Files
wasmtime/cranelift/codegen/src/isa/mod.rs
2021-09-30 12:42:45 +02:00

510 lines
18 KiB
Rust

//! Instruction Set Architectures.
//!
//! The `isa` module provides a `TargetIsa` trait which provides the behavior specialization needed
//! by the ISA-independent code generator. The sub-modules of this module provide definitions for
//! the instruction sets that Cranelift can target. Each sub-module has it's own implementation of
//! `TargetIsa`.
//!
//! # Constructing a `TargetIsa` instance
//!
//! The target ISA is built from the following information:
//!
//! - The name of the target ISA as a string. Cranelift is a cross-compiler, so the ISA to target
//! can be selected dynamically. Individual ISAs can be left out when Cranelift is compiled, so a
//! string is used to identify the proper sub-module.
//! - Values for settings that apply to all ISAs. This is represented by a `settings::Flags`
//! instance.
//! - Values for ISA-specific settings.
//!
//! The `isa::lookup()` function is the main entry point which returns an `isa::Builder`
//! appropriate for the requested ISA:
//!
//! ```
//! # #[macro_use] extern crate target_lexicon;
//! use cranelift_codegen::isa;
//! use cranelift_codegen::settings::{self, Configurable};
//! use std::str::FromStr;
//! use target_lexicon::Triple;
//!
//! let shared_builder = settings::builder();
//! let shared_flags = settings::Flags::new(shared_builder);
//!
//! match isa::lookup(triple!("x86_64")) {
//! Err(_) => {
//! // The x86_64 target ISA is not available.
//! }
//! Ok(mut isa_builder) => {
//! isa_builder.set("use_popcnt", "on");
//! let isa = isa_builder.finish(shared_flags);
//! }
//! }
//! ```
//!
//! The configured target ISA trait object is a `Box<TargetIsa>` which can be used for multiple
//! concurrent function compilations.
pub use crate::isa::call_conv::CallConv;
pub use crate::isa::constraints::{
BranchRange, ConstraintKind, OperandConstraint, RecipeConstraints,
};
pub use crate::isa::enc_tables::Encodings;
pub use crate::isa::encoding::{base_size, EncInfo, Encoding};
pub use crate::isa::registers::{regs_overlap, RegClass, RegClassIndex, RegInfo, RegUnit};
pub use crate::isa::stack::{StackBase, StackBaseMask, StackRef};
use crate::binemit;
use crate::flowgraph;
use crate::ir;
#[cfg(feature = "unwind")]
use crate::isa::unwind::systemv::RegisterMappingError;
use crate::machinst::{MachBackend, UnwindInfoKind};
use crate::regalloc;
use crate::result::CodegenResult;
use crate::settings;
use crate::settings::SetResult;
use crate::timing;
use alloc::{borrow::Cow, boxed::Box, vec::Vec};
use core::any::Any;
use core::fmt;
use core::fmt::{Debug, Formatter};
use core::hash::Hasher;
use target_lexicon::{triple, Architecture, OperatingSystem, PointerWidth, Triple};
// This module is made public here for benchmarking purposes. No guarantees are
// made regarding API stability.
#[cfg(feature = "x86")]
pub mod x64;
#[cfg(feature = "arm32")]
mod arm32;
#[cfg(feature = "arm64")]
pub(crate) mod aarch64;
#[cfg(feature = "s390x")]
mod s390x;
pub mod unwind;
mod call_conv;
mod constraints;
mod enc_tables;
mod encoding;
pub mod registers;
mod stack;
#[cfg(test)]
mod test_utils;
/// Returns a builder that can create a corresponding `TargetIsa`
/// or `Err(LookupError::SupportDisabled)` if not enabled.
macro_rules! isa_builder {
($name: ident, $cfg_terms: tt, $triple: ident) => {{
#[cfg $cfg_terms]
{
Ok($name::isa_builder($triple))
}
#[cfg(not $cfg_terms)]
{
Err(LookupError::SupportDisabled)
}
}};
}
/// Look for an ISA for the given `triple`.
/// Return a builder that can create a corresponding `TargetIsa`.
pub fn lookup(triple: Triple) -> Result<Builder, LookupError> {
match triple.architecture {
Architecture::X86_64 => {
isa_builder!(x64, (feature = "x86"), triple)
}
Architecture::Arm { .. } => isa_builder!(arm32, (feature = "arm32"), triple),
Architecture::Aarch64 { .. } => isa_builder!(aarch64, (feature = "arm64"), triple),
Architecture::S390x { .. } => isa_builder!(s390x, (feature = "s390x"), triple),
_ => Err(LookupError::Unsupported),
}
}
/// Look for a supported ISA with the given `name`.
/// Return a builder that can create a corresponding `TargetIsa`.
pub fn lookup_by_name(name: &str) -> Result<Builder, LookupError> {
use alloc::str::FromStr;
lookup(triple!(name))
}
/// Describes reason for target lookup failure
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum LookupError {
/// Support for this target was disabled in the current build.
SupportDisabled,
/// Support for this target has not yet been implemented.
Unsupported,
}
// This is manually implementing Error and Display instead of using thiserror to reduce the amount
// of dependencies used by Cranelift.
impl std::error::Error for LookupError {}
impl fmt::Display for LookupError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
LookupError::SupportDisabled => write!(f, "Support for this target is disabled"),
LookupError::Unsupported => {
write!(f, "Support for this target has not been implemented yet")
}
}
}
}
/// Builder for a `TargetIsa`.
/// Modify the ISA-specific settings before creating the `TargetIsa` trait object with `finish`.
#[derive(Clone)]
pub struct Builder {
triple: Triple,
setup: settings::Builder,
constructor: fn(Triple, settings::Flags, settings::Builder) -> Box<dyn TargetIsa>,
}
impl Builder {
/// Gets the triple for the builder.
pub fn triple(&self) -> &Triple {
&self.triple
}
/// Iterates the available settings in the builder.
pub fn iter(&self) -> impl Iterator<Item = settings::Setting> {
self.setup.iter()
}
/// Combine the ISA-specific settings with the provided ISA-independent settings and allocate a
/// fully configured `TargetIsa` trait object.
pub fn finish(self, shared_flags: settings::Flags) -> Box<dyn TargetIsa> {
(self.constructor)(self.triple, shared_flags, self.setup)
}
}
impl settings::Configurable for Builder {
fn set(&mut self, name: &str, value: &str) -> SetResult<()> {
self.setup.set(name, value)
}
fn enable(&mut self, name: &str) -> SetResult<()> {
self.setup.enable(name)
}
}
/// After determining that an instruction doesn't have an encoding, how should we proceed to
/// legalize it?
///
/// The `Encodings` iterator returns a legalization function to call.
pub type Legalize =
fn(ir::Inst, &mut ir::Function, &mut flowgraph::ControlFlowGraph, &dyn TargetIsa) -> bool;
/// This struct provides information that a frontend may need to know about a target to
/// produce Cranelift IR for the target.
#[derive(Clone, Copy, Hash)]
pub struct TargetFrontendConfig {
/// The default calling convention of the target.
pub default_call_conv: CallConv,
/// The pointer width of the target.
pub pointer_width: PointerWidth,
}
impl TargetFrontendConfig {
/// Get the pointer type of this target.
pub fn pointer_type(self) -> ir::Type {
ir::Type::int(u16::from(self.pointer_bits())).unwrap()
}
/// Get the width of pointers on this target, in units of bits.
pub fn pointer_bits(self) -> u8 {
self.pointer_width.bits()
}
/// Get the width of pointers on this target, in units of bytes.
pub fn pointer_bytes(self) -> u8 {
self.pointer_width.bytes()
}
}
/// Methods that are specialized to a target ISA. Implies a Display trait that shows the
/// shared flags, as well as any isa-specific flags.
pub trait TargetIsa: fmt::Display + Send + Sync {
/// Get the name of this ISA.
fn name(&self) -> &'static str;
/// Get the target triple that was used to make this trait object.
fn triple(&self) -> &Triple;
/// Get the ISA-independent flags that were used to make this trait object.
fn flags(&self) -> &settings::Flags;
/// Get the ISA-dependent flag values that were used to make this trait object.
fn isa_flags(&self) -> Vec<settings::Value>;
/// Hashes all flags, both ISA-independent and ISA-specific, into the
/// specified hasher.
fn hash_all_flags(&self, hasher: &mut dyn Hasher);
/// Get the default calling convention of this target.
fn default_call_conv(&self) -> CallConv {
CallConv::triple_default(self.triple())
}
/// Get the endianness of this ISA.
fn endianness(&self) -> ir::Endianness {
match self.triple().endianness().unwrap() {
target_lexicon::Endianness::Little => ir::Endianness::Little,
target_lexicon::Endianness::Big => ir::Endianness::Big,
}
}
/// Returns the code (text) section alignment for this ISA.
fn code_section_alignment(&self) -> u64 {
use target_lexicon::*;
match (self.triple().operating_system, self.triple().architecture) {
(
OperatingSystem::MacOSX { .. }
| OperatingSystem::Darwin
| OperatingSystem::Ios
| OperatingSystem::Tvos,
Architecture::Aarch64(..),
) => 0x4000,
_ => 0x1000,
}
}
/// Get the pointer type of this ISA.
fn pointer_type(&self) -> ir::Type {
ir::Type::int(u16::from(self.pointer_bits())).unwrap()
}
/// Get the width of pointers on this ISA.
fn pointer_width(&self) -> PointerWidth {
self.triple().pointer_width().unwrap()
}
/// Get the width of pointers on this ISA, in units of bits.
fn pointer_bits(&self) -> u8 {
self.pointer_width().bits()
}
/// Get the width of pointers on this ISA, in units of bytes.
fn pointer_bytes(&self) -> u8 {
self.pointer_width().bytes()
}
/// Get the information needed by frontends producing Cranelift IR.
fn frontend_config(&self) -> TargetFrontendConfig {
TargetFrontendConfig {
default_call_conv: self.default_call_conv(),
pointer_width: self.pointer_width(),
}
}
/// Does the CPU implement scalar comparisons using a CPU flags register?
fn uses_cpu_flags(&self) -> bool {
false
}
/// Does the CPU implement multi-register addressing?
fn uses_complex_addresses(&self) -> bool {
false
}
/// Get a data structure describing the registers in this ISA.
fn register_info(&self) -> RegInfo;
#[cfg(feature = "unwind")]
/// Map a Cranelift register to its corresponding DWARF register.
fn map_dwarf_register(&self, _: RegUnit) -> Result<u16, RegisterMappingError> {
Err(RegisterMappingError::UnsupportedArchitecture)
}
#[cfg(feature = "unwind")]
/// Map a regalloc::Reg to its corresponding DWARF register.
fn map_regalloc_reg_to_dwarf(&self, _: ::regalloc::Reg) -> Result<u16, RegisterMappingError> {
Err(RegisterMappingError::UnsupportedArchitecture)
}
/// Returns an iterator over legal encodings for the instruction.
fn legal_encodings<'a>(
&'a self,
func: &'a ir::Function,
inst: &'a ir::InstructionData,
ctrl_typevar: ir::Type,
) -> Encodings<'a>;
/// Encode an instruction after determining it is legal.
///
/// If `inst` can legally be encoded in this ISA, produce the corresponding `Encoding` object.
/// Otherwise, return `Legalize` action.
///
/// This is also the main entry point for determining if an instruction is legal.
fn encode(
&self,
func: &ir::Function,
inst: &ir::InstructionData,
ctrl_typevar: ir::Type,
) -> Result<Encoding, Legalize> {
let mut iter = self.legal_encodings(func, inst, ctrl_typevar);
iter.next().ok_or_else(|| iter.legalize())
}
/// Get a data structure describing the instruction encodings in this ISA.
fn encoding_info(&self) -> EncInfo;
/// Legalize a function signature.
///
/// This is used to legalize both the signature of the function being compiled and any called
/// functions. The signature should be modified by adding `ArgumentLoc` annotations to all
/// arguments and return values.
///
/// Arguments with types that are not supported by the ABI can be expanded into multiple
/// arguments:
///
/// - Integer types that are too large to fit in a register can be broken into multiple
/// arguments of a smaller integer type.
/// - Floating point types can be bit-cast to an integer type of the same size, and possible
/// broken into smaller integer types.
/// - Vector types can be bit-cast and broken down into smaller vectors or scalars.
///
/// The legalizer will adapt argument and return values as necessary at all ABI boundaries.
///
/// When this function is called to legalize the signature of the function currently being
/// compiled, `current` is true. The legalized signature can then also contain special purpose
/// arguments and return values such as:
///
/// - A `link` argument representing the link registers on RISC architectures that don't push
/// the return address on the stack.
/// - A `link` return value which will receive the value that was passed to the `link`
/// argument.
/// - An `sret` argument can be added if one wasn't present already. This is necessary if the
/// signature returns more values than registers are available for returning values.
/// - An `sret` return value can be added if the ABI requires a function to return its `sret`
/// argument in a register.
///
/// Arguments and return values for the caller's frame pointer and other callee-saved registers
/// should not be added by this function. These arguments are not added until after register
/// allocation.
fn legalize_signature(&self, sig: &mut Cow<ir::Signature>, current: bool);
/// Get the register class that should be used to represent an ABI argument or return value of
/// type `ty`. This should be the top-level register class that contains the argument
/// registers.
///
/// This function can assume that it will only be asked to provide register classes for types
/// that `legalize_signature()` produces in `ArgumentLoc::Reg` entries.
fn regclass_for_abi_type(&self, ty: ir::Type) -> RegClass;
/// Get the set of allocatable registers that can be used when compiling `func`.
///
/// This set excludes reserved registers like the stack pointer and other special-purpose
/// registers.
fn allocatable_registers(&self, func: &ir::Function) -> regalloc::RegisterSet;
/// Compute the stack layout and insert prologue and epilogue code into `func`.
///
/// Return an error if the stack frame is too large.
fn prologue_epilogue(&self, func: &mut ir::Function) -> CodegenResult<()> {
let _tt = timing::prologue_epilogue();
// This default implementation is unlikely to be good enough.
use crate::ir::stackslot::{StackOffset, StackSize};
use crate::stack_layout::layout_stack;
let word_size = StackSize::from(self.pointer_bytes());
// Account for the SpiderMonkey standard prologue pushes.
if func.signature.call_conv.extends_baldrdash() {
let bytes = StackSize::from(self.flags().baldrdash_prologue_words()) * word_size;
let mut ss = ir::StackSlotData::new(ir::StackSlotKind::IncomingArg, bytes);
ss.offset = Some(-(bytes as StackOffset));
func.stack_slots.push(ss);
}
let is_leaf = func.is_leaf();
layout_stack(&mut func.stack_slots, is_leaf, word_size)?;
Ok(())
}
/// Emit binary machine code for a single instruction into the `sink` trait object.
///
/// Note that this will call `put*` methods on the `sink` trait object via its vtable which
/// is not the fastest way of emitting code.
///
/// This function is under the "testing_hooks" feature, and is only suitable for use by
/// test harnesses. It increases code size, and is inefficient.
#[cfg(feature = "testing_hooks")]
fn emit_inst(
&self,
func: &ir::Function,
inst: ir::Inst,
divert: &mut regalloc::RegDiversions,
sink: &mut dyn binemit::CodeSink,
);
/// Emit a whole function into memory.
fn emit_function_to_memory(&self, func: &ir::Function, sink: &mut binemit::MemoryCodeSink);
/// IntCC condition for Unsigned Addition Overflow (Carry).
fn unsigned_add_overflow_condition(&self) -> ir::condcodes::IntCC;
/// IntCC condition for Unsigned Subtraction Overflow (Borrow/Carry).
fn unsigned_sub_overflow_condition(&self) -> ir::condcodes::IntCC;
/// Returns the flavor of unwind information emitted for this target.
fn unwind_info_kind(&self) -> UnwindInfoKind {
match self.triple().operating_system {
#[cfg(feature = "unwind")]
OperatingSystem::Windows => UnwindInfoKind::Windows,
#[cfg(feature = "unwind")]
_ => UnwindInfoKind::SystemV,
#[cfg(not(feature = "unwind"))]
_ => UnwindInfoKind::None,
}
}
/// Creates unwind information for the function.
///
/// Returns `None` if there is no unwind information for the function.
#[cfg(feature = "unwind")]
fn create_unwind_info(
&self,
_func: &ir::Function,
) -> CodegenResult<Option<unwind::UnwindInfo>> {
// By default, an ISA has no unwind information
Ok(None)
}
/// Creates a new System V Common Information Entry for the ISA.
///
/// Returns `None` if the ISA does not support System V unwind information.
#[cfg(feature = "unwind")]
fn create_systemv_cie(&self) -> Option<gimli::write::CommonInformationEntry> {
// By default, an ISA cannot create a System V CIE
None
}
/// Get the new-style MachBackend, if this is an adapter around one.
fn get_mach_backend(&self) -> Option<&dyn MachBackend> {
None
}
/// Return an [Any] reference for downcasting to the ISA-specific implementation of this trait
/// with `isa.as_any().downcast_ref::<isa::foo::Isa>()`.
fn as_any(&self) -> &dyn Any;
}
impl Debug for &dyn TargetIsa {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(
f,
"TargetIsa {{ triple: {:?}, pointer_width: {:?}}}",
self.triple(),
self.pointer_width()
)
}
}