Files
wasmtime/lib/cretonne/meta/base/formats.py
Jakob Stoklund Olesen 3b71a27632 Add heaps to the Cretonne IL.
Add preamble syntax for declaring static and dynamic heaps, and update
the langref section on heaps. Add IR support for heap references.

Remove the heap_load and heap_store as discussed in #144. We will use
heap_addr along with native load and store instructions in their place.

Add the heap_addr instruction and document its bounds checking
semantics.
2017-08-23 14:15:59 -07:00

69 lines
2.6 KiB
Python

"""
The cretonne.formats defines all instruction formats.
Every instruction format has a corresponding `InstructionData` variant in the
Rust representation of cretonne IL, so all instruction formats must be defined
in this module.
"""
from __future__ import absolute_import
from cdsl.formats import InstructionFormat
from cdsl.operands import VALUE, VARIABLE_ARGS
from .immediates import imm64, uimm8, uimm32, ieee32, ieee64
from .immediates import offset32, uoffset32
from .immediates import boolean, intcc, floatcc, memflags, regunit
from . import entities
from .entities import ebb, sig_ref, func_ref, stack_slot, heap
Nullary = InstructionFormat()
Unary = InstructionFormat(VALUE)
UnaryImm = InstructionFormat(imm64)
UnaryIeee32 = InstructionFormat(ieee32)
UnaryIeee64 = InstructionFormat(ieee64)
UnaryBool = InstructionFormat(boolean)
UnaryGlobalVar = InstructionFormat(entities.global_var)
Binary = InstructionFormat(VALUE, VALUE)
BinaryImm = InstructionFormat(VALUE, imm64)
# The select instructions are controlled by the second VALUE operand.
# The first VALUE operand is the controlling flag which has a derived type.
# The fma instruction has the same constraint on all inputs.
Ternary = InstructionFormat(VALUE, VALUE, VALUE, typevar_operand=1)
# Catch-all for instructions with many outputs and inputs and no immediate
# operands.
MultiAry = InstructionFormat(VARIABLE_ARGS)
InsertLane = InstructionFormat(VALUE, ('lane', uimm8), VALUE)
ExtractLane = InstructionFormat(VALUE, ('lane', uimm8))
IntCompare = InstructionFormat(intcc, VALUE, VALUE)
IntCompareImm = InstructionFormat(intcc, VALUE, imm64)
FloatCompare = InstructionFormat(floatcc, VALUE, VALUE)
Jump = InstructionFormat(ebb, VARIABLE_ARGS)
Branch = InstructionFormat(VALUE, ebb, VARIABLE_ARGS)
BranchIcmp = InstructionFormat(intcc, VALUE, VALUE, ebb, VARIABLE_ARGS)
BranchTable = InstructionFormat(VALUE, entities.jump_table)
Call = InstructionFormat(func_ref, VARIABLE_ARGS)
IndirectCall = InstructionFormat(sig_ref, VALUE, VARIABLE_ARGS)
Load = InstructionFormat(memflags, VALUE, offset32)
Store = InstructionFormat(memflags, VALUE, VALUE, offset32)
StackLoad = InstructionFormat(stack_slot, offset32)
StackStore = InstructionFormat(VALUE, stack_slot, offset32)
# Accessing a WebAssembly heap.
# TODO: Add a reference to a `heap` declared in the preamble.
HeapLoad = InstructionFormat(VALUE, uoffset32)
HeapStore = InstructionFormat(VALUE, VALUE, uoffset32)
HeapAddr = InstructionFormat(heap, VALUE, uimm32)
RegMove = InstructionFormat(VALUE, ('src', regunit), ('dst', regunit))
# Finally extract the names of global variables in this module.
InstructionFormat.extract_names(globals())