {}",
|
|
i, result, expected_type, result_type
|
|
),
|
|
));
|
|
}
|
|
} else {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
"has more result values than expected",
|
|
));
|
|
}
|
|
i += 1;
|
|
}
|
|
|
|
// There aren't any more result types left.
|
|
if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
"has fewer result values than expected",
|
|
));
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_fixed_args(
|
|
&self,
|
|
inst: Inst,
|
|
ctrl_type: Type,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let constraints = self.func.dfg[inst].opcode().constraints();
|
|
|
|
for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
match constraints.value_argument_constraint(i, ctrl_type) {
|
|
ResolvedConstraint::Bound(expected_type) => {
|
|
if arg_type != expected_type {
|
|
errors.report((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"arg {} ({}) has type {}, expected {}",
|
|
i, arg, arg_type, expected_type
|
|
),
|
|
));
|
|
}
|
|
}
|
|
ResolvedConstraint::Free(type_set) => {
|
|
if !type_set.contains(arg_type) {
|
|
errors.report((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"arg {} ({}) with type {} failed to satisfy type set {:?}",
|
|
i, arg, arg_type, type_set
|
|
),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_variable_args(
|
|
&self,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
match self.func.dfg.analyze_branch(inst) {
|
|
BranchInfo::SingleDest(block, _) => {
|
|
let iter = self
|
|
.func
|
|
.dfg
|
|
.block_params(block)
|
|
.iter()
|
|
.map(|&v| self.func.dfg.value_type(v));
|
|
self.typecheck_variable_args_iterator(inst, iter, errors)?;
|
|
}
|
|
BranchInfo::Table(table, block) => {
|
|
if let Some(block) = block {
|
|
let arg_count = self.func.dfg.num_block_params(block);
|
|
if arg_count != 0 {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"takes no arguments, but had target {} with {} arguments",
|
|
block, arg_count,
|
|
),
|
|
));
|
|
}
|
|
}
|
|
for block in self.func.jump_tables[table].iter() {
|
|
let arg_count = self.func.dfg.num_block_params(*block);
|
|
if arg_count != 0 {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"takes no arguments, but had target {} with {} arguments",
|
|
block, arg_count,
|
|
),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
BranchInfo::NotABranch => {}
|
|
}
|
|
|
|
match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
|
|
CallInfo::Direct(func_ref, _) => {
|
|
let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
|
|
let arg_types = self.func.dfg.signatures[sig_ref]
|
|
.params
|
|
.iter()
|
|
.map(|a| a.value_type);
|
|
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
|
|
self.check_outgoing_args(inst, sig_ref, errors)?;
|
|
}
|
|
CallInfo::Indirect(sig_ref, _) => {
|
|
let arg_types = self.func.dfg.signatures[sig_ref]
|
|
.params
|
|
.iter()
|
|
.map(|a| a.value_type);
|
|
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
|
|
self.check_outgoing_args(inst, sig_ref, errors)?;
|
|
}
|
|
CallInfo::NotACall => {}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(
|
|
&self,
|
|
inst: Inst,
|
|
iter: I,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let variable_args = self.func.dfg.inst_variable_args(inst);
|
|
let mut i = 0;
|
|
|
|
for expected_type in iter {
|
|
if i >= variable_args.len() {
|
|
// Result count mismatch handled below, we want the full argument count first though
|
|
i += 1;
|
|
continue;
|
|
}
|
|
let arg = variable_args[i];
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
if expected_type != arg_type {
|
|
errors.report((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"arg {} ({}) has type {}, expected {}",
|
|
i, variable_args[i], arg_type, expected_type
|
|
),
|
|
));
|
|
}
|
|
i += 1;
|
|
}
|
|
if i != variable_args.len() {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"mismatched argument count for `{}`: got {}, expected {}",
|
|
self.func.dfg.display_inst(inst, None),
|
|
variable_args.len(),
|
|
i,
|
|
),
|
|
));
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Check the locations assigned to outgoing call arguments.
|
|
///
|
|
/// When a signature has been legalized, all values passed as outgoing arguments on the stack
|
|
/// must be assigned to a matching `OutgoingArg` stack slot.
|
|
fn check_outgoing_args(
|
|
&self,
|
|
inst: Inst,
|
|
sig_ref: SigRef,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let sig = &self.func.dfg.signatures[sig_ref];
|
|
|
|
let args = self.func.dfg.inst_variable_args(inst);
|
|
let expected_args = &sig.params[..];
|
|
|
|
for (&arg, &abi) in args.iter().zip(expected_args) {
|
|
// Value types have already been checked by `typecheck_variable_args_iterator()`.
|
|
if let ArgumentLoc::Stack(offset) = abi.location {
|
|
let arg_loc = self.func.locations[arg];
|
|
if let ValueLoc::Stack(ss) = arg_loc {
|
|
// Argument value is assigned to a stack slot as expected.
|
|
self.verify_stack_slot(inst, ss, errors)?;
|
|
let slot = &self.func.stack_slots[ss];
|
|
if slot.kind != StackSlotKind::OutgoingArg {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"Outgoing stack argument {} in wrong stack slot: {} = {}",
|
|
arg, ss, slot,
|
|
),
|
|
));
|
|
}
|
|
if slot.offset != Some(offset) {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"Outgoing stack argument {} should have offset {}: {} = {}",
|
|
arg, offset, ss, slot,
|
|
),
|
|
));
|
|
}
|
|
if abi.purpose == ArgumentPurpose::StructArgument(slot.size) {
|
|
} else if slot.size != abi.value_type.bytes() {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"Outgoing stack argument {} wrong size for {}: {} = {}",
|
|
arg, abi.value_type, ss, slot,
|
|
),
|
|
));
|
|
}
|
|
} else {
|
|
let reginfo = self.isa.map(|i| i.register_info());
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"Outgoing stack argument {} in wrong location: {}",
|
|
arg,
|
|
arg_loc.display(reginfo.as_ref())
|
|
),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
if self.func.dfg[inst].opcode().is_return() {
|
|
let args = self.func.dfg.inst_variable_args(inst);
|
|
let expected_types = &self.func.signature.returns;
|
|
if args.len() != expected_types.len() {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
"arguments of return must match function signature",
|
|
));
|
|
}
|
|
for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
if arg_type != expected_type.value_type {
|
|
errors.report((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"arg {} ({}) has type {}, must match function signature of {}",
|
|
i, arg, arg_type, expected_type
|
|
),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// Check special-purpose type constraints that can't be expressed in the normal opcode
|
|
// constraints.
|
|
fn typecheck_special(
|
|
&self,
|
|
inst: Inst,
|
|
ctrl_type: Type,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
match self.func.dfg[inst] {
|
|
ir::InstructionData::Unary { opcode, arg } => {
|
|
let arg_type = self.func.dfg.value_type(arg);
|
|
match opcode {
|
|
Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => {
|
|
if arg_type.lane_count() != ctrl_type.lane_count() {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"input {} and output {} must have same number of lanes",
|
|
arg_type, ctrl_type,
|
|
),
|
|
));
|
|
}
|
|
if arg_type.lane_bits() >= ctrl_type.lane_bits() {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"input {} must be smaller than output {}",
|
|
arg_type, ctrl_type,
|
|
),
|
|
));
|
|
}
|
|
}
|
|
Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => {
|
|
if arg_type.lane_count() != ctrl_type.lane_count() {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"input {} and output {} must have same number of lanes",
|
|
arg_type, ctrl_type,
|
|
),
|
|
));
|
|
}
|
|
if arg_type.lane_bits() <= ctrl_type.lane_bits() {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"input {} must be larger than output {}",
|
|
arg_type, ctrl_type,
|
|
),
|
|
));
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
ir::InstructionData::HeapAddr { heap, arg, .. } => {
|
|
let index_type = self.func.dfg.value_type(arg);
|
|
let heap_index_type = self.func.heaps[heap].index_type;
|
|
if index_type != heap_index_type {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"index type {} differs from heap index type {}",
|
|
index_type, heap_index_type,
|
|
),
|
|
));
|
|
}
|
|
}
|
|
ir::InstructionData::TableAddr { table, arg, .. } => {
|
|
let index_type = self.func.dfg.value_type(arg);
|
|
let table_index_type = self.func.tables[table].index_type;
|
|
if index_type != table_index_type {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"index type {} differs from table index type {}",
|
|
index_type, table_index_type,
|
|
),
|
|
));
|
|
}
|
|
}
|
|
ir::InstructionData::UnaryGlobalValue { global_value, .. } => {
|
|
if let Some(isa) = self.isa {
|
|
let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst));
|
|
let global_type = self.func.global_values[global_value].global_type(isa);
|
|
if inst_type != global_type {
|
|
return errors.nonfatal((
|
|
inst, self.context(inst),
|
|
format!(
|
|
"global_value instruction with type {} references global value with type {}",
|
|
inst_type, global_type
|
|
)),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_copy_nop(
|
|
&self,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if let InstructionData::Unary {
|
|
opcode: Opcode::CopyNop,
|
|
arg,
|
|
} = self.func.dfg[inst]
|
|
{
|
|
let dst_vals = self.func.dfg.inst_results(inst);
|
|
if dst_vals.len() != 1 {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
"copy_nop must produce exactly one result",
|
|
));
|
|
}
|
|
let dst_val = dst_vals[0];
|
|
if self.func.dfg.value_type(dst_val) != self.func.dfg.value_type(arg) {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
"copy_nop src and dst types must be the same",
|
|
));
|
|
}
|
|
let src_loc = self.func.locations[arg];
|
|
let dst_loc = self.func.locations[dst_val];
|
|
let locs_ok = match (src_loc, dst_loc) {
|
|
(ValueLoc::Stack(src_slot), ValueLoc::Stack(dst_slot)) => src_slot == dst_slot,
|
|
_ => false,
|
|
};
|
|
if !locs_ok {
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"copy_nop must refer to identical stack slots, but found {:?} vs {:?}",
|
|
src_loc, dst_loc,
|
|
),
|
|
));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn cfg_integrity(
|
|
&self,
|
|
cfg: &ControlFlowGraph,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let mut expected_succs = BTreeSet::<Block>::new();
|
|
let mut got_succs = BTreeSet::<Block>::new();
|
|
let mut expected_preds = BTreeSet::<Inst>::new();
|
|
let mut got_preds = BTreeSet::<Inst>::new();
|
|
|
|
for block in self.func.layout.blocks() {
|
|
expected_succs.extend(self.expected_cfg.succ_iter(block));
|
|
got_succs.extend(cfg.succ_iter(block));
|
|
|
|
let missing_succs: Vec<Block> =
|
|
expected_succs.difference(&got_succs).cloned().collect();
|
|
if !missing_succs.is_empty() {
|
|
errors.report((
|
|
block,
|
|
format!("cfg lacked the following successor(s) {:?}", missing_succs),
|
|
));
|
|
continue;
|
|
}
|
|
|
|
let excess_succs: Vec<Block> = got_succs.difference(&expected_succs).cloned().collect();
|
|
if !excess_succs.is_empty() {
|
|
errors.report((
|
|
block,
|
|
format!("cfg had unexpected successor(s) {:?}", excess_succs),
|
|
));
|
|
continue;
|
|
}
|
|
|
|
expected_preds.extend(
|
|
self.expected_cfg
|
|
.pred_iter(block)
|
|
.map(|BlockPredecessor { inst, .. }| inst),
|
|
);
|
|
got_preds.extend(
|
|
cfg.pred_iter(block)
|
|
.map(|BlockPredecessor { inst, .. }| inst),
|
|
);
|
|
|
|
let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
|
|
if !missing_preds.is_empty() {
|
|
errors.report((
|
|
block,
|
|
format!(
|
|
"cfg lacked the following predecessor(s) {:?}",
|
|
missing_preds
|
|
),
|
|
));
|
|
continue;
|
|
}
|
|
|
|
let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
|
|
if !excess_preds.is_empty() {
|
|
errors.report((
|
|
block,
|
|
format!("cfg had unexpected predecessor(s) {:?}", excess_preds),
|
|
));
|
|
continue;
|
|
}
|
|
|
|
expected_succs.clear();
|
|
got_succs.clear();
|
|
expected_preds.clear();
|
|
got_preds.clear();
|
|
}
|
|
errors.as_result()
|
|
}
|
|
|
|
/// If the verifier has been set up with an ISA, make sure that the recorded encoding for the
|
|
/// instruction (if any) matches how the ISA would encode it.
|
|
fn verify_encoding(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
// When the encodings table is empty, we don't require any instructions to be encoded.
|
|
//
|
|
// Once some instructions are encoded, we require all side-effecting instructions to have a
|
|
// legal encoding.
|
|
if self.func.encodings.is_empty() {
|
|
return Ok(());
|
|
}
|
|
|
|
let isa = match self.isa {
|
|
Some(isa) => isa,
|
|
None => return Ok(()),
|
|
};
|
|
|
|
let encoding = self.func.encodings[inst];
|
|
if encoding.is_legal() {
|
|
if self.func.dfg[inst].opcode().is_ghost() {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"Ghost instruction has an encoding: {}",
|
|
isa.encoding_info().display(encoding),
|
|
),
|
|
));
|
|
}
|
|
|
|
let mut encodings = isa
|
|
.legal_encodings(
|
|
&self.func,
|
|
&self.func.dfg[inst],
|
|
self.func.dfg.ctrl_typevar(inst),
|
|
)
|
|
.peekable();
|
|
|
|
if encodings.peek().is_none() {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"Instruction failed to re-encode {}",
|
|
isa.encoding_info().display(encoding),
|
|
),
|
|
));
|
|
}
|
|
|
|
let has_valid_encoding = encodings.any(|possible_enc| encoding == possible_enc);
|
|
|
|
if !has_valid_encoding {
|
|
let mut possible_encodings = String::new();
|
|
let mut multiple_encodings = false;
|
|
|
|
for enc in isa.legal_encodings(
|
|
&self.func,
|
|
&self.func.dfg[inst],
|
|
self.func.dfg.ctrl_typevar(inst),
|
|
) {
|
|
if !possible_encodings.is_empty() {
|
|
possible_encodings.push_str(", ");
|
|
multiple_encodings = true;
|
|
}
|
|
possible_encodings
|
|
.write_fmt(format_args!("{}", isa.encoding_info().display(enc)))
|
|
.unwrap();
|
|
}
|
|
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"encoding {} should be {}{}",
|
|
isa.encoding_info().display(encoding),
|
|
if multiple_encodings { "one of: " } else { "" },
|
|
possible_encodings,
|
|
),
|
|
));
|
|
}
|
|
return Ok(());
|
|
}
|
|
|
|
// Instruction is not encoded, so it is a ghost instruction.
|
|
// Instructions with side effects are not allowed to be ghost instructions.
|
|
let opcode = self.func.dfg[inst].opcode();
|
|
|
|
// The `fallthrough`, `fallthrough_return`, and `safepoint` instructions are not required
|
|
// to have an encoding.
|
|
if opcode == Opcode::Fallthrough
|
|
|| opcode == Opcode::FallthroughReturn
|
|
|| opcode == Opcode::Safepoint
|
|
{
|
|
return Ok(());
|
|
}
|
|
|
|
// Check if this opcode must be encoded.
|
|
let mut needs_enc = None;
|
|
if opcode.is_branch() {
|
|
needs_enc = Some("Branch");
|
|
} else if opcode.is_call() {
|
|
needs_enc = Some("Call");
|
|
} else if opcode.is_return() {
|
|
needs_enc = Some("Return");
|
|
} else if opcode.can_store() {
|
|
needs_enc = Some("Store");
|
|
} else if opcode.can_trap() {
|
|
needs_enc = Some("Trapping instruction");
|
|
} else if opcode.other_side_effects() {
|
|
needs_enc = Some("Instruction with side effects");
|
|
}
|
|
|
|
if let Some(text) = needs_enc {
|
|
// This instruction needs an encoding, so generate an error.
|
|
// Provide the ISA default encoding as a hint.
|
|
match self.func.encode(inst, isa) {
|
|
Ok(enc) => {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!(
|
|
"{} must have an encoding (e.g., {})))",
|
|
text,
|
|
isa.encoding_info().display(enc),
|
|
),
|
|
));
|
|
}
|
|
Err(_) => {
|
|
return errors.nonfatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!("{} must have an encoding", text),
|
|
))
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn immediate_constraints(
|
|
&self,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
let inst_data = &self.func.dfg[inst];
|
|
|
|
match *inst_data {
|
|
ir::InstructionData::Store { flags, .. }
|
|
| ir::InstructionData::StoreComplex { flags, .. } => {
|
|
if flags.readonly() {
|
|
errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
"A store instruction cannot have the `readonly` MemFlag",
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
ir::InstructionData::BinaryImm8 {
|
|
opcode: ir::instructions::Opcode::Extractlane,
|
|
imm: lane,
|
|
arg,
|
|
..
|
|
}
|
|
| ir::InstructionData::TernaryImm8 {
|
|
opcode: ir::instructions::Opcode::Insertlane,
|
|
imm: lane,
|
|
args: [arg, _],
|
|
..
|
|
} => {
|
|
// We must be specific about the opcodes above because other instructions are using
|
|
// the same formats.
|
|
let ty = self.func.dfg.value_type(arg);
|
|
if u16::from(lane) >= ty.lane_count() {
|
|
errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
format!("The lane {} does not index into the type {}", lane, ty,),
|
|
))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
_ => Ok(()),
|
|
}
|
|
}
|
|
|
|
fn verify_safepoint_unused(
|
|
&self,
|
|
inst: Inst,
|
|
errors: &mut VerifierErrors,
|
|
) -> VerifierStepResult<()> {
|
|
if let Some(isa) = self.isa {
|
|
if !isa.flags().enable_safepoints() && self.func.dfg[inst].opcode() == Opcode::Safepoint
|
|
{
|
|
return errors.fatal((
|
|
inst,
|
|
self.context(inst),
|
|
"safepoint instruction cannot be used when it is not enabled.",
|
|
));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
self.func
|
|
.signature
|
|
.params
|
|
.iter()
|
|
.enumerate()
|
|
.filter(|(_, ¶m)| param.value_type == types::INVALID)
|
|
.for_each(|(i, _)| {
|
|
errors.report((
|
|
AnyEntity::Function,
|
|
format!("Parameter at position {} has an invalid type", i),
|
|
));
|
|
});
|
|
|
|
self.func
|
|
.signature
|
|
.returns
|
|
.iter()
|
|
.enumerate()
|
|
.filter(|(_, &ret)| ret.value_type == types::INVALID)
|
|
.for_each(|(i, _)| {
|
|
errors.report((
|
|
AnyEntity::Function,
|
|
format!("Return value at position {} has an invalid type", i),
|
|
))
|
|
});
|
|
|
|
self.func
|
|
.signature
|
|
.returns
|
|
.iter()
|
|
.enumerate()
|
|
.for_each(|(i, ret)| {
|
|
if let ArgumentPurpose::StructArgument(_) = ret.purpose {
|
|
errors.report((
|
|
AnyEntity::Function,
|
|
format!("Return value at position {} can't be an struct argument", i),
|
|
))
|
|
}
|
|
});
|
|
|
|
if errors.has_error() {
|
|
Err(())
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
|
|
self.verify_global_values(errors)?;
|
|
self.verify_heaps(errors)?;
|
|
self.verify_tables(errors)?;
|
|
self.verify_jump_tables(errors)?;
|
|
self.typecheck_entry_block_params(errors)?;
|
|
self.typecheck_function_signature(errors)?;
|
|
|
|
for block in self.func.layout.blocks() {
|
|
if self.func.layout.first_inst(block).is_none() {
|
|
return errors.fatal((block, format!("{} cannot be empty", block)));
|
|
}
|
|
for inst in self.func.layout.block_insts(block) {
|
|
self.block_integrity(block, inst, errors)?;
|
|
self.instruction_integrity(inst, errors)?;
|
|
self.verify_safepoint_unused(inst, errors)?;
|
|
self.typecheck(inst, errors)?;
|
|
self.verify_encoding(inst, errors)?;
|
|
self.immediate_constraints(inst, errors)?;
|
|
}
|
|
|
|
self.encodable_as_bb(block, errors)?;
|
|
}
|
|
|
|
verify_flags(self.func, &self.expected_cfg, self.isa, errors)?;
|
|
|
|
if !errors.is_empty() {
|
|
debug!(
|
|
"Found verifier errors in function:\n{}",
|
|
pretty_verifier_error(self.func, None, None, errors.clone())
|
|
);
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::{Verifier, VerifierError, VerifierErrors};
|
|
use crate::entity::EntityList;
|
|
use crate::ir::instructions::{InstructionData, Opcode};
|
|
use crate::ir::{types, AbiParam, Function};
|
|
use crate::settings;
|
|
|
|
macro_rules! assert_err_with_msg {
|
|
($e:expr, $msg:expr) => {
|
|
match $e.0.get(0) {
|
|
None => panic!("Expected an error"),
|
|
Some(&VerifierError { ref message, .. }) => {
|
|
if !message.contains($msg) {
|
|
#[cfg(feature = "std")]
|
|
panic!(format!(
|
|
"'{}' did not contain the substring '{}'",
|
|
message, $msg
|
|
));
|
|
#[cfg(not(feature = "std"))]
|
|
panic!("error message did not contain the expected substring");
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
fn empty() {
|
|
let func = Function::new();
|
|
let flags = &settings::Flags::new(settings::builder());
|
|
let verifier = Verifier::new(&func, flags.into());
|
|
let mut errors = VerifierErrors::default();
|
|
|
|
assert_eq!(verifier.run(&mut errors), Ok(()));
|
|
assert!(errors.0.is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn bad_instruction_format() {
|
|
let mut func = Function::new();
|
|
let block0 = func.dfg.make_block();
|
|
func.layout.append_block(block0);
|
|
let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
|
|
opcode: Opcode::F32const,
|
|
imm: 0.into(),
|
|
});
|
|
func.layout.append_inst(nullary_with_bad_opcode, block0);
|
|
func.layout.append_inst(
|
|
func.dfg.make_inst(InstructionData::Jump {
|
|
opcode: Opcode::Jump,
|
|
destination: block0,
|
|
args: EntityList::default(),
|
|
}),
|
|
block0,
|
|
);
|
|
let flags = &settings::Flags::new(settings::builder());
|
|
let verifier = Verifier::new(&func, flags.into());
|
|
let mut errors = VerifierErrors::default();
|
|
|
|
let _ = verifier.run(&mut errors);
|
|
|
|
assert_err_with_msg!(errors, "instruction format");
|
|
}
|
|
|
|
#[test]
|
|
fn test_function_invalid_param() {
|
|
let mut func = Function::new();
|
|
func.signature.params.push(AbiParam::new(types::INVALID));
|
|
|
|
let mut errors = VerifierErrors::default();
|
|
let flags = &settings::Flags::new(settings::builder());
|
|
let verifier = Verifier::new(&func, flags.into());
|
|
|
|
let _ = verifier.typecheck_function_signature(&mut errors);
|
|
assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type");
|
|
}
|
|
|
|
#[test]
|
|
fn test_function_invalid_return_value() {
|
|
let mut func = Function::new();
|
|
func.signature.returns.push(AbiParam::new(types::INVALID));
|
|
|
|
let mut errors = VerifierErrors::default();
|
|
let flags = &settings::Flags::new(settings::builder());
|
|
let verifier = Verifier::new(&func, flags.into());
|
|
|
|
let _ = verifier.typecheck_function_signature(&mut errors);
|
|
assert_err_with_msg!(errors, "Return value at position 0 has an invalid type");
|
|
}
|
|
|
|
#[test]
|
|
fn test_printing_contextual_errors() {
|
|
// Build function.
|
|
let mut func = Function::new();
|
|
let block0 = func.dfg.make_block();
|
|
func.layout.append_block(block0);
|
|
|
|
// Build instruction: v0, v1 = iconst 42
|
|
let inst = func.dfg.make_inst(InstructionData::UnaryImm {
|
|
opcode: Opcode::Iconst,
|
|
imm: 42.into(),
|
|
});
|
|
func.dfg.append_result(inst, types::I32);
|
|
func.dfg.append_result(inst, types::I32);
|
|
func.layout.append_inst(inst, block0);
|
|
|
|
// Setup verifier.
|
|
let mut errors = VerifierErrors::default();
|
|
let flags = &settings::Flags::new(settings::builder());
|
|
let verifier = Verifier::new(&func, flags.into());
|
|
|
|
// Now the error message, when printed, should contain the instruction sequence causing the
|
|
// error (i.e. v0, v1 = iconst.i32 42) and not only its entity value (i.e. inst0)
|
|
let _ = verifier.typecheck_results(inst, types::I32, &mut errors);
|
|
assert_eq!(
|
|
format!("{}", errors.0[0]),
|
|
"inst0 (v0, v1 = iconst.i32 42): has more result values than expected"
|
|
)
|
|
}
|
|
|
|
#[test]
|
|
fn test_empty_block() {
|
|
let mut func = Function::new();
|
|
let block0 = func.dfg.make_block();
|
|
func.layout.append_block(block0);
|
|
|
|
let flags = &settings::Flags::new(settings::builder());
|
|
let verifier = Verifier::new(&func, flags.into());
|
|
let mut errors = VerifierErrors::default();
|
|
let _ = verifier.run(&mut errors);
|
|
|
|
assert_err_with_msg!(errors, "block0 cannot be empty");
|
|
}
|
|
}
|