Remove the boolean types from cranelift, and the associated instructions breduce, bextend, bconst, and bint. Standardize on using 1/0 for the return value from instructions that produce scalar boolean results, and -1/0 for boolean vector elements. Fixes #3205 Co-authored-by: Afonso Bordado <afonso360@users.noreply.github.com> Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com> Co-authored-by: Chris Fallin <chris@cfallin.org>
99 lines
2.9 KiB
Plaintext
99 lines
2.9 KiB
Plaintext
test interpret
|
|
test run
|
|
target aarch64
|
|
target x86_64
|
|
target s390x
|
|
target riscv64
|
|
|
|
function %sqrt_f32(f32) -> f32 {
|
|
block0(v0: f32):
|
|
v1 = sqrt v0
|
|
return v1
|
|
}
|
|
; run: %sqrt_f32(0x9.0) == 0x3.0
|
|
; run: %sqrt_f32(0x0.0) == 0x0.0
|
|
; run: %sqrt_f32(-0x0.0) == -0x0.0
|
|
; run: %sqrt_f32(+Inf) == +Inf
|
|
|
|
; F32 Epsilon / Max / Min Positive
|
|
; run: %sqrt_f32(0x1.000000p-23) == 0x1.6a09e6p-12
|
|
; run: %sqrt_f32(0x1.fffffep127) == 0x1.fffffep63
|
|
; run: %sqrt_f32(0x1.000000p-126) == 0x1.000000p-63
|
|
|
|
; F32 Subnormals
|
|
; run: %sqrt_f32(0x0.800000p-126) == 0x1.6a09e6p-64
|
|
; run: %sqrt_f32(0x0.000002p-126) == 0x1.6a09e6p-75
|
|
|
|
|
|
; The IEEE754 Standard does not make a lot of guarantees about what
|
|
; comes out of NaN producing operations, we just check if its a NaN
|
|
function %sqrt_is_nan_f32(f32) -> i32 {
|
|
block0(v0: f32):
|
|
v2 = sqrt v0
|
|
v3 = fcmp ne v2, v2
|
|
v4 = uextend.i32 v3
|
|
return v4
|
|
}
|
|
; run: %sqrt_is_nan_f32(-0x9.0) == 1
|
|
; run: %sqrt_is_nan_f32(-Inf) == 1
|
|
; run: %sqrt_is_nan_f32(+NaN) == 1
|
|
; run: %sqrt_is_nan_f32(-NaN) == 1
|
|
; run: %sqrt_is_nan_f32(+NaN:0x0) == 1
|
|
; run: %sqrt_is_nan_f32(+NaN:0x1) == 1
|
|
; run: %sqrt_is_nan_f32(+NaN:0x300001) == 1
|
|
; run: %sqrt_is_nan_f32(-NaN:0x0) == 1
|
|
; run: %sqrt_is_nan_f32(-NaN:0x1) == 1
|
|
; run: %sqrt_is_nan_f32(-NaN:0x300001) == 1
|
|
; run: %sqrt_is_nan_f32(+sNaN:0x1) == 1
|
|
; run: %sqrt_is_nan_f32(-sNaN:0x1) == 1
|
|
; run: %sqrt_is_nan_f32(+sNaN:0x200001) == 1
|
|
; run: %sqrt_is_nan_f32(-sNaN:0x200001) == 1
|
|
; run: %sqrt_is_nan_f32(-0x1.fffffep127) == 1
|
|
|
|
|
|
|
|
function %sqrt_f64(f64) -> f64 {
|
|
block0(v0: f64):
|
|
v1 = sqrt v0
|
|
return v1
|
|
}
|
|
; run: %sqrt_f64(0x9.0) == 0x3.0
|
|
; run: %sqrt_f64(0x0.0) == 0x0.0
|
|
; run: %sqrt_f64(-0x0.0) == -0x0.0
|
|
; run: %sqrt_f64(+Inf) == +Inf
|
|
|
|
; F64 Epsilon / Max / Min Positive
|
|
; run: %sqrt_f64(0x1.0000000000000p-52) == 0x1.0000000000000p-26
|
|
; run: %sqrt_f64(0x1.fffffffffffffp1023) == 0x1.fffffffffffffp511
|
|
; run: %sqrt_f64(0x1.0000000000000p-1022) == 0x1.0000000000000p-511
|
|
|
|
; F64 Subnormals
|
|
; run: %sqrt_f64(0x0.8000000000000p-1022) == 0x1.6a09e667f3bcdp-512
|
|
; run: %sqrt_f64(0x0.0000000000001p-1022) == 0x1.0000000000000p-537
|
|
|
|
|
|
; The IEEE754 Standard does not make a lot of guarantees about what
|
|
; comes out of NaN producing operations, we just check if its a NaN
|
|
function %sqrt_is_nan_f64(f64) -> i32 {
|
|
block0(v0: f64):
|
|
v2 = sqrt v0
|
|
v3 = fcmp ne v2, v2
|
|
v4 = uextend.i32 v3
|
|
return v4
|
|
}
|
|
; run: %sqrt_is_nan_f64(-0x9.0) == 1
|
|
; run: %sqrt_is_nan_f64(-Inf) == 1
|
|
; run: %sqrt_is_nan_f64(+NaN) == 1
|
|
; run: %sqrt_is_nan_f64(-NaN) == 1
|
|
; run: %sqrt_is_nan_f64(+NaN:0x0) == 1
|
|
; run: %sqrt_is_nan_f64(+NaN:0x1) == 1
|
|
; run: %sqrt_is_nan_f64(+NaN:0x4000000000001) == 1
|
|
; run: %sqrt_is_nan_f64(-NaN:0x0) == 1
|
|
; run: %sqrt_is_nan_f64(-NaN:0x1) == 1
|
|
; run: %sqrt_is_nan_f64(-NaN:0x4000000000001) == 1
|
|
; run: %sqrt_is_nan_f64(+sNaN:0x1) == 1
|
|
; run: %sqrt_is_nan_f64(-sNaN:0x1) == 1
|
|
; run: %sqrt_is_nan_f64(+sNaN:0x4000000000001) == 1
|
|
; run: %sqrt_is_nan_f64(-sNaN:0x4000000000001) == 1
|
|
; run: %sqrt_is_nan_f64(-0x1.fffffffffffffp1023) == 1
|