Files
wasmtime/cranelift/reader/src/lexer.rs
Benjamin Bouvier 8a9b1a9025 Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. 

After the suggestion of Chris, `Function` has been split into mostly two parts:

- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.

Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:

- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
  - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
  - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.

The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.

A basic fuzz target has been introduced that tries to do the bare minimum:

- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
  - This last check is less efficient and less likely to happen, so probably should be rethought a bit.

Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.

Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. 

Fixes #4155.
2022-08-12 16:47:43 +00:00

723 lines
25 KiB
Rust

//! Lexical analysis for .clif files.
use crate::error::Location;
use cranelift_codegen::ir::types;
use cranelift_codegen::ir::{Block, Value};
#[allow(unused_imports, deprecated)]
use std::ascii::AsciiExt;
use std::str::CharIndices;
use std::u16;
/// A Token returned from the `Lexer`.
///
/// Some variants may contains references to the original source text, so the `Token` has the same
/// lifetime as the source.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum Token<'a> {
Comment(&'a str),
LPar, // '('
RPar, // ')'
LBrace, // '{'
RBrace, // '}'
LBracket, // '['
RBracket, // ']'
Minus, // '-'
Plus, // '+'
Multiply, // '*'
Comma, // ','
Dot, // '.'
Colon, // ':'
Equal, // '='
Not, // '!'
Arrow, // '->'
Float(&'a str), // Floating point immediate
Integer(&'a str), // Integer immediate
Type(types::Type), // i32, f32, b32x4, ...
DynamicType(u32), // dt5
Value(Value), // v12, v7
Block(Block), // block3
Cold, // cold (flag on block)
StackSlot(u32), // ss3
DynamicStackSlot(u32), // dss4
GlobalValue(u32), // gv3
Heap(u32), // heap2
Table(u32), // table2
JumpTable(u32), // jt2
Constant(u32), // const2
FuncRef(u32), // fn2
SigRef(u32), // sig2
UserRef(u32), // u345
UserNameRef(u32), // userextname345
Name(&'a str), // %9arbitrary_alphanum, %x3, %0, %function ...
String(&'a str), // "arbitrary quoted string with no escape" ...
HexSequence(&'a str), // #89AF
Identifier(&'a str), // Unrecognized identifier (opcode, enumerator, ...)
SourceLoc(&'a str), // @00c7
}
/// A `Token` with an associated location.
#[derive(Debug, PartialEq, Eq)]
pub struct LocatedToken<'a> {
pub token: Token<'a>,
pub location: Location,
}
/// Wrap up a `Token` with the given location.
fn token(token: Token, loc: Location) -> Result<LocatedToken, LocatedError> {
Ok(LocatedToken {
token,
location: loc,
})
}
/// An error from the lexical analysis.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum LexError {
InvalidChar,
}
/// A `LexError` with an associated Location.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct LocatedError {
pub error: LexError,
pub location: Location,
}
/// Wrap up a `LexError` with the given location.
fn error<'a>(error: LexError, loc: Location) -> Result<LocatedToken<'a>, LocatedError> {
Err(LocatedError {
error,
location: loc,
})
}
/// Get the number of decimal digits at the end of `s`.
fn trailing_digits(s: &str) -> usize {
// It's faster to iterate backwards over bytes, and we're only counting ASCII digits.
s.as_bytes()
.iter()
.rev()
.take_while(|&&b| b'0' <= b && b <= b'9')
.count()
}
/// Pre-parse a supposed entity name by splitting it into two parts: A head of lowercase ASCII
/// letters and numeric tail.
pub fn split_entity_name(name: &str) -> Option<(&str, u32)> {
let (head, tail) = name.split_at(name.len() - trailing_digits(name));
if tail.len() > 1 && tail.starts_with('0') {
None
} else {
tail.parse().ok().map(|n| (head, n))
}
}
/// Lexical analysis.
///
/// A `Lexer` reads text from a `&str` and provides a sequence of tokens.
///
/// Also keep track of a line number for error reporting.
///
pub struct Lexer<'a> {
// Complete source being processed.
source: &'a str,
// Iterator into `source`.
chars: CharIndices<'a>,
// Next character to be processed, or `None` at the end.
lookahead: Option<char>,
// Index into `source` of lookahead character.
pos: usize,
// Current line number.
line_number: usize,
}
impl<'a> Lexer<'a> {
pub fn new(s: &'a str) -> Self {
let mut lex = Self {
source: s,
chars: s.char_indices(),
lookahead: None,
pos: 0,
line_number: 1,
};
// Advance to the first char.
lex.next_ch();
lex
}
// Advance to the next character.
// Return the next lookahead character, or None when the end is encountered.
// Always update cur_ch to reflect
fn next_ch(&mut self) -> Option<char> {
if self.lookahead == Some('\n') {
self.line_number += 1;
}
match self.chars.next() {
Some((idx, ch)) => {
self.pos = idx;
self.lookahead = Some(ch);
}
None => {
self.pos = self.source.len();
self.lookahead = None;
}
}
self.lookahead
}
// Get the location corresponding to `lookahead`.
fn loc(&self) -> Location {
Location {
line_number: self.line_number,
}
}
// Starting from `lookahead`, are we looking at `prefix`?
fn looking_at(&self, prefix: &str) -> bool {
self.source[self.pos..].starts_with(prefix)
}
// Starting from `lookahead`, are we looking at a number?
fn looking_at_numeric(&self) -> bool {
if let Some(c) = self.lookahead {
match c {
'0'..='9' => return true,
'-' => return true,
'+' => return true,
'.' => return true,
_ => {}
}
if self.looking_at("NaN") || self.looking_at("Inf") || self.looking_at("sNaN") {
return true;
}
}
false
}
// Scan a single-char token.
fn scan_char(&mut self, tok: Token<'a>) -> Result<LocatedToken<'a>, LocatedError> {
assert_ne!(self.lookahead, None);
let loc = self.loc();
self.next_ch();
token(tok, loc)
}
// Scan a multi-char token.
fn scan_chars(
&mut self,
count: usize,
tok: Token<'a>,
) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
for _ in 0..count {
assert_ne!(self.lookahead, None);
self.next_ch();
}
token(tok, loc)
}
/// Get the rest of the current line.
/// The next token returned by `next()` will be from the following lines.
pub fn rest_of_line(&mut self) -> &'a str {
let begin = self.pos;
loop {
match self.next_ch() {
None | Some('\n') => return &self.source[begin..self.pos],
_ => {}
}
}
}
// Scan a comment extending to the end of the current line.
fn scan_comment(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let text = self.rest_of_line();
token(Token::Comment(text), loc)
}
// Scan a number token which can represent either an integer or floating point number.
//
// Accept the following forms:
//
// - `10`: Integer
// - `-10`: Integer
// - `0xff_00`: Integer
// - `0.0`: Float
// - `0x1.f`: Float
// - `-0x2.4`: Float
// - `0x0.4p-34`: Float
//
// This function does not filter out all invalid numbers. It depends in the context-sensitive
// decoding of the text for that. For example, the number of allowed digits in an `Ieee32` and
// an `Ieee64` constant are different.
fn scan_number(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let begin = self.pos;
let loc = self.loc();
let mut is_float = false;
// Skip a leading sign.
match self.lookahead {
Some('-') => {
self.next_ch();
if !self.looking_at_numeric() {
// If the next characters won't parse as a number, we return Token::Minus
return token(Token::Minus, loc);
}
}
Some('+') => {
self.next_ch();
if !self.looking_at_numeric() {
// If the next characters won't parse as a number, we return Token::Plus
return token(Token::Plus, loc);
}
}
_ => {}
}
// Check for NaNs with payloads.
if self.looking_at("NaN:") || self.looking_at("sNaN:") {
// Skip the `NaN:` prefix, the loop below won't accept it.
// We expect a hexadecimal number to follow the colon.
while self.next_ch() != Some(':') {}
is_float = true;
} else if self.looking_at("NaN") || self.looking_at("Inf") {
// This is Inf or a default quiet NaN.
is_float = true;
}
// Look for the end of this number. Detect the radix point if there is one.
loop {
match self.next_ch() {
Some('-') | Some('_') => {}
Some('.') => is_float = true,
Some('0'..='9') | Some('a'..='z') | Some('A'..='Z') => {}
_ => break,
}
}
let text = &self.source[begin..self.pos];
if is_float {
token(Token::Float(text), loc)
} else {
token(Token::Integer(text), loc)
}
}
// Scan a 'word', which is an identifier-like sequence of characters beginning with '_' or an
// alphabetic char, followed by zero or more alphanumeric or '_' characters.
fn scan_word(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let begin = self.pos;
let loc = self.loc();
assert!(self.lookahead == Some('_') || self.lookahead.unwrap().is_ascii_alphabetic());
loop {
match self.next_ch() {
Some('_') | Some('0'..='9') | Some('a'..='z') | Some('A'..='Z') => {}
_ => break,
}
}
let text = &self.source[begin..self.pos];
// Look for numbered well-known entities like block15, v45, ...
token(
split_entity_name(text)
.and_then(|(prefix, number)| {
Self::numbered_entity(prefix, number)
.or_else(|| Self::value_type(text, prefix, number))
})
.unwrap_or_else(|| match text {
"iflags" => Token::Type(types::IFLAGS),
"fflags" => Token::Type(types::FFLAGS),
"cold" => Token::Cold,
_ => Token::Identifier(text),
}),
loc,
)
}
// If prefix is a well-known entity prefix and suffix is a valid entity number, return the
// decoded token.
fn numbered_entity(prefix: &str, number: u32) -> Option<Token<'a>> {
match prefix {
"v" => Value::with_number(number).map(Token::Value),
"block" => Block::with_number(number).map(Token::Block),
"ss" => Some(Token::StackSlot(number)),
"dss" => Some(Token::DynamicStackSlot(number)),
"dt" => Some(Token::DynamicType(number)),
"gv" => Some(Token::GlobalValue(number)),
"heap" => Some(Token::Heap(number)),
"table" => Some(Token::Table(number)),
"jt" => Some(Token::JumpTable(number)),
"const" => Some(Token::Constant(number)),
"fn" => Some(Token::FuncRef(number)),
"sig" => Some(Token::SigRef(number)),
"u" => Some(Token::UserRef(number)),
"userextname" => Some(Token::UserNameRef(number)),
_ => None,
}
}
// Recognize a scalar or vector type.
fn value_type(text: &str, prefix: &str, number: u32) -> Option<Token<'a>> {
let is_vector = prefix.ends_with('x');
let scalar = if is_vector {
&prefix[0..prefix.len() - 1]
} else {
text
};
let base_type = match scalar {
"i8" => types::I8,
"i16" => types::I16,
"i32" => types::I32,
"i64" => types::I64,
"i128" => types::I128,
"f32" => types::F32,
"f64" => types::F64,
"b1" => types::B1,
"b8" => types::B8,
"b16" => types::B16,
"b32" => types::B32,
"b64" => types::B64,
"b128" => types::B128,
"r32" => types::R32,
"r64" => types::R64,
_ => return None,
};
if is_vector {
if number <= u32::from(u16::MAX) {
base_type.by(number).map(Token::Type)
} else {
None
}
} else {
Some(Token::Type(base_type))
}
}
fn scan_name(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let begin = self.pos + 1;
assert_eq!(self.lookahead, Some('%'));
loop {
match self.next_ch() {
Some('_') | Some('0'..='9') | Some('a'..='z') | Some('A'..='Z') => {}
_ => break,
}
}
let end = self.pos;
token(Token::Name(&self.source[begin..end]), loc)
}
/// Scan for a multi-line quoted string with no escape character.
fn scan_string(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let begin = self.pos + 1;
assert_eq!(self.lookahead, Some('"'));
while let Some(c) = self.next_ch() {
if c == '"' {
break;
}
}
let end = self.pos;
if self.lookahead != Some('"') {
return error(LexError::InvalidChar, self.loc());
}
self.next_ch();
token(Token::String(&self.source[begin..end]), loc)
}
fn scan_hex_sequence(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let begin = self.pos + 1;
assert_eq!(self.lookahead, Some('#'));
while let Some(c) = self.next_ch() {
if !char::is_digit(c, 16) {
break;
}
}
let end = self.pos;
token(Token::HexSequence(&self.source[begin..end]), loc)
}
fn scan_srcloc(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let begin = self.pos + 1;
assert_eq!(self.lookahead, Some('@'));
while let Some(c) = self.next_ch() {
if !char::is_digit(c, 16) {
break;
}
}
let end = self.pos;
token(Token::SourceLoc(&self.source[begin..end]), loc)
}
/// Get the next token or a lexical error.
///
/// Return None when the end of the source is encountered.
#[allow(clippy::cognitive_complexity)]
pub fn next(&mut self) -> Option<Result<LocatedToken<'a>, LocatedError>> {
loop {
let loc = self.loc();
return match self.lookahead {
None => None,
Some(';') => Some(self.scan_comment()),
Some('(') => Some(self.scan_char(Token::LPar)),
Some(')') => Some(self.scan_char(Token::RPar)),
Some('{') => Some(self.scan_char(Token::LBrace)),
Some('}') => Some(self.scan_char(Token::RBrace)),
Some('[') => Some(self.scan_char(Token::LBracket)),
Some(']') => Some(self.scan_char(Token::RBracket)),
Some(',') => Some(self.scan_char(Token::Comma)),
Some('.') => Some(self.scan_char(Token::Dot)),
Some(':') => Some(self.scan_char(Token::Colon)),
Some('=') => Some(self.scan_char(Token::Equal)),
Some('!') => Some(self.scan_char(Token::Not)),
Some('+') => Some(self.scan_number()),
Some('*') => Some(self.scan_char(Token::Multiply)),
Some('-') => {
if self.looking_at("->") {
Some(self.scan_chars(2, Token::Arrow))
} else {
Some(self.scan_number())
}
}
Some('0'..='9') => Some(self.scan_number()),
Some('a'..='z') | Some('A'..='Z') => {
if self.looking_at("NaN") || self.looking_at("Inf") {
Some(self.scan_number())
} else {
Some(self.scan_word())
}
}
Some('%') => Some(self.scan_name()),
Some('"') => Some(self.scan_string()),
Some('#') => Some(self.scan_hex_sequence()),
Some('@') => Some(self.scan_srcloc()),
// all ascii whitespace
Some(' ') | Some('\x09'..='\x0d') => {
self.next_ch();
continue;
}
_ => {
// Skip invalid char, return error.
self.next_ch();
Some(error(LexError::InvalidChar, loc))
}
};
}
}
}
#[cfg(test)]
mod tests {
use super::trailing_digits;
use super::*;
use crate::error::Location;
use cranelift_codegen::ir::types;
use cranelift_codegen::ir::{Block, Value};
#[test]
fn digits() {
assert_eq!(trailing_digits(""), 0);
assert_eq!(trailing_digits("x"), 0);
assert_eq!(trailing_digits("0x"), 0);
assert_eq!(trailing_digits("x1"), 1);
assert_eq!(trailing_digits("1x1"), 1);
assert_eq!(trailing_digits("1x01"), 2);
}
#[test]
fn entity_name() {
assert_eq!(split_entity_name(""), None);
assert_eq!(split_entity_name("x"), None);
assert_eq!(split_entity_name("x+"), None);
assert_eq!(split_entity_name("x+1"), Some(("x+", 1)));
assert_eq!(split_entity_name("x-1"), Some(("x-", 1)));
assert_eq!(split_entity_name("1"), Some(("", 1)));
assert_eq!(split_entity_name("x1"), Some(("x", 1)));
assert_eq!(split_entity_name("xy0"), Some(("xy", 0)));
// Reject this non-canonical form.
assert_eq!(split_entity_name("inst01"), None);
}
fn token<'a>(token: Token<'a>, line: usize) -> Option<Result<LocatedToken<'a>, LocatedError>> {
Some(super::token(token, Location { line_number: line }))
}
fn error<'a>(error: LexError, line: usize) -> Option<Result<LocatedToken<'a>, LocatedError>> {
Some(super::error(error, Location { line_number: line }))
}
#[test]
fn make_lexer() {
let mut l1 = Lexer::new("");
let mut l2 = Lexer::new(" ");
let mut l3 = Lexer::new("\n ");
assert_eq!(l1.next(), None);
assert_eq!(l2.next(), None);
assert_eq!(l3.next(), None);
}
#[test]
fn lex_comment() {
let mut lex = Lexer::new("; hello");
assert_eq!(lex.next(), token(Token::Comment("; hello"), 1));
assert_eq!(lex.next(), None);
lex = Lexer::new("\n ;hello\n;foo");
assert_eq!(lex.next(), token(Token::Comment(";hello"), 2));
assert_eq!(lex.next(), token(Token::Comment(";foo"), 3));
assert_eq!(lex.next(), None);
// Scan a comment after an invalid char.
let mut lex = Lexer::new("$; hello");
assert_eq!(lex.next(), error(LexError::InvalidChar, 1));
assert_eq!(lex.next(), token(Token::Comment("; hello"), 1));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_chars() {
let mut lex = Lexer::new("(); hello\n = :{, }.");
assert_eq!(lex.next(), token(Token::LPar, 1));
assert_eq!(lex.next(), token(Token::RPar, 1));
assert_eq!(lex.next(), token(Token::Comment("; hello"), 1));
assert_eq!(lex.next(), token(Token::Equal, 2));
assert_eq!(lex.next(), token(Token::Colon, 2));
assert_eq!(lex.next(), token(Token::LBrace, 2));
assert_eq!(lex.next(), token(Token::Comma, 2));
assert_eq!(lex.next(), token(Token::RBrace, 2));
assert_eq!(lex.next(), token(Token::Dot, 2));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_numbers() {
let mut lex = Lexer::new(" 0 2_000 -1,0xf -0x0 0.0 0x0.4p-34 NaN +5");
assert_eq!(lex.next(), token(Token::Integer("0"), 1));
assert_eq!(lex.next(), token(Token::Integer("2_000"), 1));
assert_eq!(lex.next(), token(Token::Integer("-1"), 1));
assert_eq!(lex.next(), token(Token::Comma, 1));
assert_eq!(lex.next(), token(Token::Integer("0xf"), 1));
assert_eq!(lex.next(), token(Token::Integer("-0x0"), 1));
assert_eq!(lex.next(), token(Token::Float("0.0"), 1));
assert_eq!(lex.next(), token(Token::Float("0x0.4p-34"), 1));
assert_eq!(lex.next(), token(Token::Float("NaN"), 1));
assert_eq!(lex.next(), token(Token::Integer("+5"), 1));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_identifiers() {
let mut lex = Lexer::new(
"v0 v00 vx01 block1234567890 block5234567890 v1x vx1 vxvx4 \
function0 function b1 i32x4 f32x5 \
iflags fflags iflagss",
);
assert_eq!(
lex.next(),
token(Token::Value(Value::with_number(0).unwrap()), 1)
);
assert_eq!(lex.next(), token(Token::Identifier("v00"), 1));
assert_eq!(lex.next(), token(Token::Identifier("vx01"), 1));
assert_eq!(
lex.next(),
token(Token::Block(Block::with_number(1234567890).unwrap()), 1)
);
assert_eq!(lex.next(), token(Token::Identifier("block5234567890"), 1));
assert_eq!(lex.next(), token(Token::Identifier("v1x"), 1));
assert_eq!(lex.next(), token(Token::Identifier("vx1"), 1));
assert_eq!(lex.next(), token(Token::Identifier("vxvx4"), 1));
assert_eq!(lex.next(), token(Token::Identifier("function0"), 1));
assert_eq!(lex.next(), token(Token::Identifier("function"), 1));
assert_eq!(lex.next(), token(Token::Type(types::B1), 1));
assert_eq!(lex.next(), token(Token::Type(types::I32X4), 1));
assert_eq!(lex.next(), token(Token::Identifier("f32x5"), 1));
assert_eq!(lex.next(), token(Token::Type(types::IFLAGS), 1));
assert_eq!(lex.next(), token(Token::Type(types::FFLAGS), 1));
assert_eq!(lex.next(), token(Token::Identifier("iflagss"), 1));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_hex_sequences() {
let mut lex = Lexer::new("#0 #DEADbeef123 #789");
assert_eq!(lex.next(), token(Token::HexSequence("0"), 1));
assert_eq!(lex.next(), token(Token::HexSequence("DEADbeef123"), 1));
assert_eq!(lex.next(), token(Token::HexSequence("789"), 1));
}
#[test]
fn lex_names() {
let mut lex = Lexer::new("%0 %x3 %function %123_abc %ss0 %v3 %block11 %const42 %_");
assert_eq!(lex.next(), token(Token::Name("0"), 1));
assert_eq!(lex.next(), token(Token::Name("x3"), 1));
assert_eq!(lex.next(), token(Token::Name("function"), 1));
assert_eq!(lex.next(), token(Token::Name("123_abc"), 1));
assert_eq!(lex.next(), token(Token::Name("ss0"), 1));
assert_eq!(lex.next(), token(Token::Name("v3"), 1));
assert_eq!(lex.next(), token(Token::Name("block11"), 1));
assert_eq!(lex.next(), token(Token::Name("const42"), 1));
assert_eq!(lex.next(), token(Token::Name("_"), 1));
}
#[test]
fn lex_strings() {
let mut lex = Lexer::new(
r#""" "0" "x3""function" "123 abc" "\" "start
and end on
different lines" "#,
);
assert_eq!(lex.next(), token(Token::String(""), 1));
assert_eq!(lex.next(), token(Token::String("0"), 1));
assert_eq!(lex.next(), token(Token::String("x3"), 1));
assert_eq!(lex.next(), token(Token::String("function"), 1));
assert_eq!(lex.next(), token(Token::String("123 abc"), 1));
assert_eq!(lex.next(), token(Token::String(r#"\"#), 1));
assert_eq!(
lex.next(),
token(
Token::String(
r#"start
and end on
different lines"#
),
1
)
);
}
#[test]
fn lex_userrefs() {
let mut lex = Lexer::new("u0 u1 u234567890 u9:8765");
assert_eq!(lex.next(), token(Token::UserRef(0), 1));
assert_eq!(lex.next(), token(Token::UserRef(1), 1));
assert_eq!(lex.next(), token(Token::UserRef(234567890), 1));
assert_eq!(lex.next(), token(Token::UserRef(9), 1));
assert_eq!(lex.next(), token(Token::Colon, 1));
assert_eq!(lex.next(), token(Token::Integer("8765"), 1));
assert_eq!(lex.next(), None);
}
}