This notably updates `wasmparser` for updates to the relaxed-simd proposal and an implementation of the function-references proposal. Additionally there are some minor bug fixes being picked up for WIT and the component model.
3158 lines
120 KiB
Rust
3158 lines
120 KiB
Rust
//! Low-level compilation of an fused adapter function.
|
|
//!
|
|
//! This module is tasked with the top-level `compile` function which creates a
|
|
//! single WebAssembly function which will perform the steps of the fused
|
|
//! adapter for an `AdapterData` provided. This is the "meat" of compilation
|
|
//! where the validation of the canonical ABI or similar all happens to
|
|
//! translate arguments from one module to another.
|
|
//!
|
|
//! ## Traps and their ordering
|
|
//!
|
|
//! Currently this compiler is pretty "loose" about the ordering of precisely
|
|
//! what trap happens where. The main reason for this is that to core wasm all
|
|
//! traps are the same and for fused adapters if a trap happens no intermediate
|
|
//! side effects are visible (as designed by the canonical ABI itself). For this
|
|
//! it's important to note that some of the precise choices of control flow here
|
|
//! can be somewhat arbitrary, an intentional decision.
|
|
|
|
use crate::component::{
|
|
CanonicalAbiInfo, ComponentTypesBuilder, FlatType, InterfaceType, StringEncoding,
|
|
TypeEnumIndex, TypeFlagsIndex, TypeListIndex, TypeOptionIndex, TypeRecordIndex,
|
|
TypeResultIndex, TypeTupleIndex, TypeUnionIndex, TypeVariantIndex, VariantInfo, FLAG_MAY_ENTER,
|
|
FLAG_MAY_LEAVE, MAX_FLAT_PARAMS, MAX_FLAT_RESULTS,
|
|
};
|
|
use crate::fact::signature::Signature;
|
|
use crate::fact::transcode::{FixedEncoding as FE, Transcode, Transcoder};
|
|
use crate::fact::traps::Trap;
|
|
use crate::fact::{
|
|
AdapterData, Body, Context, Function, FunctionId, Helper, HelperLocation, HelperType, Module,
|
|
Options,
|
|
};
|
|
use crate::{FuncIndex, GlobalIndex};
|
|
use std::collections::HashMap;
|
|
use std::mem;
|
|
use std::ops::Range;
|
|
use wasm_encoder::{BlockType, Encode, Instruction, Instruction::*, MemArg, ValType};
|
|
use wasmtime_component_util::{DiscriminantSize, FlagsSize};
|
|
|
|
const MAX_STRING_BYTE_LENGTH: u32 = 1 << 31;
|
|
const UTF16_TAG: u32 = 1 << 31;
|
|
|
|
/// This value is arbitrarily chosen and should be fine to change at any time,
|
|
/// it just seemed like a halfway reasonable starting point.
|
|
const INITIAL_FUEL: usize = 1_000;
|
|
|
|
struct Compiler<'a, 'b> {
|
|
types: &'a ComponentTypesBuilder,
|
|
module: &'b mut Module<'a>,
|
|
result: FunctionId,
|
|
|
|
/// The encoded WebAssembly function body so far, not including locals.
|
|
code: Vec<u8>,
|
|
|
|
/// Total number of locals generated so far.
|
|
nlocals: u32,
|
|
|
|
/// Locals partitioned by type which are not currently in use.
|
|
free_locals: HashMap<ValType, Vec<u32>>,
|
|
|
|
/// Metadata about all `unreachable` trap instructions in this function and
|
|
/// what the trap represents. The offset within `self.code` is recorded as
|
|
/// well.
|
|
traps: Vec<(usize, Trap)>,
|
|
|
|
/// A heuristic which is intended to limit the size of a generated function
|
|
/// to a certain maximum to avoid generating arbitrarily large functions.
|
|
///
|
|
/// This fuel counter is decremented each time `translate` is called and
|
|
/// when fuel is entirely consumed further translations, if necessary, will
|
|
/// be done through calls to other functions in the module. This is intended
|
|
/// to be a heuristic to split up the main function into theoretically
|
|
/// reusable portions.
|
|
fuel: usize,
|
|
}
|
|
|
|
pub(super) fn compile(module: &mut Module<'_>, adapter: &AdapterData) {
|
|
let lower_sig = module.types.signature(&adapter.lower, Context::Lower);
|
|
let lift_sig = module.types.signature(&adapter.lift, Context::Lift);
|
|
let ty = module
|
|
.core_types
|
|
.function(&lower_sig.params, &lower_sig.results);
|
|
let result = module
|
|
.funcs
|
|
.push(Function::new(Some(adapter.name.clone()), ty));
|
|
Compiler {
|
|
types: module.types,
|
|
module,
|
|
code: Vec::new(),
|
|
nlocals: lower_sig.params.len() as u32,
|
|
free_locals: HashMap::new(),
|
|
traps: Vec::new(),
|
|
result,
|
|
fuel: INITIAL_FUEL,
|
|
}
|
|
.compile_adapter(adapter, &lower_sig, &lift_sig)
|
|
}
|
|
|
|
/// Compiles a helper function as specified by the `Helper` configuration.
|
|
///
|
|
/// This function is invoked when the translation process runs out of fuel for
|
|
/// some prior function which enqueues a helper to get translated later. This
|
|
/// translation function will perform one type translation as specified by
|
|
/// `Helper` which can either be in the stack or memory for each side.
|
|
pub(super) fn compile_helper(module: &mut Module<'_>, result: FunctionId, helper: Helper) {
|
|
let mut nlocals = 0;
|
|
let src_flat;
|
|
let src = match helper.src.loc {
|
|
// If the source is on the stack then it's specified in the parameters
|
|
// to the function, so this creates the flattened representation and
|
|
// then lists those as the locals with appropriate types for the source
|
|
// values.
|
|
HelperLocation::Stack => {
|
|
src_flat = module
|
|
.types
|
|
.flatten_types(&helper.src.opts, usize::MAX, [helper.src.ty])
|
|
.unwrap()
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, ty)| (i as u32, *ty))
|
|
.collect::<Vec<_>>();
|
|
nlocals += src_flat.len() as u32;
|
|
Source::Stack(Stack {
|
|
locals: &src_flat,
|
|
opts: &helper.src.opts,
|
|
})
|
|
}
|
|
// If the source is in memory then that's just propagated here as the
|
|
// first local is the pointer to the source.
|
|
HelperLocation::Memory => {
|
|
nlocals += 1;
|
|
Source::Memory(Memory {
|
|
opts: &helper.src.opts,
|
|
addr: TempLocal::new(0, helper.src.opts.ptr()),
|
|
offset: 0,
|
|
})
|
|
}
|
|
};
|
|
let dst_flat;
|
|
let dst = match helper.dst.loc {
|
|
// This is the same as the stack-based source although `Destination` is
|
|
// configured slightly differently.
|
|
HelperLocation::Stack => {
|
|
dst_flat = module
|
|
.types
|
|
.flatten_types(&helper.dst.opts, usize::MAX, [helper.dst.ty])
|
|
.unwrap();
|
|
Destination::Stack(&dst_flat, &helper.dst.opts)
|
|
}
|
|
// This is the same as a memroy-based source but note that the address
|
|
// of the destination is passed as the final parameter to the function.
|
|
HelperLocation::Memory => {
|
|
nlocals += 1;
|
|
Destination::Memory(Memory {
|
|
opts: &helper.dst.opts,
|
|
addr: TempLocal::new(nlocals - 1, helper.dst.opts.ptr()),
|
|
offset: 0,
|
|
})
|
|
}
|
|
};
|
|
let mut compiler = Compiler {
|
|
types: module.types,
|
|
module,
|
|
code: Vec::new(),
|
|
nlocals,
|
|
free_locals: HashMap::new(),
|
|
traps: Vec::new(),
|
|
result,
|
|
fuel: INITIAL_FUEL,
|
|
};
|
|
compiler.translate(&helper.src.ty, &src, &helper.dst.ty, &dst);
|
|
compiler.finish();
|
|
}
|
|
|
|
/// Possible ways that a interface value is represented in the core wasm
|
|
/// canonical ABI.
|
|
enum Source<'a> {
|
|
/// This value is stored on the "stack" in wasm locals.
|
|
///
|
|
/// This could mean that it's inline from the parameters to the function or
|
|
/// that after a function call the results were stored in locals and the
|
|
/// locals are the inline results.
|
|
Stack(Stack<'a>),
|
|
|
|
/// This value is stored in linear memory described by the `Memory`
|
|
/// structure.
|
|
Memory(Memory<'a>),
|
|
}
|
|
|
|
/// Same as `Source` but for where values are translated into.
|
|
enum Destination<'a> {
|
|
/// This value is destined for the WebAssembly stack which means that
|
|
/// results are simply pushed as we go along.
|
|
///
|
|
/// The types listed are the types that are expected to be on the stack at
|
|
/// the end of translation.
|
|
Stack(&'a [ValType], &'a Options),
|
|
|
|
/// This value is to be placed in linear memory described by `Memory`.
|
|
Memory(Memory<'a>),
|
|
}
|
|
|
|
struct Stack<'a> {
|
|
/// The locals that comprise a particular value.
|
|
///
|
|
/// The length of this list represents the flattened list of types that make
|
|
/// up the component value. Each list has the index of the local being
|
|
/// accessed as well as the type of the local itself.
|
|
locals: &'a [(u32, ValType)],
|
|
/// The lifting/lowering options for where this stack of values comes from
|
|
opts: &'a Options,
|
|
}
|
|
|
|
/// Representation of where a value is going to be stored in linear memory.
|
|
struct Memory<'a> {
|
|
/// The lifting/lowering options with memory configuration
|
|
opts: &'a Options,
|
|
/// The index of the local that contains the base address of where the
|
|
/// storage is happening.
|
|
addr: TempLocal,
|
|
/// A "static" offset that will be baked into wasm instructions for where
|
|
/// memory loads/stores happen.
|
|
offset: u32,
|
|
}
|
|
|
|
impl Compiler<'_, '_> {
|
|
fn compile_adapter(
|
|
mut self,
|
|
adapter: &AdapterData,
|
|
lower_sig: &Signature,
|
|
lift_sig: &Signature,
|
|
) {
|
|
// Check the instance flags required for this trampoline.
|
|
//
|
|
// This inserts the initial check required by `canon_lower` that the
|
|
// caller instance can be left and additionally checks the
|
|
// flags on the callee if necessary whether it can be entered.
|
|
self.trap_if_not_flag(adapter.lower.flags, FLAG_MAY_LEAVE, Trap::CannotLeave);
|
|
if adapter.called_as_export {
|
|
self.trap_if_not_flag(adapter.lift.flags, FLAG_MAY_ENTER, Trap::CannotEnter);
|
|
self.set_flag(adapter.lift.flags, FLAG_MAY_ENTER, false);
|
|
} else if self.module.debug {
|
|
self.assert_not_flag(
|
|
adapter.lift.flags,
|
|
FLAG_MAY_ENTER,
|
|
"may_enter should be unset",
|
|
);
|
|
}
|
|
|
|
// Perform the translation of arguments. Note that `FLAG_MAY_LEAVE` is
|
|
// cleared around this invocation for the callee as per the
|
|
// `canon_lift` definition in the spec. Additionally note that the
|
|
// precise ordering of traps here is not required since internal state
|
|
// is not visible to either instance and a trap will "lock down" both
|
|
// instances to no longer be visible. This means that we're free to
|
|
// reorder lifts/lowers and flags and such as is necessary and
|
|
// convenient here.
|
|
//
|
|
// TODO: if translation doesn't actually call any functions in either
|
|
// instance then there's no need to set/clear the flag here and that can
|
|
// be optimized away.
|
|
self.set_flag(adapter.lift.flags, FLAG_MAY_LEAVE, false);
|
|
let param_locals = lower_sig
|
|
.params
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, ty)| (i as u32, *ty))
|
|
.collect::<Vec<_>>();
|
|
self.translate_params(adapter, ¶m_locals);
|
|
self.set_flag(adapter.lift.flags, FLAG_MAY_LEAVE, true);
|
|
|
|
// With all the arguments on the stack the actual target function is
|
|
// now invoked. The core wasm results of the function are then placed
|
|
// into locals for result translation afterwards.
|
|
self.instruction(Call(adapter.callee.as_u32()));
|
|
let mut result_locals = Vec::with_capacity(lift_sig.results.len());
|
|
let mut temps = Vec::new();
|
|
for ty in lift_sig.results.iter().rev() {
|
|
let local = self.local_set_new_tmp(*ty);
|
|
result_locals.push((local.idx, *ty));
|
|
temps.push(local);
|
|
}
|
|
result_locals.reverse();
|
|
|
|
// Like above during the translation of results the caller cannot be
|
|
// left (as we might invoke things like `realloc`). Again the precise
|
|
// order of everything doesn't matter since intermediate states cannot
|
|
// be witnessed, hence the setting of flags here to encapsulate both
|
|
// liftings and lowerings.
|
|
//
|
|
// TODO: like above the management of the `MAY_LEAVE` flag can probably
|
|
// be elided here for "simple" results.
|
|
self.set_flag(adapter.lower.flags, FLAG_MAY_LEAVE, false);
|
|
self.translate_results(adapter, ¶m_locals, &result_locals);
|
|
self.set_flag(adapter.lower.flags, FLAG_MAY_LEAVE, true);
|
|
|
|
// And finally post-return state is handled here once all results/etc
|
|
// are all translated.
|
|
if let Some(func) = adapter.lift.post_return {
|
|
for (result, _) in result_locals.iter() {
|
|
self.instruction(LocalGet(*result));
|
|
}
|
|
self.instruction(Call(func.as_u32()));
|
|
}
|
|
if adapter.called_as_export {
|
|
self.set_flag(adapter.lift.flags, FLAG_MAY_ENTER, true);
|
|
}
|
|
|
|
for tmp in temps {
|
|
self.free_temp_local(tmp);
|
|
}
|
|
|
|
self.finish()
|
|
}
|
|
|
|
fn translate_params(&mut self, adapter: &AdapterData, param_locals: &[(u32, ValType)]) {
|
|
let src_tys = &self.types[adapter.lower.ty].params;
|
|
let src_tys = src_tys.iter().copied().collect::<Vec<_>>();
|
|
let dst_tys = &self.types[adapter.lift.ty].params;
|
|
let dst_tys = dst_tys.iter().copied().collect::<Vec<_>>();
|
|
let lift_opts = &adapter.lift.options;
|
|
let lower_opts = &adapter.lower.options;
|
|
|
|
// TODO: handle subtyping
|
|
assert_eq!(src_tys.len(), dst_tys.len());
|
|
|
|
let src_flat =
|
|
self.types
|
|
.flatten_types(lower_opts, MAX_FLAT_PARAMS, src_tys.iter().copied());
|
|
let dst_flat =
|
|
self.types
|
|
.flatten_types(lift_opts, MAX_FLAT_PARAMS, dst_tys.iter().copied());
|
|
|
|
let src = if let Some(flat) = &src_flat {
|
|
Source::Stack(Stack {
|
|
locals: ¶m_locals[..flat.len()],
|
|
opts: lower_opts,
|
|
})
|
|
} else {
|
|
// If there are too many parameters then that means the parameters
|
|
// are actually a tuple stored in linear memory addressed by the
|
|
// first parameter local.
|
|
let (addr, ty) = param_locals[0];
|
|
assert_eq!(ty, lower_opts.ptr());
|
|
let align = src_tys
|
|
.iter()
|
|
.map(|t| self.types.align(lower_opts, t))
|
|
.max()
|
|
.unwrap_or(1);
|
|
Source::Memory(self.memory_operand(lower_opts, TempLocal::new(addr, ty), align))
|
|
};
|
|
|
|
let dst = if let Some(flat) = &dst_flat {
|
|
Destination::Stack(flat, lift_opts)
|
|
} else {
|
|
// If there are too many parameters then space is allocated in the
|
|
// destination module for the parameters via its `realloc` function.
|
|
let abi = CanonicalAbiInfo::record(dst_tys.iter().map(|t| self.types.canonical_abi(t)));
|
|
let (size, align) = if lift_opts.memory64 {
|
|
(abi.size64, abi.align64)
|
|
} else {
|
|
(abi.size32, abi.align32)
|
|
};
|
|
let size = MallocSize::Const(size);
|
|
Destination::Memory(self.malloc(lift_opts, size, align))
|
|
};
|
|
|
|
let srcs = src
|
|
.record_field_srcs(self.types, src_tys.iter().copied())
|
|
.zip(src_tys.iter());
|
|
let dsts = dst
|
|
.record_field_dsts(self.types, dst_tys.iter().copied())
|
|
.zip(dst_tys.iter());
|
|
for ((src, src_ty), (dst, dst_ty)) in srcs.zip(dsts) {
|
|
self.translate(&src_ty, &src, &dst_ty, &dst);
|
|
}
|
|
|
|
// If the destination was linear memory instead of the stack then the
|
|
// actual parameter that we're passing is the address of the values
|
|
// stored, so ensure that's happening in the wasm body here.
|
|
if let Destination::Memory(mem) = dst {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.free_temp_local(mem.addr);
|
|
}
|
|
}
|
|
|
|
fn translate_results(
|
|
&mut self,
|
|
adapter: &AdapterData,
|
|
param_locals: &[(u32, ValType)],
|
|
result_locals: &[(u32, ValType)],
|
|
) {
|
|
let src_tys = &self.types[adapter.lift.ty].results;
|
|
let src_tys = src_tys.iter().map(|ty| *ty).collect::<Vec<_>>();
|
|
let dst_tys = &self.types[adapter.lower.ty].results;
|
|
let dst_tys = dst_tys.iter().map(|ty| *ty).collect::<Vec<_>>();
|
|
let lift_opts = &adapter.lift.options;
|
|
let lower_opts = &adapter.lower.options;
|
|
|
|
let src_flat =
|
|
self.types
|
|
.flatten_types(lift_opts, MAX_FLAT_RESULTS, src_tys.iter().copied());
|
|
let dst_flat =
|
|
self.types
|
|
.flatten_types(lower_opts, MAX_FLAT_RESULTS, dst_tys.iter().copied());
|
|
|
|
let src = if src_flat.is_some() {
|
|
Source::Stack(Stack {
|
|
locals: result_locals,
|
|
opts: lift_opts,
|
|
})
|
|
} else {
|
|
// The original results to read from in this case come from the
|
|
// return value of the function itself. The imported function will
|
|
// return a linear memory address at which the values can be read
|
|
// from.
|
|
let align = src_tys
|
|
.iter()
|
|
.map(|t| self.types.align(lift_opts, t))
|
|
.max()
|
|
.unwrap_or(1);
|
|
assert_eq!(result_locals.len(), 1);
|
|
let (addr, ty) = result_locals[0];
|
|
assert_eq!(ty, lift_opts.ptr());
|
|
Source::Memory(self.memory_operand(lift_opts, TempLocal::new(addr, ty), align))
|
|
};
|
|
|
|
let dst = if let Some(flat) = &dst_flat {
|
|
Destination::Stack(flat, lower_opts)
|
|
} else {
|
|
// This is slightly different than `translate_params` where the
|
|
// return pointer was provided by the caller of this function
|
|
// meaning the last parameter local is a pointer into linear memory.
|
|
let align = dst_tys
|
|
.iter()
|
|
.map(|t| self.types.align(lower_opts, t))
|
|
.max()
|
|
.unwrap_or(1);
|
|
let (addr, ty) = *param_locals.last().expect("no retptr");
|
|
assert_eq!(ty, lower_opts.ptr());
|
|
Destination::Memory(self.memory_operand(lower_opts, TempLocal::new(addr, ty), align))
|
|
};
|
|
|
|
let srcs = src
|
|
.record_field_srcs(self.types, src_tys.iter().copied())
|
|
.zip(src_tys.iter());
|
|
let dsts = dst
|
|
.record_field_dsts(self.types, dst_tys.iter().copied())
|
|
.zip(dst_tys.iter());
|
|
for ((src, src_ty), (dst, dst_ty)) in srcs.zip(dsts) {
|
|
self.translate(&src_ty, &src, &dst_ty, &dst);
|
|
}
|
|
}
|
|
|
|
fn translate(
|
|
&mut self,
|
|
src_ty: &InterfaceType,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
if let Source::Memory(mem) = src {
|
|
self.assert_aligned(src_ty, mem);
|
|
}
|
|
if let Destination::Memory(mem) = dst {
|
|
self.assert_aligned(dst_ty, mem);
|
|
}
|
|
|
|
// Calculate a cost heuristic for what the translation of this specific
|
|
// layer of the type is going to incur. The purpose of this cost is that
|
|
// we'll deduct it from `self.fuel` and if no fuel is remaining then
|
|
// translation is outlined into a separate function rather than being
|
|
// translated into this function.
|
|
//
|
|
// The general goal is to avoid creating an exponentially sized function
|
|
// for a linearly sized input (the type section). By outlining helper
|
|
// functions there will ideally be a constant set of helper functions
|
|
// per type (to accomodate in-memory or on-stack transfers as well as
|
|
// src/dst options) which means that each function is at most a certain
|
|
// size and we have a linear number of functions which should guarantee
|
|
// an overall linear size of the output.
|
|
//
|
|
// To implement this the current heuristic is that each layer of
|
|
// translating a type has a cost associated with it and this cost is
|
|
// accounted for in `self.fuel`. Some conversions are considered free as
|
|
// they generate basically as much code as the `call` to the translation
|
|
// function while other are considered proportionally expensive to the
|
|
// size of the type. The hope is that some upper layers are of a type's
|
|
// translation are all inlined into one function but bottom layers end
|
|
// up getting outlined to separate functions. Theoretically, again this
|
|
// is built on hopes and dreams, the outlining can be shared amongst
|
|
// tightly-intertwined type hierarchies which will reduce the size of
|
|
// the output module due to the helpers being used.
|
|
//
|
|
// This heuristic of how to split functions has changed a few times in
|
|
// the past and this isn't necessarily guaranteed to be the final
|
|
// iteration.
|
|
let cost = match src_ty {
|
|
// These types are all quite simple to load/store and equate to
|
|
// basically the same cost of the `call` instruction to call an
|
|
// out-of-line translation function, so give them 0 cost.
|
|
InterfaceType::Bool
|
|
| InterfaceType::U8
|
|
| InterfaceType::S8
|
|
| InterfaceType::U16
|
|
| InterfaceType::S16
|
|
| InterfaceType::U32
|
|
| InterfaceType::S32
|
|
| InterfaceType::U64
|
|
| InterfaceType::S64
|
|
| InterfaceType::Float32
|
|
| InterfaceType::Float64 => 0,
|
|
|
|
// This has a small amount of validation associated with it, so
|
|
// give it a cost of 1.
|
|
InterfaceType::Char => 1,
|
|
|
|
// This has a fair bit of code behind it depending on the
|
|
// strings/encodings in play, so arbitrarily assign it this cost.
|
|
InterfaceType::String => 40,
|
|
|
|
// Iteration of a loop is along the lines of the cost of a string
|
|
// so give it the same cost
|
|
InterfaceType::List(_) => 40,
|
|
|
|
InterfaceType::Flags(i) => {
|
|
let count = self.module.types[*i].names.len();
|
|
match FlagsSize::from_count(count) {
|
|
FlagsSize::Size0 => 0,
|
|
FlagsSize::Size1 | FlagsSize::Size2 => 1,
|
|
FlagsSize::Size4Plus(n) => n.into(),
|
|
}
|
|
}
|
|
|
|
InterfaceType::Record(i) => self.types[*i].fields.len(),
|
|
InterfaceType::Tuple(i) => self.types[*i].types.len(),
|
|
InterfaceType::Variant(i) => self.types[*i].cases.len(),
|
|
InterfaceType::Union(i) => self.types[*i].types.len(),
|
|
InterfaceType::Enum(i) => self.types[*i].names.len(),
|
|
|
|
// 2 cases to consider for each of these variants.
|
|
InterfaceType::Option(_) | InterfaceType::Result(_) => 2,
|
|
};
|
|
|
|
match self.fuel.checked_sub(cost) {
|
|
// This function has enough fuel to perform the layer of translation
|
|
// necessary for this type, so the fuel is updated in-place and
|
|
// translation continues. Note that the recursion here is bounded by
|
|
// the static recursion limit for all interface types as imposed
|
|
// during the translation phase.
|
|
Some(n) => {
|
|
self.fuel = n;
|
|
match src_ty {
|
|
InterfaceType::Bool => self.translate_bool(src, dst_ty, dst),
|
|
InterfaceType::U8 => self.translate_u8(src, dst_ty, dst),
|
|
InterfaceType::S8 => self.translate_s8(src, dst_ty, dst),
|
|
InterfaceType::U16 => self.translate_u16(src, dst_ty, dst),
|
|
InterfaceType::S16 => self.translate_s16(src, dst_ty, dst),
|
|
InterfaceType::U32 => self.translate_u32(src, dst_ty, dst),
|
|
InterfaceType::S32 => self.translate_s32(src, dst_ty, dst),
|
|
InterfaceType::U64 => self.translate_u64(src, dst_ty, dst),
|
|
InterfaceType::S64 => self.translate_s64(src, dst_ty, dst),
|
|
InterfaceType::Float32 => self.translate_f32(src, dst_ty, dst),
|
|
InterfaceType::Float64 => self.translate_f64(src, dst_ty, dst),
|
|
InterfaceType::Char => self.translate_char(src, dst_ty, dst),
|
|
InterfaceType::String => self.translate_string(src, dst_ty, dst),
|
|
InterfaceType::List(t) => self.translate_list(*t, src, dst_ty, dst),
|
|
InterfaceType::Record(t) => self.translate_record(*t, src, dst_ty, dst),
|
|
InterfaceType::Flags(f) => self.translate_flags(*f, src, dst_ty, dst),
|
|
InterfaceType::Tuple(t) => self.translate_tuple(*t, src, dst_ty, dst),
|
|
InterfaceType::Variant(v) => self.translate_variant(*v, src, dst_ty, dst),
|
|
InterfaceType::Union(u) => self.translate_union(*u, src, dst_ty, dst),
|
|
InterfaceType::Enum(t) => self.translate_enum(*t, src, dst_ty, dst),
|
|
InterfaceType::Option(t) => self.translate_option(*t, src, dst_ty, dst),
|
|
InterfaceType::Result(t) => self.translate_result(*t, src, dst_ty, dst),
|
|
}
|
|
}
|
|
|
|
// This function does not have enough fuel left to perform this
|
|
// layer of translation so the translation is deferred to a helper
|
|
// function. The actual translation here is then done by marshalling
|
|
// the src/dst into the function we're calling and then processing
|
|
// the results.
|
|
None => {
|
|
let src_loc = match src {
|
|
// If the source is on the stack then `stack_get` is used to
|
|
// convert everything to the appropriate flat representation
|
|
// for the source type.
|
|
Source::Stack(stack) => {
|
|
for (i, ty) in stack
|
|
.opts
|
|
.flat_types(src_ty, self.types)
|
|
.unwrap()
|
|
.iter()
|
|
.enumerate()
|
|
{
|
|
let stack = stack.slice(i..i + 1);
|
|
self.stack_get(&stack, (*ty).into());
|
|
}
|
|
HelperLocation::Stack
|
|
}
|
|
// If the source is in memory then the pointer is passed
|
|
// through, but note that the offset must be factored in
|
|
// here since the translation function will start from
|
|
// offset 0.
|
|
Source::Memory(mem) => {
|
|
self.push_mem_addr(mem);
|
|
HelperLocation::Memory
|
|
}
|
|
};
|
|
let dst_loc = match dst {
|
|
Destination::Stack(..) => HelperLocation::Stack,
|
|
Destination::Memory(mem) => {
|
|
self.push_mem_addr(mem);
|
|
HelperLocation::Memory
|
|
}
|
|
};
|
|
// Generate a `FunctionId` corresponding to the `Helper`
|
|
// configuration that is necessary here. This will ideally be a
|
|
// "cache hit" and use a preexisting helper which represents
|
|
// outlining what would otherwise be duplicate code within a
|
|
// function to one function.
|
|
let helper = self.module.translate_helper(Helper {
|
|
src: HelperType {
|
|
ty: *src_ty,
|
|
opts: *src.opts(),
|
|
loc: src_loc,
|
|
},
|
|
dst: HelperType {
|
|
ty: *dst_ty,
|
|
opts: *dst.opts(),
|
|
loc: dst_loc,
|
|
},
|
|
});
|
|
// Emit a `call` instruction which will get "relocated" to a
|
|
// function index once translation has completely finished.
|
|
self.flush_code();
|
|
self.module.funcs[self.result].body.push(Body::Call(helper));
|
|
|
|
// If the destination of the translation was on the stack then
|
|
// the types on the stack need to be optionally converted to
|
|
// different types (e.g. if the result here is part of a variant
|
|
// somewhere else).
|
|
//
|
|
// This translation happens inline here by popping the results
|
|
// into new locals and then using those locals to do a
|
|
// `stack_set`.
|
|
if let Destination::Stack(tys, opts) = dst {
|
|
let flat = self
|
|
.types
|
|
.flatten_types(opts, usize::MAX, [*dst_ty])
|
|
.unwrap();
|
|
assert_eq!(flat.len(), tys.len());
|
|
let locals = flat
|
|
.iter()
|
|
.rev()
|
|
.map(|ty| self.local_set_new_tmp(*ty))
|
|
.collect::<Vec<_>>();
|
|
for (ty, local) in tys.iter().zip(locals.into_iter().rev()) {
|
|
self.instruction(LocalGet(local.idx));
|
|
self.stack_set(std::slice::from_ref(ty), local.ty);
|
|
self.free_temp_local(local);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn push_mem_addr(&mut self, mem: &Memory<'_>) {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
if mem.offset != 0 {
|
|
self.ptr_uconst(mem.opts, mem.offset);
|
|
self.ptr_add(mem.opts);
|
|
}
|
|
}
|
|
|
|
fn translate_bool(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::Bool));
|
|
self.push_dst_addr(dst);
|
|
|
|
// Booleans are canonicalized to 0 or 1 as they pass through the
|
|
// component boundary, so use a `select` instruction to do so.
|
|
self.instruction(I32Const(1));
|
|
self.instruction(I32Const(0));
|
|
match src {
|
|
Source::Memory(mem) => self.i32_load8u(mem),
|
|
Source::Stack(stack) => self.stack_get(stack, ValType::I32),
|
|
}
|
|
self.instruction(Select);
|
|
|
|
match dst {
|
|
Destination::Memory(mem) => self.i32_store8(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
|
|
}
|
|
}
|
|
|
|
fn translate_u8(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::U8));
|
|
self.convert_u8_mask(src, dst, 0xff);
|
|
}
|
|
|
|
fn convert_u8_mask(&mut self, src: &Source<'_>, dst: &Destination<'_>, mask: u8) {
|
|
self.push_dst_addr(dst);
|
|
let mut needs_mask = true;
|
|
match src {
|
|
Source::Memory(mem) => {
|
|
self.i32_load8u(mem);
|
|
needs_mask = mask != 0xff;
|
|
}
|
|
Source::Stack(stack) => {
|
|
self.stack_get(stack, ValType::I32);
|
|
}
|
|
}
|
|
if needs_mask {
|
|
self.instruction(I32Const(i32::from(mask)));
|
|
self.instruction(I32And);
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.i32_store8(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
|
|
}
|
|
}
|
|
|
|
fn translate_s8(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::S8));
|
|
self.push_dst_addr(dst);
|
|
match src {
|
|
Source::Memory(mem) => self.i32_load8s(mem),
|
|
Source::Stack(stack) => {
|
|
self.stack_get(stack, ValType::I32);
|
|
self.instruction(I32Extend8S);
|
|
}
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.i32_store8(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
|
|
}
|
|
}
|
|
|
|
fn translate_u16(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::U16));
|
|
self.convert_u16_mask(src, dst, 0xffff);
|
|
}
|
|
|
|
fn convert_u16_mask(&mut self, src: &Source<'_>, dst: &Destination<'_>, mask: u16) {
|
|
self.push_dst_addr(dst);
|
|
let mut needs_mask = true;
|
|
match src {
|
|
Source::Memory(mem) => {
|
|
self.i32_load16u(mem);
|
|
needs_mask = mask != 0xffff;
|
|
}
|
|
Source::Stack(stack) => {
|
|
self.stack_get(stack, ValType::I32);
|
|
}
|
|
}
|
|
if needs_mask {
|
|
self.instruction(I32Const(i32::from(mask)));
|
|
self.instruction(I32And);
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.i32_store16(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
|
|
}
|
|
}
|
|
|
|
fn translate_s16(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::S16));
|
|
self.push_dst_addr(dst);
|
|
match src {
|
|
Source::Memory(mem) => self.i32_load16s(mem),
|
|
Source::Stack(stack) => {
|
|
self.stack_get(stack, ValType::I32);
|
|
self.instruction(I32Extend16S);
|
|
}
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.i32_store16(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
|
|
}
|
|
}
|
|
|
|
fn translate_u32(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::U32));
|
|
self.convert_u32_mask(src, dst, 0xffffffff)
|
|
}
|
|
|
|
fn convert_u32_mask(&mut self, src: &Source<'_>, dst: &Destination<'_>, mask: u32) {
|
|
self.push_dst_addr(dst);
|
|
match src {
|
|
Source::Memory(mem) => self.i32_load(mem),
|
|
Source::Stack(stack) => self.stack_get(stack, ValType::I32),
|
|
}
|
|
if mask != 0xffffffff {
|
|
self.instruction(I32Const(mask as i32));
|
|
self.instruction(I32And);
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.i32_store(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
|
|
}
|
|
}
|
|
|
|
fn translate_s32(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::S32));
|
|
self.push_dst_addr(dst);
|
|
match src {
|
|
Source::Memory(mem) => self.i32_load(mem),
|
|
Source::Stack(stack) => self.stack_get(stack, ValType::I32),
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.i32_store(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
|
|
}
|
|
}
|
|
|
|
fn translate_u64(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::U64));
|
|
self.push_dst_addr(dst);
|
|
match src {
|
|
Source::Memory(mem) => self.i64_load(mem),
|
|
Source::Stack(stack) => self.stack_get(stack, ValType::I64),
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.i64_store(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I64),
|
|
}
|
|
}
|
|
|
|
fn translate_s64(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::S64));
|
|
self.push_dst_addr(dst);
|
|
match src {
|
|
Source::Memory(mem) => self.i64_load(mem),
|
|
Source::Stack(stack) => self.stack_get(stack, ValType::I64),
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.i64_store(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I64),
|
|
}
|
|
}
|
|
|
|
fn translate_f32(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::Float32));
|
|
self.push_dst_addr(dst);
|
|
match src {
|
|
Source::Memory(mem) => self.f32_load(mem),
|
|
Source::Stack(stack) => self.stack_get(stack, ValType::F32),
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.f32_store(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::F32),
|
|
}
|
|
}
|
|
|
|
fn translate_f64(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
// TODO: subtyping
|
|
assert!(matches!(dst_ty, InterfaceType::Float64));
|
|
self.push_dst_addr(dst);
|
|
match src {
|
|
Source::Memory(mem) => self.f64_load(mem),
|
|
Source::Stack(stack) => self.stack_get(stack, ValType::F64),
|
|
}
|
|
match dst {
|
|
Destination::Memory(mem) => self.f64_store(mem),
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::F64),
|
|
}
|
|
}
|
|
|
|
fn translate_char(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
assert!(matches!(dst_ty, InterfaceType::Char));
|
|
match src {
|
|
Source::Memory(mem) => self.i32_load(mem),
|
|
Source::Stack(stack) => self.stack_get(stack, ValType::I32),
|
|
}
|
|
let local = self.local_set_new_tmp(ValType::I32);
|
|
|
|
// This sequence is copied from the output of LLVM for:
|
|
//
|
|
// pub extern "C" fn foo(x: u32) -> char {
|
|
// char::try_from(x)
|
|
// .unwrap_or_else(|_| std::arch::wasm32::unreachable())
|
|
// }
|
|
//
|
|
// Apparently this does what's required by the canonical ABI:
|
|
//
|
|
// def i32_to_char(opts, i):
|
|
// trap_if(i >= 0x110000)
|
|
// trap_if(0xD800 <= i <= 0xDFFF)
|
|
// return chr(i)
|
|
//
|
|
// ... but I don't know how it works other than "well I trust LLVM"
|
|
self.instruction(Block(BlockType::Empty));
|
|
self.instruction(Block(BlockType::Empty));
|
|
self.instruction(LocalGet(local.idx));
|
|
self.instruction(I32Const(0xd800));
|
|
self.instruction(I32Xor);
|
|
self.instruction(I32Const(-0x110000));
|
|
self.instruction(I32Add);
|
|
self.instruction(I32Const(-0x10f800));
|
|
self.instruction(I32LtU);
|
|
self.instruction(BrIf(0));
|
|
self.instruction(LocalGet(local.idx));
|
|
self.instruction(I32Const(0x110000));
|
|
self.instruction(I32Ne);
|
|
self.instruction(BrIf(1));
|
|
self.instruction(End);
|
|
self.trap(Trap::InvalidChar);
|
|
self.instruction(End);
|
|
|
|
self.push_dst_addr(dst);
|
|
self.instruction(LocalGet(local.idx));
|
|
match dst {
|
|
Destination::Memory(mem) => {
|
|
self.i32_store(mem);
|
|
}
|
|
Destination::Stack(stack, _) => self.stack_set(stack, ValType::I32),
|
|
}
|
|
|
|
self.free_temp_local(local);
|
|
}
|
|
|
|
fn translate_string(&mut self, src: &Source<'_>, dst_ty: &InterfaceType, dst: &Destination) {
|
|
assert!(matches!(dst_ty, InterfaceType::String));
|
|
let src_opts = src.opts();
|
|
let dst_opts = dst.opts();
|
|
|
|
// Load the pointer/length of this string into temporary locals. These
|
|
// will be referenced a good deal so this just makes it easier to deal
|
|
// with them consistently below rather than trying to reload from memory
|
|
// for example.
|
|
match src {
|
|
Source::Stack(s) => {
|
|
assert_eq!(s.locals.len(), 2);
|
|
self.stack_get(&s.slice(0..1), src_opts.ptr());
|
|
self.stack_get(&s.slice(1..2), src_opts.ptr());
|
|
}
|
|
Source::Memory(mem) => {
|
|
self.ptr_load(mem);
|
|
self.ptr_load(&mem.bump(src_opts.ptr_size().into()));
|
|
}
|
|
}
|
|
let src_len = self.local_set_new_tmp(src_opts.ptr());
|
|
let src_ptr = self.local_set_new_tmp(src_opts.ptr());
|
|
let src_str = WasmString {
|
|
ptr: src_ptr,
|
|
len: src_len,
|
|
opts: src_opts,
|
|
};
|
|
|
|
let dst_str = match src_opts.string_encoding {
|
|
StringEncoding::Utf8 => match dst_opts.string_encoding {
|
|
StringEncoding::Utf8 => self.string_copy(&src_str, FE::Utf8, dst_opts, FE::Utf8),
|
|
StringEncoding::Utf16 => self.string_utf8_to_utf16(&src_str, dst_opts),
|
|
StringEncoding::CompactUtf16 => {
|
|
self.string_to_compact(&src_str, FE::Utf8, dst_opts)
|
|
}
|
|
},
|
|
|
|
StringEncoding::Utf16 => {
|
|
self.verify_aligned(src_opts, src_str.ptr.idx, 2);
|
|
match dst_opts.string_encoding {
|
|
StringEncoding::Utf8 => {
|
|
self.string_deflate_to_utf8(&src_str, FE::Utf16, dst_opts)
|
|
}
|
|
StringEncoding::Utf16 => {
|
|
self.string_copy(&src_str, FE::Utf16, dst_opts, FE::Utf16)
|
|
}
|
|
StringEncoding::CompactUtf16 => {
|
|
self.string_to_compact(&src_str, FE::Utf16, dst_opts)
|
|
}
|
|
}
|
|
}
|
|
|
|
StringEncoding::CompactUtf16 => {
|
|
self.verify_aligned(src_opts, src_str.ptr.idx, 2);
|
|
|
|
// Test the tag big to see if this is a utf16 or a latin1 string
|
|
// at runtime...
|
|
self.instruction(LocalGet(src_str.len.idx));
|
|
self.ptr_uconst(src_opts, UTF16_TAG);
|
|
self.ptr_and(src_opts);
|
|
self.ptr_if(src_opts, BlockType::Empty);
|
|
|
|
// In the utf16 block unset the upper bit from the length local
|
|
// so further calculations have the right value. Afterwards the
|
|
// string transcode proceeds assuming utf16.
|
|
self.instruction(LocalGet(src_str.len.idx));
|
|
self.ptr_uconst(src_opts, UTF16_TAG);
|
|
self.ptr_xor(src_opts);
|
|
self.instruction(LocalSet(src_str.len.idx));
|
|
let s1 = match dst_opts.string_encoding {
|
|
StringEncoding::Utf8 => {
|
|
self.string_deflate_to_utf8(&src_str, FE::Utf16, dst_opts)
|
|
}
|
|
StringEncoding::Utf16 => {
|
|
self.string_copy(&src_str, FE::Utf16, dst_opts, FE::Utf16)
|
|
}
|
|
StringEncoding::CompactUtf16 => {
|
|
self.string_compact_utf16_to_compact(&src_str, dst_opts)
|
|
}
|
|
};
|
|
|
|
self.instruction(Else);
|
|
|
|
// In the latin1 block the `src_len` local is already the number
|
|
// of code units, so the string transcoding is all that needs to
|
|
// happen.
|
|
let s2 = match dst_opts.string_encoding {
|
|
StringEncoding::Utf16 => {
|
|
self.string_copy(&src_str, FE::Latin1, dst_opts, FE::Utf16)
|
|
}
|
|
StringEncoding::Utf8 => {
|
|
self.string_deflate_to_utf8(&src_str, FE::Latin1, dst_opts)
|
|
}
|
|
StringEncoding::CompactUtf16 => {
|
|
self.string_copy(&src_str, FE::Latin1, dst_opts, FE::Latin1)
|
|
}
|
|
};
|
|
// Set our `s2` generated locals to the `s2` generated locals
|
|
// as the resulting pointer of this transcode.
|
|
self.instruction(LocalGet(s2.ptr.idx));
|
|
self.instruction(LocalSet(s1.ptr.idx));
|
|
self.instruction(LocalGet(s2.len.idx));
|
|
self.instruction(LocalSet(s1.len.idx));
|
|
self.instruction(End);
|
|
self.free_temp_local(s2.ptr);
|
|
self.free_temp_local(s2.len);
|
|
s1
|
|
}
|
|
};
|
|
|
|
// Store the ptr/length in the desired destination
|
|
match dst {
|
|
Destination::Stack(s, _) => {
|
|
self.instruction(LocalGet(dst_str.ptr.idx));
|
|
self.stack_set(&s[..1], dst_opts.ptr());
|
|
self.instruction(LocalGet(dst_str.len.idx));
|
|
self.stack_set(&s[1..], dst_opts.ptr());
|
|
}
|
|
Destination::Memory(mem) => {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(LocalGet(dst_str.ptr.idx));
|
|
self.ptr_store(mem);
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(LocalGet(dst_str.len.idx));
|
|
self.ptr_store(&mem.bump(dst_opts.ptr_size().into()));
|
|
}
|
|
}
|
|
|
|
self.free_temp_local(src_str.ptr);
|
|
self.free_temp_local(src_str.len);
|
|
self.free_temp_local(dst_str.ptr);
|
|
self.free_temp_local(dst_str.len);
|
|
}
|
|
|
|
// Corresponding function for `store_string_copy` in the spec.
|
|
//
|
|
// This performs a transcoding of the string with a one-pass copy from
|
|
// the `src` encoding to the `dst` encoding. This is only possible for
|
|
// fixed encodings where the first allocation is guaranteed to be an
|
|
// appropriate fit so it's not suitable for all encodings.
|
|
//
|
|
// Imported host transcoding functions here take the src/dst pointers as
|
|
// well as the number of code units in the source (which always matches
|
|
// the number of code units in the destination). There is no return
|
|
// value from the transcode function since the encoding should always
|
|
// work on the first pass.
|
|
fn string_copy<'a>(
|
|
&mut self,
|
|
src: &WasmString<'_>,
|
|
src_enc: FE,
|
|
dst_opts: &'a Options,
|
|
dst_enc: FE,
|
|
) -> WasmString<'a> {
|
|
assert!(dst_enc.width() >= src_enc.width());
|
|
self.validate_string_length(src, dst_enc);
|
|
|
|
// Calculate the source byte length given the size of each code
|
|
// unit. Note that this shouldn't overflow given
|
|
// `validate_string_length` above.
|
|
let mut src_byte_len_tmp = None;
|
|
let src_byte_len = if src_enc.width() == 1 {
|
|
src.len.idx
|
|
} else {
|
|
assert_eq!(src_enc.width(), 2);
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.ptr_uconst(src.opts, 1);
|
|
self.ptr_shl(src.opts);
|
|
let tmp = self.local_set_new_tmp(src.opts.ptr());
|
|
let ret = tmp.idx;
|
|
src_byte_len_tmp = Some(tmp);
|
|
ret
|
|
};
|
|
|
|
// Convert the source code units length to the destination byte
|
|
// length type.
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
|
|
let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
|
|
if dst_enc.width() > 1 {
|
|
assert_eq!(dst_enc.width(), 2);
|
|
self.ptr_uconst(dst_opts, 1);
|
|
self.ptr_shl(dst_opts);
|
|
}
|
|
let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());
|
|
|
|
// Allocate space in the destination using the calculated byte
|
|
// length.
|
|
let dst = {
|
|
let dst_mem = self.malloc(
|
|
dst_opts,
|
|
MallocSize::Local(dst_byte_len.idx),
|
|
dst_enc.width().into(),
|
|
);
|
|
WasmString {
|
|
ptr: dst_mem.addr,
|
|
len: dst_len,
|
|
opts: dst_opts,
|
|
}
|
|
};
|
|
|
|
// Validate that `src_len + src_ptr` and
|
|
// `dst_mem.addr_local + dst_byte_len` are both in-bounds. This
|
|
// is done by loading the last byte of the string and if that
|
|
// doesn't trap then it's known valid.
|
|
self.validate_string_inbounds(src, src_byte_len);
|
|
self.validate_string_inbounds(&dst, dst_byte_len.idx);
|
|
|
|
// If the validations pass then the host `transcode` intrinsic
|
|
// is invoked. This will either raise a trap or otherwise succeed
|
|
// in which case we're done.
|
|
let op = if src_enc == dst_enc {
|
|
Transcode::Copy(src_enc)
|
|
} else {
|
|
assert_eq!(src_enc, FE::Latin1);
|
|
assert_eq!(dst_enc, FE::Utf16);
|
|
Transcode::Latin1ToUtf16
|
|
};
|
|
let transcode = self.transcoder(src, &dst, op);
|
|
self.instruction(LocalGet(src.ptr.idx));
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.instruction(LocalGet(dst.ptr.idx));
|
|
self.instruction(Call(transcode.as_u32()));
|
|
|
|
self.free_temp_local(dst_byte_len);
|
|
if let Some(tmp) = src_byte_len_tmp {
|
|
self.free_temp_local(tmp);
|
|
}
|
|
|
|
dst
|
|
}
|
|
// Corresponding function for `store_string_to_utf8` in the spec.
|
|
//
|
|
// This translation works by possibly performing a number of
|
|
// reallocations. First a buffer of size input-code-units is used to try
|
|
// to get the transcoding correct on the first try. If that fails the
|
|
// maximum worst-case size is used and then that is resized down if it's
|
|
// too large.
|
|
//
|
|
// The host transcoding function imported here will receive src ptr/len
|
|
// and dst ptr/len and return how many code units were consumed on both
|
|
// sides. The amount of code units consumed in the source dictates which
|
|
// branches are taken in this conversion.
|
|
fn string_deflate_to_utf8<'a>(
|
|
&mut self,
|
|
src: &WasmString<'_>,
|
|
src_enc: FE,
|
|
dst_opts: &'a Options,
|
|
) -> WasmString<'a> {
|
|
self.validate_string_length(src, src_enc);
|
|
|
|
// Optimistically assume that the code unit length of the source is
|
|
// all that's needed in the destination. Perform that allocaiton
|
|
// here and proceed to transcoding below.
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
|
|
let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
|
|
let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());
|
|
|
|
let dst = {
|
|
let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), 1);
|
|
WasmString {
|
|
ptr: dst_mem.addr,
|
|
len: dst_len,
|
|
opts: dst_opts,
|
|
}
|
|
};
|
|
|
|
// Ensure buffers are all in-bounds
|
|
let mut src_byte_len_tmp = None;
|
|
let src_byte_len = match src_enc {
|
|
FE::Latin1 => src.len.idx,
|
|
FE::Utf16 => {
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.ptr_uconst(src.opts, 1);
|
|
self.ptr_shl(src.opts);
|
|
let tmp = self.local_set_new_tmp(src.opts.ptr());
|
|
let ret = tmp.idx;
|
|
src_byte_len_tmp = Some(tmp);
|
|
ret
|
|
}
|
|
FE::Utf8 => unreachable!(),
|
|
};
|
|
self.validate_string_inbounds(src, src_byte_len);
|
|
self.validate_string_inbounds(&dst, dst_byte_len.idx);
|
|
|
|
// Perform the initial transcode
|
|
let op = match src_enc {
|
|
FE::Latin1 => Transcode::Latin1ToUtf8,
|
|
FE::Utf16 => Transcode::Utf16ToUtf8,
|
|
FE::Utf8 => unreachable!(),
|
|
};
|
|
let transcode = self.transcoder(src, &dst, op);
|
|
self.instruction(LocalGet(src.ptr.idx));
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.instruction(LocalGet(dst.ptr.idx));
|
|
self.instruction(LocalGet(dst_byte_len.idx));
|
|
self.instruction(Call(transcode.as_u32()));
|
|
self.instruction(LocalSet(dst.len.idx));
|
|
let src_len_tmp = self.local_set_new_tmp(src.opts.ptr());
|
|
|
|
// Test if the source was entirely transcoded by comparing
|
|
// `src_len_tmp`, the number of code units transcoded from the
|
|
// source, with `src_len`, the original number of code units.
|
|
self.instruction(LocalGet(src_len_tmp.idx));
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.ptr_ne(src.opts);
|
|
self.instruction(If(BlockType::Empty));
|
|
|
|
// Here a worst-case reallocation is performed to grow `dst_mem`.
|
|
// In-line a check is also performed that the worst-case byte size
|
|
// fits within the maximum size of strings.
|
|
self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
|
|
self.instruction(LocalGet(dst_byte_len.idx)); // old_size
|
|
self.ptr_uconst(dst.opts, 1); // align
|
|
let factor = match src_enc {
|
|
FE::Latin1 => 2,
|
|
FE::Utf16 => 3,
|
|
_ => unreachable!(),
|
|
};
|
|
self.validate_string_length_u8(src, factor);
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
|
|
self.ptr_uconst(dst_opts, factor.into());
|
|
self.ptr_mul(dst_opts);
|
|
self.instruction(LocalTee(dst_byte_len.idx));
|
|
self.instruction(Call(dst_opts.realloc.unwrap().as_u32()));
|
|
self.instruction(LocalSet(dst.ptr.idx));
|
|
|
|
// Verify that the destination is still in-bounds
|
|
self.validate_string_inbounds(&dst, dst_byte_len.idx);
|
|
|
|
// Perform another round of transcoding that should be guaranteed
|
|
// to succeed. Note that all the parameters here are offset by the
|
|
// results of the first transcoding to only perform the remaining
|
|
// transcode on the final units.
|
|
self.instruction(LocalGet(src.ptr.idx));
|
|
self.instruction(LocalGet(src_len_tmp.idx));
|
|
if let FE::Utf16 = src_enc {
|
|
self.ptr_uconst(src.opts, 1);
|
|
self.ptr_shl(src.opts);
|
|
}
|
|
self.ptr_add(src.opts);
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.instruction(LocalGet(src_len_tmp.idx));
|
|
self.ptr_sub(src.opts);
|
|
self.instruction(LocalGet(dst.ptr.idx));
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_add(dst.opts);
|
|
self.instruction(LocalGet(dst_byte_len.idx));
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_sub(dst.opts);
|
|
self.instruction(Call(transcode.as_u32()));
|
|
|
|
// Add the second result, the amount of destination units encoded,
|
|
// to `dst_len` so it's an accurate reflection of the final size of
|
|
// the destination buffer.
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_add(dst.opts);
|
|
self.instruction(LocalSet(dst.len.idx));
|
|
|
|
// In debug mode verify the first result consumed the entire string,
|
|
// otherwise simply discard it.
|
|
if self.module.debug {
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.instruction(LocalGet(src_len_tmp.idx));
|
|
self.ptr_sub(src.opts);
|
|
self.ptr_ne(src.opts);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.trap(Trap::AssertFailed("should have finished encoding"));
|
|
self.instruction(End);
|
|
} else {
|
|
self.instruction(Drop);
|
|
}
|
|
|
|
// Perform a downsizing if the worst-case size was too large
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.instruction(LocalGet(dst_byte_len.idx));
|
|
self.ptr_ne(dst.opts);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
|
|
self.instruction(LocalGet(dst_byte_len.idx)); // old_size
|
|
self.ptr_uconst(dst.opts, 1); // align
|
|
self.instruction(LocalGet(dst.len.idx)); // new_size
|
|
self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
|
|
self.instruction(LocalSet(dst.ptr.idx));
|
|
self.instruction(End);
|
|
|
|
// If the first transcode was enough then assert that the returned
|
|
// amount of destination items written equals the byte size.
|
|
if self.module.debug {
|
|
self.instruction(Else);
|
|
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.instruction(LocalGet(dst_byte_len.idx));
|
|
self.ptr_ne(dst_opts);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.trap(Trap::AssertFailed("should have finished encoding"));
|
|
self.instruction(End);
|
|
}
|
|
|
|
self.instruction(End); // end of "first transcode not enough"
|
|
|
|
self.free_temp_local(src_len_tmp);
|
|
self.free_temp_local(dst_byte_len);
|
|
if let Some(tmp) = src_byte_len_tmp {
|
|
self.free_temp_local(tmp);
|
|
}
|
|
|
|
dst
|
|
}
|
|
|
|
// Corresponds to the `store_utf8_to_utf16` function in the spec.
|
|
//
|
|
// When converting utf-8 to utf-16 a pessimistic allocation is
|
|
// done which is twice the byte length of the utf-8 string.
|
|
// The host then transcodes and returns how many code units were
|
|
// actually used during the transcoding and if it's beneath the
|
|
// pessimistic maximum then the buffer is reallocated down to
|
|
// a smaller amount.
|
|
//
|
|
// The host-imported transcoding function takes the src/dst pointer as
|
|
// well as the code unit size of both the source and destination. The
|
|
// destination should always be big enough to hold the result of the
|
|
// transcode and so the result of the host function is how many code
|
|
// units were written to the destination.
|
|
fn string_utf8_to_utf16<'a>(
|
|
&mut self,
|
|
src: &WasmString<'_>,
|
|
dst_opts: &'a Options,
|
|
) -> WasmString<'a> {
|
|
self.validate_string_length(src, FE::Utf16);
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
|
|
let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
|
|
self.ptr_uconst(dst_opts, 1);
|
|
self.ptr_shl(dst_opts);
|
|
let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());
|
|
let dst = {
|
|
let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), 2);
|
|
WasmString {
|
|
ptr: dst_mem.addr,
|
|
len: dst_len,
|
|
opts: dst_opts,
|
|
}
|
|
};
|
|
|
|
self.validate_string_inbounds(src, src.len.idx);
|
|
self.validate_string_inbounds(&dst, dst_byte_len.idx);
|
|
|
|
let transcode = self.transcoder(src, &dst, Transcode::Utf8ToUtf16);
|
|
self.instruction(LocalGet(src.ptr.idx));
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.instruction(LocalGet(dst.ptr.idx));
|
|
self.instruction(Call(transcode.as_u32()));
|
|
self.instruction(LocalSet(dst.len.idx));
|
|
|
|
// If the number of code units returned by transcode is not
|
|
// equal to the original number of code units then
|
|
// the buffer must be shrunk.
|
|
//
|
|
// Note that the byte length of the final allocation we
|
|
// want is twice the code unit length returned by the
|
|
// transcoding function.
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_ne(dst_opts);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.instruction(LocalGet(dst.ptr.idx));
|
|
self.instruction(LocalGet(dst_byte_len.idx));
|
|
self.ptr_uconst(dst.opts, 2);
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_uconst(dst.opts, 1);
|
|
self.ptr_shl(dst.opts);
|
|
self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
|
|
self.instruction(LocalSet(dst.ptr.idx));
|
|
self.instruction(End); // end of shrink-to-fit
|
|
|
|
self.free_temp_local(dst_byte_len);
|
|
|
|
dst
|
|
}
|
|
|
|
// Corresponds to `store_probably_utf16_to_latin1_or_utf16` in the spec.
|
|
//
|
|
// This will try to transcode the input utf16 string to utf16 in the
|
|
// destination. If utf16 isn't needed though and latin1 could be used
|
|
// then that's used instead and a reallocation to downsize occurs
|
|
// afterwards.
|
|
//
|
|
// The host transcode function here will take the src/dst pointers as
|
|
// well as src length. The destination byte length is twice the src code
|
|
// unit length. The return value is the tagged length of the returned
|
|
// string. If the upper bit is set then utf16 was used and the
|
|
// conversion is done. If the upper bit is not set then latin1 was used
|
|
// and a downsizing needs to happen.
|
|
fn string_compact_utf16_to_compact<'a>(
|
|
&mut self,
|
|
src: &WasmString<'_>,
|
|
dst_opts: &'a Options,
|
|
) -> WasmString<'a> {
|
|
self.validate_string_length(src, FE::Utf16);
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
|
|
let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
|
|
self.ptr_uconst(dst_opts, 1);
|
|
self.ptr_shl(dst_opts);
|
|
let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());
|
|
let dst = {
|
|
let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), 2);
|
|
WasmString {
|
|
ptr: dst_mem.addr,
|
|
len: dst_len,
|
|
opts: dst_opts,
|
|
}
|
|
};
|
|
|
|
self.convert_src_len_to_dst(dst_byte_len.idx, dst.opts.ptr(), src.opts.ptr());
|
|
let src_byte_len = self.local_set_new_tmp(src.opts.ptr());
|
|
|
|
self.validate_string_inbounds(src, src_byte_len.idx);
|
|
self.validate_string_inbounds(&dst, dst_byte_len.idx);
|
|
|
|
let transcode = self.transcoder(src, &dst, Transcode::Utf16ToCompactProbablyUtf16);
|
|
self.instruction(LocalGet(src.ptr.idx));
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.instruction(LocalGet(dst.ptr.idx));
|
|
self.instruction(Call(transcode.as_u32()));
|
|
self.instruction(LocalSet(dst.len.idx));
|
|
|
|
// Assert that the untagged code unit length is the same as the
|
|
// source code unit length.
|
|
if self.module.debug {
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_uconst(dst.opts, !UTF16_TAG);
|
|
self.ptr_and(dst.opts);
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
|
|
self.ptr_ne(dst.opts);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.trap(Trap::AssertFailed("expected equal code units"));
|
|
self.instruction(End);
|
|
}
|
|
|
|
// If the UTF16_TAG is set then utf16 was used and the destination
|
|
// should be appropriately sized. Bail out of the "is this string
|
|
// empty" block and fall through otherwise to resizing.
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_uconst(dst.opts, UTF16_TAG);
|
|
self.ptr_and(dst.opts);
|
|
self.ptr_br_if(dst.opts, 0);
|
|
|
|
// Here `realloc` is used to downsize the string
|
|
self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
|
|
self.instruction(LocalGet(dst_byte_len.idx)); // old_size
|
|
self.ptr_uconst(dst.opts, 2); // align
|
|
self.instruction(LocalGet(dst.len.idx)); // new_size
|
|
self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
|
|
self.instruction(LocalSet(dst.ptr.idx));
|
|
|
|
self.free_temp_local(dst_byte_len);
|
|
self.free_temp_local(src_byte_len);
|
|
|
|
dst
|
|
}
|
|
|
|
// Corresponds to `store_string_to_latin1_or_utf16` in the spec.
|
|
//
|
|
// This will attempt a first pass of transcoding to latin1 and on
|
|
// failure a larger buffer is allocated for utf16 and then utf16 is
|
|
// encoded in-place into the buffer. After either latin1 or utf16 the
|
|
// buffer is then resized to fit the final string allocation.
|
|
fn string_to_compact<'a>(
|
|
&mut self,
|
|
src: &WasmString<'_>,
|
|
src_enc: FE,
|
|
dst_opts: &'a Options,
|
|
) -> WasmString<'a> {
|
|
self.validate_string_length(src, src_enc);
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst_opts.ptr());
|
|
let dst_len = self.local_tee_new_tmp(dst_opts.ptr());
|
|
let dst_byte_len = self.local_set_new_tmp(dst_opts.ptr());
|
|
let dst = {
|
|
let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), 2);
|
|
WasmString {
|
|
ptr: dst_mem.addr,
|
|
len: dst_len,
|
|
opts: dst_opts,
|
|
}
|
|
};
|
|
|
|
self.validate_string_inbounds(src, src.len.idx);
|
|
self.validate_string_inbounds(&dst, dst_byte_len.idx);
|
|
|
|
// Perform the initial latin1 transcode. This returns the number of
|
|
// source code units consumed and the number of destination code
|
|
// units (bytes) written.
|
|
let (latin1, utf16) = match src_enc {
|
|
FE::Utf8 => (Transcode::Utf8ToLatin1, Transcode::Utf8ToCompactUtf16),
|
|
FE::Utf16 => (Transcode::Utf16ToLatin1, Transcode::Utf16ToCompactUtf16),
|
|
FE::Latin1 => unreachable!(),
|
|
};
|
|
let transcode_latin1 = self.transcoder(src, &dst, latin1);
|
|
let transcode_utf16 = self.transcoder(src, &dst, utf16);
|
|
self.instruction(LocalGet(src.ptr.idx));
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.instruction(LocalGet(dst.ptr.idx));
|
|
self.instruction(Call(transcode_latin1.as_u32()));
|
|
self.instruction(LocalSet(dst.len.idx));
|
|
let src_len_tmp = self.local_set_new_tmp(src.opts.ptr());
|
|
|
|
// If the source was entirely consumed then the transcode completed
|
|
// and all that's necessary is to optionally shrink the buffer.
|
|
self.instruction(LocalGet(src_len_tmp.idx));
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.ptr_eq(src.opts);
|
|
self.instruction(If(BlockType::Empty)); // if latin1-or-utf16 block
|
|
|
|
// Test if the original byte length of the allocation is the same as
|
|
// the number of written bytes, and if not then shrink the buffer
|
|
// with a call to `realloc`.
|
|
self.instruction(LocalGet(dst_byte_len.idx));
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_ne(dst.opts);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
|
|
self.instruction(LocalGet(dst_byte_len.idx)); // old_size
|
|
self.ptr_uconst(dst.opts, 2); // align
|
|
self.instruction(LocalGet(dst.len.idx)); // new_size
|
|
self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
|
|
self.instruction(LocalSet(dst.ptr.idx));
|
|
self.instruction(End);
|
|
|
|
// In this block the latin1 encoding failed. The host transcode
|
|
// returned how many units were consumed from the source and how
|
|
// many bytes were written to the destination. Here the buffer is
|
|
// inflated and sized and the second utf16 intrinsic is invoked to
|
|
// perform the final inflation.
|
|
self.instruction(Else); // else latin1-or-utf16 block
|
|
|
|
// For utf8 validate that the inflated size is still within bounds.
|
|
if src_enc.width() == 1 {
|
|
self.validate_string_length_u8(src, 2);
|
|
}
|
|
|
|
// Reallocate the buffer with twice the source code units in byte
|
|
// size.
|
|
self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
|
|
self.instruction(LocalGet(dst_byte_len.idx)); // old_size
|
|
self.ptr_uconst(dst.opts, 2); // align
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
|
|
self.ptr_uconst(dst.opts, 1);
|
|
self.ptr_shl(dst.opts);
|
|
self.instruction(LocalTee(dst_byte_len.idx));
|
|
self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
|
|
self.instruction(LocalSet(dst.ptr.idx));
|
|
|
|
// Call the host utf16 transcoding function. This will inflate the
|
|
// prior latin1 bytes and then encode the rest of the source string
|
|
// as utf16 into the remaining space in the destination buffer.
|
|
self.instruction(LocalGet(src.ptr.idx));
|
|
self.instruction(LocalGet(src_len_tmp.idx));
|
|
if let FE::Utf16 = src_enc {
|
|
self.ptr_uconst(src.opts, 1);
|
|
self.ptr_shl(src.opts);
|
|
}
|
|
self.ptr_add(src.opts);
|
|
self.instruction(LocalGet(src.len.idx));
|
|
self.instruction(LocalGet(src_len_tmp.idx));
|
|
self.ptr_sub(src.opts);
|
|
self.instruction(LocalGet(dst.ptr.idx));
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.instruction(Call(transcode_utf16.as_u32()));
|
|
self.instruction(LocalSet(dst.len.idx));
|
|
|
|
// If the returned number of code units written to the destination
|
|
// is not equal to the size of the allocation then the allocation is
|
|
// resized down to the appropriate size.
|
|
//
|
|
// Note that the byte size desired is `2*dst_len` and the current
|
|
// byte buffer size is `2*src_len` so the `2` factor isn't checked
|
|
// here, just the lengths.
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.convert_src_len_to_dst(src.len.idx, src.opts.ptr(), dst.opts.ptr());
|
|
self.ptr_ne(dst.opts);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.instruction(LocalGet(dst.ptr.idx)); // old_ptr
|
|
self.instruction(LocalGet(dst_byte_len.idx)); // old_size
|
|
self.ptr_uconst(dst.opts, 2); // align
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_uconst(dst.opts, 1);
|
|
self.ptr_shl(dst.opts);
|
|
self.instruction(Call(dst.opts.realloc.unwrap().as_u32()));
|
|
self.instruction(LocalSet(dst.ptr.idx));
|
|
self.instruction(End);
|
|
|
|
// Tag the returned pointer as utf16
|
|
self.instruction(LocalGet(dst.len.idx));
|
|
self.ptr_uconst(dst.opts, UTF16_TAG);
|
|
self.ptr_or(dst.opts);
|
|
self.instruction(LocalSet(dst.len.idx));
|
|
|
|
self.instruction(End); // end latin1-or-utf16 block
|
|
|
|
self.free_temp_local(src_len_tmp);
|
|
self.free_temp_local(dst_byte_len);
|
|
|
|
dst
|
|
}
|
|
|
|
fn validate_string_length(&mut self, src: &WasmString<'_>, dst: FE) {
|
|
self.validate_string_length_u8(src, dst.width())
|
|
}
|
|
|
|
fn validate_string_length_u8(&mut self, s: &WasmString<'_>, dst: u8) {
|
|
// Check to see if the source byte length is out of bounds in
|
|
// which case a trap is generated.
|
|
self.instruction(LocalGet(s.len.idx));
|
|
let max = MAX_STRING_BYTE_LENGTH / u32::from(dst);
|
|
self.ptr_uconst(s.opts, max);
|
|
self.ptr_ge_u(s.opts);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.trap(Trap::StringLengthTooBig);
|
|
self.instruction(End);
|
|
}
|
|
|
|
fn transcoder(
|
|
&mut self,
|
|
src: &WasmString<'_>,
|
|
dst: &WasmString<'_>,
|
|
op: Transcode,
|
|
) -> FuncIndex {
|
|
self.module.import_transcoder(Transcoder {
|
|
from_memory: src.opts.memory.unwrap(),
|
|
from_memory64: src.opts.memory64,
|
|
to_memory: dst.opts.memory.unwrap(),
|
|
to_memory64: dst.opts.memory64,
|
|
op,
|
|
})
|
|
}
|
|
|
|
fn validate_string_inbounds(&mut self, s: &WasmString<'_>, byte_len: u32) {
|
|
self.validate_memory_inbounds(s.opts, s.ptr.idx, byte_len, Trap::StringLengthOverflow)
|
|
}
|
|
|
|
fn validate_memory_inbounds(
|
|
&mut self,
|
|
opts: &Options,
|
|
ptr_local: u32,
|
|
byte_len_local: u32,
|
|
trap: Trap,
|
|
) {
|
|
let extend_to_64 = |me: &mut Self| {
|
|
if !opts.memory64 {
|
|
me.instruction(I64ExtendI32U);
|
|
}
|
|
};
|
|
|
|
self.instruction(Block(BlockType::Empty));
|
|
self.instruction(Block(BlockType::Empty));
|
|
|
|
// Calculate the full byte size of memory with `memory.size`. Note that
|
|
// arithmetic here is done always in 64-bits to accomodate 4G memories.
|
|
// Additionally it's assumed that 64-bit memories never fill up
|
|
// entirely.
|
|
self.instruction(MemorySize(opts.memory.unwrap().as_u32()));
|
|
extend_to_64(self);
|
|
self.instruction(I64Const(16));
|
|
self.instruction(I64Shl);
|
|
|
|
// Calculate the end address of the string. This is done by adding the
|
|
// base pointer to the byte length. For 32-bit memories there's no need
|
|
// to check for overflow since everything is extended to 64-bit, but for
|
|
// 64-bit memories overflow is checked.
|
|
self.instruction(LocalGet(ptr_local));
|
|
extend_to_64(self);
|
|
self.instruction(LocalGet(byte_len_local));
|
|
extend_to_64(self);
|
|
self.instruction(I64Add);
|
|
if opts.memory64 {
|
|
let tmp = self.local_tee_new_tmp(ValType::I64);
|
|
self.instruction(LocalGet(ptr_local));
|
|
self.ptr_lt_u(opts);
|
|
self.instruction(BrIf(0));
|
|
self.instruction(LocalGet(tmp.idx));
|
|
self.free_temp_local(tmp);
|
|
}
|
|
|
|
// If the byte size of memory is greater than the final address of the
|
|
// string then the string is invalid. Note that if it's precisely equal
|
|
// then that's ok.
|
|
self.instruction(I64GeU);
|
|
self.instruction(BrIf(1));
|
|
|
|
self.instruction(End);
|
|
self.trap(trap);
|
|
self.instruction(End);
|
|
}
|
|
|
|
fn translate_list(
|
|
&mut self,
|
|
src_ty: TypeListIndex,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
let src_element_ty = &self.types[src_ty].element;
|
|
let dst_element_ty = match dst_ty {
|
|
InterfaceType::List(r) => &self.types[*r].element,
|
|
_ => panic!("expected a list"),
|
|
};
|
|
let src_opts = src.opts();
|
|
let dst_opts = dst.opts();
|
|
let (src_size, src_align) = self.types.size_align(src_opts, src_element_ty);
|
|
let (dst_size, dst_align) = self.types.size_align(dst_opts, dst_element_ty);
|
|
|
|
// Load the pointer/length of this list into temporary locals. These
|
|
// will be referenced a good deal so this just makes it easier to deal
|
|
// with them consistently below rather than trying to reload from memory
|
|
// for example.
|
|
match src {
|
|
Source::Stack(s) => {
|
|
assert_eq!(s.locals.len(), 2);
|
|
self.stack_get(&s.slice(0..1), src_opts.ptr());
|
|
self.stack_get(&s.slice(1..2), src_opts.ptr());
|
|
}
|
|
Source::Memory(mem) => {
|
|
self.ptr_load(mem);
|
|
self.ptr_load(&mem.bump(src_opts.ptr_size().into()));
|
|
}
|
|
}
|
|
let src_len = self.local_set_new_tmp(src_opts.ptr());
|
|
let src_ptr = self.local_set_new_tmp(src_opts.ptr());
|
|
|
|
// Create a `Memory` operand which will internally assert that the
|
|
// `src_ptr` value is properly aligned.
|
|
let src_mem = self.memory_operand(src_opts, src_ptr, src_align);
|
|
|
|
// Calculate the source/destination byte lengths into unique locals.
|
|
let src_byte_len = self.calculate_list_byte_len(src_opts, src_len.idx, src_size);
|
|
let dst_byte_len = if src_size == dst_size {
|
|
self.convert_src_len_to_dst(src_byte_len.idx, src_opts.ptr(), dst_opts.ptr());
|
|
self.local_set_new_tmp(dst_opts.ptr())
|
|
} else if src_opts.ptr() == dst_opts.ptr() {
|
|
self.calculate_list_byte_len(dst_opts, src_len.idx, dst_size)
|
|
} else {
|
|
self.convert_src_len_to_dst(src_byte_len.idx, src_opts.ptr(), dst_opts.ptr());
|
|
let tmp = self.local_set_new_tmp(dst_opts.ptr());
|
|
let ret = self.calculate_list_byte_len(dst_opts, tmp.idx, dst_size);
|
|
self.free_temp_local(tmp);
|
|
ret
|
|
};
|
|
|
|
// Here `realloc` is invoked (in a `malloc`-like fashion) to allocate
|
|
// space for the list in the destination memory. This will also
|
|
// internally insert checks that the returned pointer is aligned
|
|
// correctly for the destination.
|
|
let dst_mem = self.malloc(dst_opts, MallocSize::Local(dst_byte_len.idx), dst_align);
|
|
|
|
// With all the pointers and byte lengths verity that both the source
|
|
// and the destination buffers are in-bounds.
|
|
self.validate_memory_inbounds(
|
|
src_opts,
|
|
src_mem.addr.idx,
|
|
src_byte_len.idx,
|
|
Trap::ListByteLengthOverflow,
|
|
);
|
|
self.validate_memory_inbounds(
|
|
dst_opts,
|
|
dst_mem.addr.idx,
|
|
dst_byte_len.idx,
|
|
Trap::ListByteLengthOverflow,
|
|
);
|
|
|
|
self.free_temp_local(src_byte_len);
|
|
self.free_temp_local(dst_byte_len);
|
|
|
|
// This is the main body of the loop to actually translate list types.
|
|
// Note that if both element sizes are 0 then this won't actually do
|
|
// anything so the loop is removed entirely.
|
|
if src_size > 0 || dst_size > 0 {
|
|
// This block encompasses the entire loop and is use to exit before even
|
|
// entering the loop if the list size is zero.
|
|
self.instruction(Block(BlockType::Empty));
|
|
|
|
// Set the `remaining` local and only continue if it's > 0
|
|
self.instruction(LocalGet(src_len.idx));
|
|
let remaining = self.local_tee_new_tmp(src_opts.ptr());
|
|
self.ptr_eqz(src_opts);
|
|
self.instruction(BrIf(0));
|
|
|
|
// Initialize the two destination pointers to their initial values
|
|
self.instruction(LocalGet(src_mem.addr.idx));
|
|
let cur_src_ptr = self.local_set_new_tmp(src_opts.ptr());
|
|
self.instruction(LocalGet(dst_mem.addr.idx));
|
|
let cur_dst_ptr = self.local_set_new_tmp(dst_opts.ptr());
|
|
|
|
self.instruction(Loop(BlockType::Empty));
|
|
|
|
// Translate the next element in the list
|
|
let element_src = Source::Memory(Memory {
|
|
opts: src_opts,
|
|
offset: 0,
|
|
addr: TempLocal::new(cur_src_ptr.idx, cur_src_ptr.ty),
|
|
});
|
|
let element_dst = Destination::Memory(Memory {
|
|
opts: dst_opts,
|
|
offset: 0,
|
|
addr: TempLocal::new(cur_dst_ptr.idx, cur_dst_ptr.ty),
|
|
});
|
|
self.translate(src_element_ty, &element_src, dst_element_ty, &element_dst);
|
|
|
|
// Update the two loop pointers
|
|
if src_size > 0 {
|
|
self.instruction(LocalGet(cur_src_ptr.idx));
|
|
self.ptr_uconst(src_opts, src_size);
|
|
self.ptr_add(src_opts);
|
|
self.instruction(LocalSet(cur_src_ptr.idx));
|
|
}
|
|
if dst_size > 0 {
|
|
self.instruction(LocalGet(cur_dst_ptr.idx));
|
|
self.ptr_uconst(dst_opts, dst_size);
|
|
self.ptr_add(dst_opts);
|
|
self.instruction(LocalSet(cur_dst_ptr.idx));
|
|
}
|
|
|
|
// Update the remaining count, falling through to break out if it's zero
|
|
// now.
|
|
self.instruction(LocalGet(remaining.idx));
|
|
self.ptr_iconst(src_opts, -1);
|
|
self.ptr_add(src_opts);
|
|
self.instruction(LocalTee(remaining.idx));
|
|
self.ptr_br_if(src_opts, 0);
|
|
self.instruction(End); // end of loop
|
|
self.instruction(End); // end of block
|
|
|
|
self.free_temp_local(cur_dst_ptr);
|
|
self.free_temp_local(cur_src_ptr);
|
|
self.free_temp_local(remaining);
|
|
}
|
|
|
|
// Store the ptr/length in the desired destination
|
|
match dst {
|
|
Destination::Stack(s, _) => {
|
|
self.instruction(LocalGet(dst_mem.addr.idx));
|
|
self.stack_set(&s[..1], dst_opts.ptr());
|
|
self.convert_src_len_to_dst(src_len.idx, src_opts.ptr(), dst_opts.ptr());
|
|
self.stack_set(&s[1..], dst_opts.ptr());
|
|
}
|
|
Destination::Memory(mem) => {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(LocalGet(dst_mem.addr.idx));
|
|
self.ptr_store(mem);
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.convert_src_len_to_dst(src_len.idx, src_opts.ptr(), dst_opts.ptr());
|
|
self.ptr_store(&mem.bump(dst_opts.ptr_size().into()));
|
|
}
|
|
}
|
|
|
|
self.free_temp_local(src_len);
|
|
self.free_temp_local(src_mem.addr);
|
|
self.free_temp_local(dst_mem.addr);
|
|
}
|
|
|
|
fn calculate_list_byte_len(
|
|
&mut self,
|
|
opts: &Options,
|
|
len_local: u32,
|
|
elt_size: u32,
|
|
) -> TempLocal {
|
|
// Zero-size types are easy to handle here because the byte size of the
|
|
// destination is always zero.
|
|
if elt_size == 0 {
|
|
self.ptr_uconst(opts, 0);
|
|
return self.local_set_new_tmp(opts.ptr());
|
|
}
|
|
|
|
// For one-byte elements in the destination the check here can be a bit
|
|
// more optimal than the general case below. In these situations if the
|
|
// source pointer type is 32-bit then we're guaranteed to not overflow,
|
|
// so the source length is simply casted to the destination's type.
|
|
//
|
|
// If the source is 64-bit then all that needs to be checked is to
|
|
// ensure that it does not have the upper 32-bits set.
|
|
if elt_size == 1 {
|
|
if let ValType::I64 = opts.ptr() {
|
|
self.instruction(LocalGet(len_local));
|
|
self.instruction(I64Const(32));
|
|
self.instruction(I64ShrU);
|
|
self.instruction(I32WrapI64);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.trap(Trap::ListByteLengthOverflow);
|
|
self.instruction(End);
|
|
}
|
|
self.instruction(LocalGet(len_local));
|
|
return self.local_set_new_tmp(opts.ptr());
|
|
}
|
|
|
|
// The main check implemented by this function is to verify that
|
|
// `src_len_local` does not exceed the 32-bit range. Byte sizes for
|
|
// lists must always fit in 32-bits to get transferred to 32-bit
|
|
// memories.
|
|
self.instruction(Block(BlockType::Empty));
|
|
self.instruction(Block(BlockType::Empty));
|
|
self.instruction(LocalGet(len_local));
|
|
match opts.ptr() {
|
|
// The source's list length is guaranteed to be less than 32-bits
|
|
// so simply extend it up to a 64-bit type for the multiplication
|
|
// below.
|
|
ValType::I32 => self.instruction(I64ExtendI32U),
|
|
|
|
// If the source is a 64-bit memory then if the item length doesn't
|
|
// fit in 32-bits the byte length definitely won't, so generate a
|
|
// branch to our overflow trap here if any of the upper 32-bits are set.
|
|
ValType::I64 => {
|
|
self.instruction(I64Const(32));
|
|
self.instruction(I64ShrU);
|
|
self.instruction(I32WrapI64);
|
|
self.instruction(BrIf(0));
|
|
self.instruction(LocalGet(len_local));
|
|
}
|
|
|
|
_ => unreachable!(),
|
|
}
|
|
|
|
// Next perform a 64-bit multiplication with the element byte size that
|
|
// is itself guaranteed to fit in 32-bits. The result is then checked
|
|
// to see if we overflowed the 32-bit space. The two input operands to
|
|
// the multiplication are guaranteed to be 32-bits at most which means
|
|
// that this multiplication shouldn't overflow.
|
|
//
|
|
// The result of the multiplication is saved into a local as well to
|
|
// get the result afterwards.
|
|
self.instruction(I64Const(elt_size.into()));
|
|
self.instruction(I64Mul);
|
|
let tmp = self.local_tee_new_tmp(ValType::I64);
|
|
// Branch to success if the upper 32-bits are zero, otherwise
|
|
// fall-through to the trap.
|
|
self.instruction(I64Const(32));
|
|
self.instruction(I64ShrU);
|
|
self.instruction(I64Eqz);
|
|
self.instruction(BrIf(1));
|
|
self.instruction(End);
|
|
self.trap(Trap::ListByteLengthOverflow);
|
|
self.instruction(End);
|
|
|
|
// If a fresh local was used to store the result of the multiplication
|
|
// then convert it down to 32-bits which should be guaranteed to not
|
|
// lose information at this point.
|
|
if opts.ptr() == ValType::I64 {
|
|
tmp
|
|
} else {
|
|
self.instruction(LocalGet(tmp.idx));
|
|
self.instruction(I32WrapI64);
|
|
self.free_temp_local(tmp);
|
|
self.local_set_new_tmp(ValType::I32)
|
|
}
|
|
}
|
|
|
|
fn convert_src_len_to_dst(
|
|
&mut self,
|
|
src_len_local: u32,
|
|
src_ptr_ty: ValType,
|
|
dst_ptr_ty: ValType,
|
|
) {
|
|
self.instruction(LocalGet(src_len_local));
|
|
match (src_ptr_ty, dst_ptr_ty) {
|
|
(ValType::I32, ValType::I64) => self.instruction(I64ExtendI32U),
|
|
(ValType::I64, ValType::I32) => self.instruction(I32WrapI64),
|
|
(src, dst) => assert_eq!(src, dst),
|
|
}
|
|
}
|
|
|
|
fn translate_record(
|
|
&mut self,
|
|
src_ty: TypeRecordIndex,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
let src_ty = &self.types[src_ty];
|
|
let dst_ty = match dst_ty {
|
|
InterfaceType::Record(r) => &self.types[*r],
|
|
_ => panic!("expected a record"),
|
|
};
|
|
|
|
// TODO: subtyping
|
|
assert_eq!(src_ty.fields.len(), dst_ty.fields.len());
|
|
|
|
// First a map is made of the source fields to where they're coming
|
|
// from (e.g. which offset or which locals). This map is keyed by the
|
|
// fields' names
|
|
let mut src_fields = HashMap::new();
|
|
for (i, src) in src
|
|
.record_field_srcs(self.types, src_ty.fields.iter().map(|f| f.ty))
|
|
.enumerate()
|
|
{
|
|
let field = &src_ty.fields[i];
|
|
src_fields.insert(&field.name, (src, &field.ty));
|
|
}
|
|
|
|
// .. and next translation is performed in the order of the destination
|
|
// fields in case the destination is the stack to ensure that the stack
|
|
// has the fields all in the right order.
|
|
//
|
|
// Note that the lookup in `src_fields` is an infallible lookup which
|
|
// will panic if the field isn't found.
|
|
//
|
|
// TODO: should that lookup be fallible with subtyping?
|
|
for (i, dst) in dst
|
|
.record_field_dsts(self.types, dst_ty.fields.iter().map(|f| f.ty))
|
|
.enumerate()
|
|
{
|
|
let field = &dst_ty.fields[i];
|
|
let (src, src_ty) = &src_fields[&field.name];
|
|
self.translate(src_ty, src, &field.ty, &dst);
|
|
}
|
|
}
|
|
|
|
fn translate_flags(
|
|
&mut self,
|
|
src_ty: TypeFlagsIndex,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
let src_ty = &self.types[src_ty];
|
|
let dst_ty = match dst_ty {
|
|
InterfaceType::Flags(r) => &self.types[*r],
|
|
_ => panic!("expected a record"),
|
|
};
|
|
|
|
// TODO: subtyping
|
|
//
|
|
// Notably this implementation does not support reordering flags from
|
|
// the source to the destination nor having more flags in the
|
|
// destination. Currently this is a copy from source to destination
|
|
// in-bulk. Otherwise reordering indices would have to have some sort of
|
|
// fancy bit twiddling tricks or something like that.
|
|
assert_eq!(src_ty.names, dst_ty.names);
|
|
let cnt = src_ty.names.len();
|
|
match FlagsSize::from_count(cnt) {
|
|
FlagsSize::Size0 => {}
|
|
FlagsSize::Size1 => {
|
|
let mask = if cnt == 8 { 0xff } else { (1 << cnt) - 1 };
|
|
self.convert_u8_mask(src, dst, mask);
|
|
}
|
|
FlagsSize::Size2 => {
|
|
let mask = if cnt == 16 { 0xffff } else { (1 << cnt) - 1 };
|
|
self.convert_u16_mask(src, dst, mask);
|
|
}
|
|
FlagsSize::Size4Plus(n) => {
|
|
let srcs = src.record_field_srcs(self.types, (0..n).map(|_| InterfaceType::U32));
|
|
let dsts = dst.record_field_dsts(self.types, (0..n).map(|_| InterfaceType::U32));
|
|
let n = usize::from(n);
|
|
for (i, (src, dst)) in srcs.zip(dsts).enumerate() {
|
|
let mask = if i == n - 1 && (cnt % 32 != 0) {
|
|
(1 << (cnt % 32)) - 1
|
|
} else {
|
|
0xffffffff
|
|
};
|
|
self.convert_u32_mask(&src, &dst, mask);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn translate_tuple(
|
|
&mut self,
|
|
src_ty: TypeTupleIndex,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
let src_ty = &self.types[src_ty];
|
|
let dst_ty = match dst_ty {
|
|
InterfaceType::Tuple(t) => &self.types[*t],
|
|
_ => panic!("expected a tuple"),
|
|
};
|
|
|
|
// TODO: subtyping
|
|
assert_eq!(src_ty.types.len(), dst_ty.types.len());
|
|
|
|
let srcs = src
|
|
.record_field_srcs(self.types, src_ty.types.iter().copied())
|
|
.zip(src_ty.types.iter());
|
|
let dsts = dst
|
|
.record_field_dsts(self.types, dst_ty.types.iter().copied())
|
|
.zip(dst_ty.types.iter());
|
|
for ((src, src_ty), (dst, dst_ty)) in srcs.zip(dsts) {
|
|
self.translate(src_ty, &src, dst_ty, &dst);
|
|
}
|
|
}
|
|
|
|
fn translate_variant(
|
|
&mut self,
|
|
src_ty: TypeVariantIndex,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
let src_ty = &self.types[src_ty];
|
|
let dst_ty = match dst_ty {
|
|
InterfaceType::Variant(t) => &self.types[*t],
|
|
_ => panic!("expected a variant"),
|
|
};
|
|
|
|
let src_info = variant_info(self.types, src_ty.cases.iter().map(|c| c.ty.as_ref()));
|
|
let dst_info = variant_info(self.types, dst_ty.cases.iter().map(|c| c.ty.as_ref()));
|
|
|
|
let iter = src_ty.cases.iter().enumerate().map(|(src_i, src_case)| {
|
|
let dst_i = dst_ty
|
|
.cases
|
|
.iter()
|
|
.position(|c| c.name == src_case.name)
|
|
.unwrap();
|
|
let dst_case = &dst_ty.cases[dst_i];
|
|
let src_i = u32::try_from(src_i).unwrap();
|
|
let dst_i = u32::try_from(dst_i).unwrap();
|
|
VariantCase {
|
|
src_i,
|
|
src_ty: src_case.ty.as_ref(),
|
|
dst_i,
|
|
dst_ty: dst_case.ty.as_ref(),
|
|
}
|
|
});
|
|
self.convert_variant(src, &src_info, dst, &dst_info, iter);
|
|
}
|
|
|
|
fn translate_union(
|
|
&mut self,
|
|
src_ty: TypeUnionIndex,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
let src_ty = &self.types[src_ty];
|
|
let dst_ty = match dst_ty {
|
|
InterfaceType::Union(t) => &self.types[*t],
|
|
_ => panic!("expected an option"),
|
|
};
|
|
assert_eq!(src_ty.types.len(), dst_ty.types.len());
|
|
let src_info = variant_info(self.types, src_ty.types.iter().map(Some));
|
|
let dst_info = variant_info(self.types, dst_ty.types.iter().map(Some));
|
|
|
|
self.convert_variant(
|
|
src,
|
|
&src_info,
|
|
dst,
|
|
&dst_info,
|
|
src_ty
|
|
.types
|
|
.iter()
|
|
.zip(dst_ty.types.iter())
|
|
.enumerate()
|
|
.map(|(i, (src_ty, dst_ty))| {
|
|
let i = u32::try_from(i).unwrap();
|
|
VariantCase {
|
|
src_i: i,
|
|
dst_i: i,
|
|
src_ty: Some(src_ty),
|
|
dst_ty: Some(dst_ty),
|
|
}
|
|
}),
|
|
);
|
|
}
|
|
|
|
fn translate_enum(
|
|
&mut self,
|
|
src_ty: TypeEnumIndex,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
let src_ty = &self.types[src_ty];
|
|
let dst_ty = match dst_ty {
|
|
InterfaceType::Enum(t) => &self.types[*t],
|
|
_ => panic!("expected an option"),
|
|
};
|
|
let src_info = variant_info(self.types, src_ty.names.iter().map(|_| None));
|
|
let dst_info = variant_info(self.types, dst_ty.names.iter().map(|_| None));
|
|
|
|
self.convert_variant(
|
|
src,
|
|
&src_info,
|
|
dst,
|
|
&dst_info,
|
|
src_ty.names.iter().enumerate().map(|(src_i, src_name)| {
|
|
let dst_i = dst_ty.names.iter().position(|n| n == src_name).unwrap();
|
|
let src_i = u32::try_from(src_i).unwrap();
|
|
let dst_i = u32::try_from(dst_i).unwrap();
|
|
VariantCase {
|
|
src_i,
|
|
dst_i,
|
|
src_ty: None,
|
|
dst_ty: None,
|
|
}
|
|
}),
|
|
);
|
|
}
|
|
|
|
fn translate_option(
|
|
&mut self,
|
|
src_ty: TypeOptionIndex,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
let src_ty = &self.types[src_ty].ty;
|
|
let dst_ty = match dst_ty {
|
|
InterfaceType::Option(t) => &self.types[*t].ty,
|
|
_ => panic!("expected an option"),
|
|
};
|
|
let src_ty = Some(src_ty);
|
|
let dst_ty = Some(dst_ty);
|
|
|
|
let src_info = variant_info(self.types, [None, src_ty]);
|
|
let dst_info = variant_info(self.types, [None, dst_ty]);
|
|
|
|
self.convert_variant(
|
|
src,
|
|
&src_info,
|
|
dst,
|
|
&dst_info,
|
|
[
|
|
VariantCase {
|
|
src_i: 0,
|
|
dst_i: 0,
|
|
src_ty: None,
|
|
dst_ty: None,
|
|
},
|
|
VariantCase {
|
|
src_i: 1,
|
|
dst_i: 1,
|
|
src_ty,
|
|
dst_ty,
|
|
},
|
|
]
|
|
.into_iter(),
|
|
);
|
|
}
|
|
|
|
fn translate_result(
|
|
&mut self,
|
|
src_ty: TypeResultIndex,
|
|
src: &Source<'_>,
|
|
dst_ty: &InterfaceType,
|
|
dst: &Destination,
|
|
) {
|
|
let src_ty = &self.types[src_ty];
|
|
let dst_ty = match dst_ty {
|
|
InterfaceType::Result(t) => &self.types[*t],
|
|
_ => panic!("expected a result"),
|
|
};
|
|
|
|
let src_info = variant_info(self.types, [src_ty.ok.as_ref(), src_ty.err.as_ref()]);
|
|
let dst_info = variant_info(self.types, [dst_ty.ok.as_ref(), dst_ty.err.as_ref()]);
|
|
|
|
self.convert_variant(
|
|
src,
|
|
&src_info,
|
|
dst,
|
|
&dst_info,
|
|
[
|
|
VariantCase {
|
|
src_i: 0,
|
|
dst_i: 0,
|
|
src_ty: src_ty.ok.as_ref(),
|
|
dst_ty: dst_ty.ok.as_ref(),
|
|
},
|
|
VariantCase {
|
|
src_i: 1,
|
|
dst_i: 1,
|
|
src_ty: src_ty.err.as_ref(),
|
|
dst_ty: dst_ty.err.as_ref(),
|
|
},
|
|
]
|
|
.into_iter(),
|
|
);
|
|
}
|
|
|
|
fn convert_variant<'a>(
|
|
&mut self,
|
|
src: &Source<'_>,
|
|
src_info: &VariantInfo,
|
|
dst: &Destination,
|
|
dst_info: &VariantInfo,
|
|
src_cases: impl ExactSizeIterator<Item = VariantCase<'a>>,
|
|
) {
|
|
// The outermost block is special since it has the result type of the
|
|
// translation here. That will depend on the `dst`.
|
|
let outer_block_ty = match dst {
|
|
Destination::Stack(dst_flat, _) => match dst_flat.len() {
|
|
0 => BlockType::Empty,
|
|
1 => BlockType::Result(dst_flat[0]),
|
|
_ => {
|
|
let ty = self.module.core_types.function(&[], &dst_flat);
|
|
BlockType::FunctionType(ty)
|
|
}
|
|
},
|
|
Destination::Memory(_) => BlockType::Empty,
|
|
};
|
|
self.instruction(Block(outer_block_ty));
|
|
|
|
// After the outermost block generate a new block for each of the
|
|
// remaining cases.
|
|
let src_cases_len = src_cases.len();
|
|
for _ in 0..src_cases_len - 1 {
|
|
self.instruction(Block(BlockType::Empty));
|
|
}
|
|
|
|
// Generate a block for an invalid variant discriminant
|
|
self.instruction(Block(BlockType::Empty));
|
|
|
|
// And generate one final block that we'll be jumping out of with the
|
|
// `br_table`
|
|
self.instruction(Block(BlockType::Empty));
|
|
|
|
// Load the discriminant
|
|
match src {
|
|
Source::Stack(s) => self.stack_get(&s.slice(0..1), ValType::I32),
|
|
Source::Memory(mem) => match src_info.size {
|
|
DiscriminantSize::Size1 => self.i32_load8u(mem),
|
|
DiscriminantSize::Size2 => self.i32_load16u(mem),
|
|
DiscriminantSize::Size4 => self.i32_load(mem),
|
|
},
|
|
}
|
|
|
|
// Generate the `br_table` for the discriminant. Each case has an
|
|
// offset of 1 to skip the trapping block.
|
|
let mut targets = Vec::new();
|
|
for i in 0..src_cases_len {
|
|
targets.push((i + 1) as u32);
|
|
}
|
|
self.instruction(BrTable(targets[..].into(), 0));
|
|
self.instruction(End); // end the `br_table` block
|
|
|
|
self.trap(Trap::InvalidDiscriminant);
|
|
self.instruction(End); // end the "invalid discriminant" block
|
|
|
|
// Translate each case individually within its own block. Note that the
|
|
// iteration order here places the first case in the innermost block
|
|
// and the last case in the outermost block. This matches the order
|
|
// of the jump targets in the `br_table` instruction.
|
|
let src_cases_len = u32::try_from(src_cases_len).unwrap();
|
|
for case in src_cases {
|
|
let VariantCase {
|
|
src_i,
|
|
src_ty,
|
|
dst_i,
|
|
dst_ty,
|
|
} = case;
|
|
|
|
// Translate the discriminant here, noting that `dst_i` may be
|
|
// different than `src_i`.
|
|
self.push_dst_addr(dst);
|
|
self.instruction(I32Const(dst_i as i32));
|
|
match dst {
|
|
Destination::Stack(stack, _) => self.stack_set(&stack[..1], ValType::I32),
|
|
Destination::Memory(mem) => match dst_info.size {
|
|
DiscriminantSize::Size1 => self.i32_store8(mem),
|
|
DiscriminantSize::Size2 => self.i32_store16(mem),
|
|
DiscriminantSize::Size4 => self.i32_store(mem),
|
|
},
|
|
}
|
|
|
|
let src_payload = src.payload_src(self.types, src_info, src_ty);
|
|
let dst_payload = dst.payload_dst(self.types, dst_info, dst_ty);
|
|
|
|
// Translate the payload of this case using the various types from
|
|
// the dst/src.
|
|
match (src_ty, dst_ty) {
|
|
(Some(src_ty), Some(dst_ty)) => {
|
|
self.translate(src_ty, &src_payload, dst_ty, &dst_payload);
|
|
}
|
|
(None, None) => {}
|
|
_ => unimplemented!(),
|
|
}
|
|
|
|
// If the results of this translation were placed on the stack then
|
|
// the stack values may need to be padded with more zeros due to
|
|
// this particular case being possibly smaller than the entire
|
|
// variant. That's handled here by pushing remaining zeros after
|
|
// accounting for the discriminant pushed as well as the results of
|
|
// this individual payload.
|
|
if let Destination::Stack(payload_results, _) = dst_payload {
|
|
if let Destination::Stack(dst_results, _) = dst {
|
|
let remaining = &dst_results[1..][payload_results.len()..];
|
|
for ty in remaining {
|
|
match ty {
|
|
ValType::I32 => self.instruction(I32Const(0)),
|
|
ValType::I64 => self.instruction(I64Const(0)),
|
|
ValType::F32 => self.instruction(F32Const(0.0)),
|
|
ValType::F64 => self.instruction(F64Const(0.0)),
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Branch to the outermost block. Note that this isn't needed for
|
|
// the outermost case since it simply falls through.
|
|
if src_i != src_cases_len - 1 {
|
|
self.instruction(Br(src_cases_len - src_i - 1));
|
|
}
|
|
self.instruction(End); // end this case's block
|
|
}
|
|
}
|
|
|
|
fn trap_if_not_flag(&mut self, flags_global: GlobalIndex, flag_to_test: i32, trap: Trap) {
|
|
self.instruction(GlobalGet(flags_global.as_u32()));
|
|
self.instruction(I32Const(flag_to_test));
|
|
self.instruction(I32And);
|
|
self.instruction(I32Eqz);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.trap(trap);
|
|
self.instruction(End);
|
|
}
|
|
|
|
fn assert_not_flag(&mut self, flags_global: GlobalIndex, flag_to_test: i32, msg: &'static str) {
|
|
self.instruction(GlobalGet(flags_global.as_u32()));
|
|
self.instruction(I32Const(flag_to_test));
|
|
self.instruction(I32And);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.trap(Trap::AssertFailed(msg));
|
|
self.instruction(End);
|
|
}
|
|
|
|
fn set_flag(&mut self, flags_global: GlobalIndex, flag_to_set: i32, value: bool) {
|
|
self.instruction(GlobalGet(flags_global.as_u32()));
|
|
if value {
|
|
self.instruction(I32Const(flag_to_set));
|
|
self.instruction(I32Or);
|
|
} else {
|
|
self.instruction(I32Const(!flag_to_set));
|
|
self.instruction(I32And);
|
|
}
|
|
self.instruction(GlobalSet(flags_global.as_u32()));
|
|
}
|
|
|
|
fn verify_aligned(&mut self, opts: &Options, addr_local: u32, align: u32) {
|
|
// If the alignment is 1 then everything is trivially aligned and the
|
|
// check can be omitted.
|
|
if align == 1 {
|
|
return;
|
|
}
|
|
self.instruction(LocalGet(addr_local));
|
|
assert!(align.is_power_of_two());
|
|
self.ptr_uconst(opts, align - 1);
|
|
self.ptr_and(opts);
|
|
self.ptr_if(opts, BlockType::Empty);
|
|
self.trap(Trap::UnalignedPointer);
|
|
self.instruction(End);
|
|
}
|
|
|
|
fn assert_aligned(&mut self, ty: &InterfaceType, mem: &Memory) {
|
|
if !self.module.debug {
|
|
return;
|
|
}
|
|
let align = self.types.align(mem.opts, ty);
|
|
if align == 1 {
|
|
return;
|
|
}
|
|
assert!(align.is_power_of_two());
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.ptr_uconst(mem.opts, mem.offset);
|
|
self.ptr_add(mem.opts);
|
|
self.ptr_uconst(mem.opts, align - 1);
|
|
self.ptr_and(mem.opts);
|
|
self.ptr_if(mem.opts, BlockType::Empty);
|
|
self.trap(Trap::AssertFailed("pointer not aligned"));
|
|
self.instruction(End);
|
|
}
|
|
|
|
fn malloc<'a>(&mut self, opts: &'a Options, size: MallocSize, align: u32) -> Memory<'a> {
|
|
let realloc = opts.realloc.unwrap();
|
|
self.ptr_uconst(opts, 0);
|
|
self.ptr_uconst(opts, 0);
|
|
self.ptr_uconst(opts, align);
|
|
match size {
|
|
MallocSize::Const(size) => self.ptr_uconst(opts, size),
|
|
MallocSize::Local(idx) => self.instruction(LocalGet(idx)),
|
|
}
|
|
self.instruction(Call(realloc.as_u32()));
|
|
let addr = self.local_set_new_tmp(opts.ptr());
|
|
self.memory_operand(opts, addr, align)
|
|
}
|
|
|
|
fn memory_operand<'a>(&mut self, opts: &'a Options, addr: TempLocal, align: u32) -> Memory<'a> {
|
|
let ret = Memory {
|
|
addr,
|
|
offset: 0,
|
|
opts,
|
|
};
|
|
self.verify_aligned(opts, ret.addr.idx, align);
|
|
ret
|
|
}
|
|
|
|
/// Generates a new local in this function of the `ty` specified,
|
|
/// initializing it with the top value on the current wasm stack.
|
|
///
|
|
/// The returned `TempLocal` must be freed after it is finished with
|
|
/// `free_temp_local`.
|
|
fn local_tee_new_tmp(&mut self, ty: ValType) -> TempLocal {
|
|
self.gen_temp_local(ty, LocalTee)
|
|
}
|
|
|
|
/// Same as `local_tee_new_tmp` but initializes the local with `LocalSet`
|
|
/// instead of `LocalTee`.
|
|
fn local_set_new_tmp(&mut self, ty: ValType) -> TempLocal {
|
|
self.gen_temp_local(ty, LocalSet)
|
|
}
|
|
|
|
fn gen_temp_local(&mut self, ty: ValType, insn: fn(u32) -> Instruction<'static>) -> TempLocal {
|
|
// First check to see if any locals are available in this function which
|
|
// were previously generated but are no longer in use.
|
|
if let Some(idx) = self.free_locals.get_mut(&ty).and_then(|v| v.pop()) {
|
|
self.instruction(insn(idx));
|
|
return TempLocal {
|
|
ty,
|
|
idx,
|
|
needs_free: true,
|
|
};
|
|
}
|
|
|
|
// Failing that generate a fresh new local.
|
|
let locals = &mut self.module.funcs[self.result].locals;
|
|
match locals.last_mut() {
|
|
Some((cnt, prev_ty)) if ty == *prev_ty => *cnt += 1,
|
|
_ => locals.push((1, ty)),
|
|
}
|
|
self.nlocals += 1;
|
|
let idx = self.nlocals - 1;
|
|
self.instruction(insn(idx));
|
|
TempLocal {
|
|
ty,
|
|
idx,
|
|
needs_free: true,
|
|
}
|
|
}
|
|
|
|
/// Used to release a `TempLocal` from a particular lexical scope to allow
|
|
/// its possible reuse in later scopes.
|
|
fn free_temp_local(&mut self, mut local: TempLocal) {
|
|
assert!(local.needs_free);
|
|
self.free_locals
|
|
.entry(local.ty)
|
|
.or_insert(Vec::new())
|
|
.push(local.idx);
|
|
local.needs_free = false;
|
|
}
|
|
|
|
fn instruction(&mut self, instr: Instruction) {
|
|
instr.encode(&mut self.code);
|
|
}
|
|
|
|
fn trap(&mut self, trap: Trap) {
|
|
self.traps.push((self.code.len(), trap));
|
|
self.instruction(Unreachable);
|
|
}
|
|
|
|
/// Flushes out the current `code` instructions (and `traps` if there are
|
|
/// any) into the destination function.
|
|
///
|
|
/// This is a noop if no instructions have been encoded yet.
|
|
fn flush_code(&mut self) {
|
|
if self.code.is_empty() {
|
|
return;
|
|
}
|
|
self.module.funcs[self.result].body.push(Body::Raw(
|
|
mem::take(&mut self.code),
|
|
mem::take(&mut self.traps),
|
|
));
|
|
}
|
|
|
|
fn finish(mut self) {
|
|
// Append the final `end` instruction which all functions require, and
|
|
// then empty out the temporary buffer in `Compiler`.
|
|
self.instruction(End);
|
|
self.flush_code();
|
|
|
|
// Flag the function as "done" which helps with an assert later on in
|
|
// emission that everything was eventually finished.
|
|
self.module.funcs[self.result].filled_in = true;
|
|
}
|
|
|
|
/// Fetches the value contained with the local specified by `stack` and
|
|
/// converts it to `dst_ty`.
|
|
///
|
|
/// This is only intended for use in primitive operations where `stack` is
|
|
/// guaranteed to have only one local. The type of the local on the stack is
|
|
/// then converted to `dst_ty` appropriately. Note that the types may be
|
|
/// different due to the "flattening" of variant types.
|
|
fn stack_get(&mut self, stack: &Stack<'_>, dst_ty: ValType) {
|
|
assert_eq!(stack.locals.len(), 1);
|
|
let (idx, src_ty) = stack.locals[0];
|
|
self.instruction(LocalGet(idx));
|
|
match (src_ty, dst_ty) {
|
|
(ValType::I32, ValType::I32)
|
|
| (ValType::I64, ValType::I64)
|
|
| (ValType::F32, ValType::F32)
|
|
| (ValType::F64, ValType::F64) => {}
|
|
|
|
(ValType::I32, ValType::F32) => self.instruction(F32ReinterpretI32),
|
|
(ValType::I64, ValType::I32) => {
|
|
self.assert_i64_upper_bits_not_set(idx);
|
|
self.instruction(I32WrapI64);
|
|
}
|
|
(ValType::I64, ValType::F64) => self.instruction(F64ReinterpretI64),
|
|
(ValType::I64, ValType::F32) => {
|
|
self.assert_i64_upper_bits_not_set(idx);
|
|
self.instruction(I32WrapI64);
|
|
self.instruction(F32ReinterpretI32);
|
|
}
|
|
|
|
// should not be possible given the `join` function for variants
|
|
(ValType::I32, ValType::I64)
|
|
| (ValType::I32, ValType::F64)
|
|
| (ValType::F32, ValType::I32)
|
|
| (ValType::F32, ValType::I64)
|
|
| (ValType::F32, ValType::F64)
|
|
| (ValType::F64, ValType::I32)
|
|
| (ValType::F64, ValType::I64)
|
|
| (ValType::F64, ValType::F32)
|
|
|
|
// not used in the component model
|
|
| (ValType::Ref(_), _)
|
|
| (_, ValType::Ref(_))
|
|
| (ValType::V128, _)
|
|
| (_, ValType::V128) => {
|
|
panic!("cannot get {dst_ty:?} from {src_ty:?} local");
|
|
}
|
|
}
|
|
}
|
|
|
|
fn assert_i64_upper_bits_not_set(&mut self, local: u32) {
|
|
if !self.module.debug {
|
|
return;
|
|
}
|
|
self.instruction(LocalGet(local));
|
|
self.instruction(I64Const(32));
|
|
self.instruction(I64ShrU);
|
|
self.instruction(I32WrapI64);
|
|
self.instruction(If(BlockType::Empty));
|
|
self.trap(Trap::AssertFailed("upper bits are unexpectedly set"));
|
|
self.instruction(End);
|
|
}
|
|
|
|
/// Converts the top value on the WebAssembly stack which has type
|
|
/// `src_ty` to `dst_tys[0]`.
|
|
///
|
|
/// This is only intended for conversion of primitives where the `dst_tys`
|
|
/// list is known to be of length 1.
|
|
fn stack_set(&mut self, dst_tys: &[ValType], src_ty: ValType) {
|
|
assert_eq!(dst_tys.len(), 1);
|
|
let dst_ty = dst_tys[0];
|
|
match (src_ty, dst_ty) {
|
|
(ValType::I32, ValType::I32)
|
|
| (ValType::I64, ValType::I64)
|
|
| (ValType::F32, ValType::F32)
|
|
| (ValType::F64, ValType::F64) => {}
|
|
|
|
(ValType::F32, ValType::I32) => self.instruction(I32ReinterpretF32),
|
|
(ValType::I32, ValType::I64) => self.instruction(I64ExtendI32U),
|
|
(ValType::F64, ValType::I64) => self.instruction(I64ReinterpretF64),
|
|
(ValType::F32, ValType::I64) => {
|
|
self.instruction(I32ReinterpretF32);
|
|
self.instruction(I64ExtendI32U);
|
|
}
|
|
|
|
// should not be possible given the `join` function for variants
|
|
(ValType::I64, ValType::I32)
|
|
| (ValType::F64, ValType::I32)
|
|
| (ValType::I32, ValType::F32)
|
|
| (ValType::I64, ValType::F32)
|
|
| (ValType::F64, ValType::F32)
|
|
| (ValType::I32, ValType::F64)
|
|
| (ValType::I64, ValType::F64)
|
|
| (ValType::F32, ValType::F64)
|
|
|
|
// not used in the component model
|
|
| (ValType::Ref(_), _)
|
|
| (_, ValType::Ref(_))
|
|
| (ValType::V128, _)
|
|
| (_, ValType::V128) => {
|
|
panic!("cannot get {dst_ty:?} from {src_ty:?} local");
|
|
}
|
|
}
|
|
}
|
|
|
|
fn i32_load8u(&mut self, mem: &Memory) {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(I32Load8U(mem.memarg(0)));
|
|
}
|
|
|
|
fn i32_load8s(&mut self, mem: &Memory) {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(I32Load8S(mem.memarg(0)));
|
|
}
|
|
|
|
fn i32_load16u(&mut self, mem: &Memory) {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(I32Load16U(mem.memarg(1)));
|
|
}
|
|
|
|
fn i32_load16s(&mut self, mem: &Memory) {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(I32Load16S(mem.memarg(1)));
|
|
}
|
|
|
|
fn i32_load(&mut self, mem: &Memory) {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(I32Load(mem.memarg(2)));
|
|
}
|
|
|
|
fn i64_load(&mut self, mem: &Memory) {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(I64Load(mem.memarg(3)));
|
|
}
|
|
|
|
fn ptr_load(&mut self, mem: &Memory) {
|
|
if mem.opts.memory64 {
|
|
self.i64_load(mem);
|
|
} else {
|
|
self.i32_load(mem);
|
|
}
|
|
}
|
|
|
|
fn ptr_add(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Add);
|
|
} else {
|
|
self.instruction(I32Add);
|
|
}
|
|
}
|
|
|
|
fn ptr_sub(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Sub);
|
|
} else {
|
|
self.instruction(I32Sub);
|
|
}
|
|
}
|
|
|
|
fn ptr_mul(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Mul);
|
|
} else {
|
|
self.instruction(I32Mul);
|
|
}
|
|
}
|
|
|
|
fn ptr_ge_u(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64GeU);
|
|
} else {
|
|
self.instruction(I32GeU);
|
|
}
|
|
}
|
|
|
|
fn ptr_lt_u(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64LtU);
|
|
} else {
|
|
self.instruction(I32LtU);
|
|
}
|
|
}
|
|
|
|
fn ptr_shl(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Shl);
|
|
} else {
|
|
self.instruction(I32Shl);
|
|
}
|
|
}
|
|
|
|
fn ptr_eqz(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Eqz);
|
|
} else {
|
|
self.instruction(I32Eqz);
|
|
}
|
|
}
|
|
|
|
fn ptr_uconst(&mut self, opts: &Options, val: u32) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Const(val.into()));
|
|
} else {
|
|
self.instruction(I32Const(val as i32));
|
|
}
|
|
}
|
|
|
|
fn ptr_iconst(&mut self, opts: &Options, val: i32) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Const(val.into()));
|
|
} else {
|
|
self.instruction(I32Const(val));
|
|
}
|
|
}
|
|
|
|
fn ptr_eq(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Eq);
|
|
} else {
|
|
self.instruction(I32Eq);
|
|
}
|
|
}
|
|
|
|
fn ptr_ne(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Ne);
|
|
} else {
|
|
self.instruction(I32Ne);
|
|
}
|
|
}
|
|
|
|
fn ptr_and(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64And);
|
|
} else {
|
|
self.instruction(I32And);
|
|
}
|
|
}
|
|
|
|
fn ptr_or(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Or);
|
|
} else {
|
|
self.instruction(I32Or);
|
|
}
|
|
}
|
|
|
|
fn ptr_xor(&mut self, opts: &Options) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Xor);
|
|
} else {
|
|
self.instruction(I32Xor);
|
|
}
|
|
}
|
|
|
|
fn ptr_if(&mut self, opts: &Options, ty: BlockType) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Const(0));
|
|
self.instruction(I64Ne);
|
|
}
|
|
self.instruction(If(ty));
|
|
}
|
|
|
|
fn ptr_br_if(&mut self, opts: &Options, depth: u32) {
|
|
if opts.memory64 {
|
|
self.instruction(I64Const(0));
|
|
self.instruction(I64Ne);
|
|
}
|
|
self.instruction(BrIf(depth));
|
|
}
|
|
|
|
fn f32_load(&mut self, mem: &Memory) {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(F32Load(mem.memarg(2)));
|
|
}
|
|
|
|
fn f64_load(&mut self, mem: &Memory) {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
self.instruction(F64Load(mem.memarg(3)));
|
|
}
|
|
|
|
fn push_dst_addr(&mut self, dst: &Destination) {
|
|
if let Destination::Memory(mem) = dst {
|
|
self.instruction(LocalGet(mem.addr.idx));
|
|
}
|
|
}
|
|
|
|
fn i32_store8(&mut self, mem: &Memory) {
|
|
self.instruction(I32Store8(mem.memarg(0)));
|
|
}
|
|
|
|
fn i32_store16(&mut self, mem: &Memory) {
|
|
self.instruction(I32Store16(mem.memarg(1)));
|
|
}
|
|
|
|
fn i32_store(&mut self, mem: &Memory) {
|
|
self.instruction(I32Store(mem.memarg(2)));
|
|
}
|
|
|
|
fn i64_store(&mut self, mem: &Memory) {
|
|
self.instruction(I64Store(mem.memarg(3)));
|
|
}
|
|
|
|
fn ptr_store(&mut self, mem: &Memory) {
|
|
if mem.opts.memory64 {
|
|
self.i64_store(mem);
|
|
} else {
|
|
self.i32_store(mem);
|
|
}
|
|
}
|
|
|
|
fn f32_store(&mut self, mem: &Memory) {
|
|
self.instruction(F32Store(mem.memarg(2)));
|
|
}
|
|
|
|
fn f64_store(&mut self, mem: &Memory) {
|
|
self.instruction(F64Store(mem.memarg(3)));
|
|
}
|
|
}
|
|
|
|
impl<'a> Source<'a> {
|
|
/// Given this `Source` returns an iterator over the `Source` for each of
|
|
/// the component `fields` specified.
|
|
///
|
|
/// This will automatically slice stack-based locals to the appropriate
|
|
/// width for each component type and additionally calculate the appropriate
|
|
/// offset for each memory-based type.
|
|
fn record_field_srcs<'b>(
|
|
&'b self,
|
|
types: &'b ComponentTypesBuilder,
|
|
fields: impl IntoIterator<Item = InterfaceType> + 'b,
|
|
) -> impl Iterator<Item = Source<'a>> + 'b
|
|
where
|
|
'a: 'b,
|
|
{
|
|
let mut offset = 0;
|
|
fields.into_iter().map(move |ty| match self {
|
|
Source::Memory(mem) => {
|
|
let mem = next_field_offset(&mut offset, types, &ty, mem);
|
|
Source::Memory(mem)
|
|
}
|
|
Source::Stack(stack) => {
|
|
let cnt = types.flat_types(&ty).unwrap().len() as u32;
|
|
offset += cnt;
|
|
Source::Stack(stack.slice((offset - cnt) as usize..offset as usize))
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Returns the corresponding discriminant source and payload source f
|
|
fn payload_src(
|
|
&self,
|
|
types: &ComponentTypesBuilder,
|
|
info: &VariantInfo,
|
|
case: Option<&InterfaceType>,
|
|
) -> Source<'a> {
|
|
match self {
|
|
Source::Stack(s) => {
|
|
let flat_len = match case {
|
|
Some(case) => types.flat_types(case).unwrap().len(),
|
|
None => 0,
|
|
};
|
|
Source::Stack(s.slice(1..s.locals.len()).slice(0..flat_len))
|
|
}
|
|
Source::Memory(mem) => {
|
|
let mem = if mem.opts.memory64 {
|
|
mem.bump(info.payload_offset64)
|
|
} else {
|
|
mem.bump(info.payload_offset32)
|
|
};
|
|
Source::Memory(mem)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn opts(&self) -> &'a Options {
|
|
match self {
|
|
Source::Stack(s) => s.opts,
|
|
Source::Memory(mem) => mem.opts,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Destination<'a> {
|
|
/// Same as `Source::record_field_srcs` but for destinations.
|
|
fn record_field_dsts<'b>(
|
|
&'b self,
|
|
types: &'b ComponentTypesBuilder,
|
|
fields: impl IntoIterator<Item = InterfaceType> + 'b,
|
|
) -> impl Iterator<Item = Destination> + 'b
|
|
where
|
|
'a: 'b,
|
|
{
|
|
let mut offset = 0;
|
|
fields.into_iter().map(move |ty| match self {
|
|
Destination::Memory(mem) => {
|
|
let mem = next_field_offset(&mut offset, types, &ty, mem);
|
|
Destination::Memory(mem)
|
|
}
|
|
Destination::Stack(s, opts) => {
|
|
let cnt = types.flat_types(&ty).unwrap().len() as u32;
|
|
offset += cnt;
|
|
Destination::Stack(&s[(offset - cnt) as usize..offset as usize], opts)
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Returns the corresponding discriminant source and payload source f
|
|
fn payload_dst(
|
|
&self,
|
|
types: &ComponentTypesBuilder,
|
|
info: &VariantInfo,
|
|
case: Option<&InterfaceType>,
|
|
) -> Destination {
|
|
match self {
|
|
Destination::Stack(s, opts) => {
|
|
let flat_len = match case {
|
|
Some(case) => types.flat_types(case).unwrap().len(),
|
|
None => 0,
|
|
};
|
|
Destination::Stack(&s[1..][..flat_len], opts)
|
|
}
|
|
Destination::Memory(mem) => {
|
|
let mem = if mem.opts.memory64 {
|
|
mem.bump(info.payload_offset64)
|
|
} else {
|
|
mem.bump(info.payload_offset32)
|
|
};
|
|
Destination::Memory(mem)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn opts(&self) -> &'a Options {
|
|
match self {
|
|
Destination::Stack(_, opts) => opts,
|
|
Destination::Memory(mem) => mem.opts,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn next_field_offset<'a>(
|
|
offset: &mut u32,
|
|
types: &ComponentTypesBuilder,
|
|
field: &InterfaceType,
|
|
mem: &Memory<'a>,
|
|
) -> Memory<'a> {
|
|
let abi = types.canonical_abi(field);
|
|
let offset = if mem.opts.memory64 {
|
|
abi.next_field64(offset)
|
|
} else {
|
|
abi.next_field32(offset)
|
|
};
|
|
mem.bump(offset)
|
|
}
|
|
|
|
impl<'a> Memory<'a> {
|
|
fn memarg(&self, align: u32) -> MemArg {
|
|
MemArg {
|
|
offset: u64::from(self.offset),
|
|
align,
|
|
memory_index: self.opts.memory.unwrap().as_u32(),
|
|
}
|
|
}
|
|
|
|
fn bump(&self, offset: u32) -> Memory<'a> {
|
|
Memory {
|
|
opts: self.opts,
|
|
addr: TempLocal::new(self.addr.idx, self.addr.ty),
|
|
offset: self.offset + offset,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Stack<'a> {
|
|
fn slice(&self, range: Range<usize>) -> Stack<'a> {
|
|
Stack {
|
|
locals: &self.locals[range],
|
|
opts: self.opts,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct VariantCase<'a> {
|
|
src_i: u32,
|
|
src_ty: Option<&'a InterfaceType>,
|
|
dst_i: u32,
|
|
dst_ty: Option<&'a InterfaceType>,
|
|
}
|
|
|
|
fn variant_info<'a, I>(types: &ComponentTypesBuilder, cases: I) -> VariantInfo
|
|
where
|
|
I: IntoIterator<Item = Option<&'a InterfaceType>>,
|
|
I::IntoIter: ExactSizeIterator,
|
|
{
|
|
VariantInfo::new(
|
|
cases
|
|
.into_iter()
|
|
.map(|ty| ty.map(|ty| types.canonical_abi(ty))),
|
|
)
|
|
.0
|
|
}
|
|
|
|
enum MallocSize {
|
|
Const(u32),
|
|
Local(u32),
|
|
}
|
|
|
|
struct WasmString<'a> {
|
|
ptr: TempLocal,
|
|
len: TempLocal,
|
|
opts: &'a Options,
|
|
}
|
|
|
|
struct TempLocal {
|
|
idx: u32,
|
|
ty: ValType,
|
|
needs_free: bool,
|
|
}
|
|
|
|
impl TempLocal {
|
|
fn new(idx: u32, ty: ValType) -> TempLocal {
|
|
TempLocal {
|
|
idx,
|
|
ty,
|
|
needs_free: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl std::ops::Drop for TempLocal {
|
|
fn drop(&mut self) {
|
|
if self.needs_free {
|
|
panic!("temporary local not free'd");
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<FlatType> for ValType {
|
|
fn from(ty: FlatType) -> ValType {
|
|
match ty {
|
|
FlatType::I32 => ValType::I32,
|
|
FlatType::I64 => ValType::I64,
|
|
FlatType::F32 => ValType::F32,
|
|
FlatType::F64 => ValType::F64,
|
|
}
|
|
}
|
|
}
|