Files
wasmtime/lib/cretonne/src/stack_layout.rs
Jakob Stoklund Olesen 39cc7efc2d Move the stack layout computation into its own module.
This is trying to keep algorithms out if the ir module which deals with
the intermediate representation.

Also give the layout_stack() function a Result return value so it can
report a soft error when the stack frame is too large instead of
asserting. Since local variables can be arbitrarily large, it is easy
enough to overflow the stack with even a small function.
2017-08-03 13:31:58 -07:00

186 lines
6.5 KiB
Rust

//! Computing stack layout.
use ir::StackSlots;
use ir::stackslot::{StackSize, StackOffset, StackSlotKind};
use result::CtonError;
use std::cmp::{min, max};
/// Compute the stack frame layout.
///
/// Determine the total size of this stack frame and assign offsets to all `Spill` and `Local`
/// stack slots.
///
/// The total frame size will be a multiple of `alignment` which must be a power of two.
///
/// Returns the total stack frame size which is also saved in `frame.frame_size`.
///
/// If the stack frame is too big, returns an `ImplLimitExceeded` error.
pub fn layout_stack(frame: &mut StackSlots, alignment: StackSize) -> Result<StackSize, CtonError> {
// Each object and the whole stack frame must fit in 2 GB such that any relative offset within
// the frame fits in a `StackOffset`.
let max_size = StackOffset::max_value() as StackSize;
assert!(alignment.is_power_of_two() && alignment <= max_size);
// We assume a stack that grows toward lower addresses as implemented by modern ISAs. The
// stack layout from high to low addresses will be:
//
// 1. incoming arguments.
// 2. spills + locals.
// 3. outgoing arguments.
//
// The incoming arguments can have both positive and negative offsets. A negative offset
// incoming arguments is usually the x86 return address pushed by the call instruction, but
// it can also be fixed stack slots pushed by an externally generated prologue.
//
// Both incoming and outgoing argument slots have fixed offsets that are treated as
// reserved zones by the layout algorithm.
let mut incoming_min = 0;
let mut outgoing_max = 0;
let mut min_align = alignment;
for ss in frame.keys() {
let slot = &frame[ss];
if slot.size > max_size {
return Err(CtonError::ImplLimitExceeded);
}
match slot.kind {
StackSlotKind::IncomingArg => {
incoming_min = min(incoming_min, slot.offset);
}
StackSlotKind::OutgoingArg => {
let offset = slot.offset
.checked_add(slot.size as StackOffset)
.ok_or(CtonError::ImplLimitExceeded)?;
outgoing_max = max(outgoing_max, offset);
}
StackSlotKind::SpillSlot | StackSlotKind::Local => {
// Determine the smallest alignment of any local or spill slot.
min_align = slot.alignment(min_align);
}
}
}
// Lay out spill slots and locals below the incoming arguments.
// The offset is negative, growing downwards.
// Start with the smallest alignments for better packing.
let mut offset = incoming_min;
assert!(min_align.is_power_of_two());
while min_align <= alignment {
for ss in frame.keys() {
let slot = frame[ss].clone();
// Pick out locals and spill slots with exact alignment `min_align`.
match slot.kind {
StackSlotKind::SpillSlot | StackSlotKind::Local => {
if slot.alignment(alignment) != min_align {
continue;
}
}
_ => continue,
}
offset = offset
.checked_sub(slot.size as StackOffset)
.ok_or(CtonError::ImplLimitExceeded)?;
// Aligning the negative offset can never cause overflow. We're only clearing bits.
offset &= -(min_align as StackOffset);
frame.set_offset(ss, offset);
}
// Move on to the next higher alignment.
min_align *= 2;
}
// Finally, make room for the outgoing arguments.
offset = offset
.checked_sub(outgoing_max)
.ok_or(CtonError::ImplLimitExceeded)?;
offset &= -(alignment as StackOffset);
let frame_size = (offset as StackSize).wrapping_neg();
frame.frame_size = Some(frame_size);
Ok(frame_size)
}
#[cfg(test)]
mod tests {
use ir::StackSlots;
use ir::types;
use super::layout_stack;
#[test]
fn layout() {
let sss = &mut StackSlots::new();
// An empty layout should have 0-sized stack frame.
assert_eq!(layout_stack(sss, 1), Ok(0));
assert_eq!(layout_stack(sss, 16), Ok(0));
// Same for incoming arguments with non-negative offsets.
let in0 = sss.make_incoming_arg(types::I64, 0);
let in1 = sss.make_incoming_arg(types::I64, 8);
assert_eq!(layout_stack(sss, 1), Ok(0));
assert_eq!(layout_stack(sss, 16), Ok(0));
assert_eq!(sss[in0].offset, 0);
assert_eq!(sss[in1].offset, 8);
// Add some spill slots.
let ss0 = sss.make_spill_slot(types::I64);
let ss1 = sss.make_spill_slot(types::I32);
assert_eq!(layout_stack(sss, 1), Ok(12));
assert_eq!(sss[in0].offset, 0);
assert_eq!(sss[in1].offset, 8);
assert_eq!(sss[ss0].offset, -8);
assert_eq!(sss[ss1].offset, -12);
assert_eq!(layout_stack(sss, 16), Ok(16));
assert_eq!(sss[in0].offset, 0);
assert_eq!(sss[in1].offset, 8);
assert_eq!(sss[ss0].offset, -16);
assert_eq!(sss[ss1].offset, -4);
// An incoming argument with negative offset counts towards the total frame size, but it
// should still pack nicely with the spill slots.
let in2 = sss.make_incoming_arg(types::I32, -4);
assert_eq!(layout_stack(sss, 1), Ok(16));
assert_eq!(sss[in0].offset, 0);
assert_eq!(sss[in1].offset, 8);
assert_eq!(sss[in2].offset, -4);
assert_eq!(sss[ss0].offset, -12);
assert_eq!(sss[ss1].offset, -16);
assert_eq!(layout_stack(sss, 16), Ok(16));
assert_eq!(sss[in0].offset, 0);
assert_eq!(sss[in1].offset, 8);
assert_eq!(sss[in2].offset, -4);
assert_eq!(sss[ss0].offset, -16);
assert_eq!(sss[ss1].offset, -8);
// Finally, make sure there is room for the outgoing args.
let out0 = sss.get_outgoing_arg(types::I32, 0);
assert_eq!(layout_stack(sss, 1), Ok(20));
assert_eq!(sss[in0].offset, 0);
assert_eq!(sss[in1].offset, 8);
assert_eq!(sss[in2].offset, -4);
assert_eq!(sss[ss0].offset, -12);
assert_eq!(sss[ss1].offset, -16);
assert_eq!(sss[out0].offset, 0);
assert_eq!(layout_stack(sss, 16), Ok(32));
assert_eq!(sss[in0].offset, 0);
assert_eq!(sss[in1].offset, 8);
assert_eq!(sss[in2].offset, -4);
assert_eq!(sss[ss0].offset, -16);
assert_eq!(sss[ss1].offset, -8);
assert_eq!(sss[out0].offset, 0);
}
}