Files
wasmtime/tests/all/custom_signal_handler.rs
Alex Crichton d719ec7e1c Don't try to handle non-wasmtime segfaults (#1577)
This commit fixes an issue in Wasmtime where Wasmtime would accidentally
"handle" non-wasm segfaults while executing host imports of wasm
modules. If a host import segfaulted then Wasmtime would recognize that
wasm code is on the stack, so it'd longjmp out of the wasm code. This
papers over real bugs though in host code and erroneously classified
segfaults as wasm traps.

The fix here was to add a check to our wasm signal handler for if the
faulting address falls in JIT code itself. Actually threading through
all the right information for that check to happen is a bit tricky,
though, so this involved some refactoring:

* A closure parameter to `catch_traps` was added. This closure is
  responsible for classifying addresses as whether or not they fall in
  JIT code. Anything returning `false` means that the trap won't get
  handled and we'll forward to the next signal handler.

* To avoid passing tons of context all over the place, the start
  function is now no longer automatically invoked by `InstanceHandle`.
  This avoids the need for passing all sorts of trap-handling contextual
  information like the maximum stack size and "is this a jit address"
  closure. Instead creators of `InstanceHandle` (like wasmtime) are now
  responsible for invoking the start function.

* To avoid excessive use of `transmute` with lifetimes since the
  traphandler state now has a lifetime the per-instance custom signal
  handler is now replaced with a per-store custom signal handler. I'm
  not entirely certain the purpose of the custom signal handler, though,
  so I'd look for feedback on this part.

A new test has been added which ensures that if a host function
segfaults we don't accidentally try to handle it, and instead we
correctly report the segfault.
2020-04-29 14:24:54 -05:00

278 lines
9.5 KiB
Rust

#[cfg(not(target_os = "windows"))]
mod tests {
use anyhow::Result;
use std::rc::Rc;
use std::sync::atomic::{AtomicBool, Ordering};
use wasmtime::unix::StoreExt;
use wasmtime::*;
const WAT1: &str = r#"
(module
(func $read (export "read") (result i32)
(i32.load (i32.const 0))
)
(func $read_out_of_bounds (export "read_out_of_bounds") (result i32)
(i32.load
(i32.mul
;; memory size in Wasm pages
(memory.size)
;; Wasm page size
(i32.const 65536)
)
)
)
(func $start
(i32.store (i32.const 0) (i32.const 123))
)
(start $start)
(memory (export "memory") 1 4)
)
"#;
const WAT2: &str = r#"
(module
(import "other_module" "read" (func $other_module.read (result i32)))
(func $run (export "run") (result i32)
call $other_module.read)
)
"#;
fn invoke_export(instance: &Instance, func_name: &str) -> Result<Box<[Val]>> {
let ret = instance.get_func(func_name).unwrap().call(&[])?;
Ok(ret)
}
// Locate "memory" export, get base address and size and set memory protection to PROT_NONE
fn set_up_memory(instance: &Instance) -> (*mut u8, usize) {
let mem_export = instance.get_memory("memory").unwrap();
let base = mem_export.data_ptr();
let length = mem_export.data_size();
// So we can later trigger SIGSEGV by performing a read
unsafe {
libc::mprotect(base as *mut libc::c_void, length, libc::PROT_NONE);
}
println!("memory: base={:?}, length={}", base, length);
(base, length)
}
fn handle_sigsegv(
base: *mut u8,
length: usize,
signum: libc::c_int,
siginfo: *const libc::siginfo_t,
) -> bool {
println!("Hello from instance signal handler!");
// SIGSEGV on Linux, SIGBUS on Mac
if libc::SIGSEGV == signum || libc::SIGBUS == signum {
let si_addr: *mut libc::c_void = unsafe { (*siginfo).si_addr() };
// Any signal from within module's memory we handle ourselves
let result = (si_addr as u64) < (base as u64) + (length as u64);
// Remove protections so the execution may resume
unsafe {
libc::mprotect(
base as *mut libc::c_void,
length,
libc::PROT_READ | libc::PROT_WRITE,
);
}
println!("signal handled: {}", result);
result
} else {
// Otherwise, we forward to wasmtime's signal handler.
false
}
}
#[test]
#[cfg_attr(target_arch = "aarch64", ignore)] // FIXME(#1521)
fn test_custom_signal_handler_single_instance() -> Result<()> {
let engine = Engine::new(&Config::default());
let store = Store::new(&engine);
let module = Module::new(&store, WAT1)?;
let instance = Instance::new(&module, &[])?;
let (base, length) = set_up_memory(&instance);
unsafe {
store.set_signal_handler(move |signum, siginfo, _| {
handle_sigsegv(base, length, signum, siginfo)
});
}
// these invoke wasmtime_call_trampoline from action.rs
{
println!("calling read...");
let result = invoke_export(&instance, "read").expect("read succeeded");
assert_eq!(123, result[0].unwrap_i32());
}
{
println!("calling read_out_of_bounds...");
let trap = invoke_export(&instance, "read_out_of_bounds")
.unwrap_err()
.downcast::<Trap>()?;
assert!(
trap.message()
.starts_with("wasm trap: out of bounds memory access"),
"bad trap message: {:?}",
trap.message()
);
}
// these invoke wasmtime_call_trampoline from callable.rs
{
let read_func = instance
.get_func("read")
.expect("expected a 'read' func in the module");
println!("calling read...");
let result = read_func.call(&[]).expect("expected function not to trap");
assert_eq!(123i32, result[0].clone().unwrap_i32());
}
{
let read_out_of_bounds_func = instance
.get_func("read_out_of_bounds")
.expect("expected a 'read_out_of_bounds' func in the module");
println!("calling read_out_of_bounds...");
let trap = read_out_of_bounds_func
.call(&[])
.unwrap_err()
.downcast::<Trap>()?;
assert!(trap
.message()
.starts_with("wasm trap: out of bounds memory access"));
}
Ok(())
}
#[test]
fn test_custom_signal_handler_multiple_instances() -> Result<()> {
let engine = Engine::new(&Config::default());
let store = Store::new(&engine);
let module = Module::new(&store, WAT1)?;
// Set up multiple instances
let instance1 = Instance::new(&module, &[])?;
let instance1_handler_triggered = Rc::new(AtomicBool::new(false));
unsafe {
let (base1, length1) = set_up_memory(&instance1);
store.set_signal_handler({
let instance1_handler_triggered = instance1_handler_triggered.clone();
move |_signum, _siginfo, _context| {
// Remove protections so the execution may resume
libc::mprotect(
base1 as *mut libc::c_void,
length1,
libc::PROT_READ | libc::PROT_WRITE,
);
instance1_handler_triggered.store(true, Ordering::SeqCst);
println!(
"Hello from instance1 signal handler! {}",
instance1_handler_triggered.load(Ordering::SeqCst)
);
true
}
});
}
// Invoke both instances and trigger both signal handlers
// First instance1
{
let mut exports1 = instance1.exports();
assert!(exports1.next().is_some());
println!("calling instance1.read...");
let result = invoke_export(&instance1, "read").expect("read succeeded");
assert_eq!(123, result[0].unwrap_i32());
assert_eq!(
instance1_handler_triggered.load(Ordering::SeqCst),
true,
"instance1 signal handler has been triggered"
);
}
let instance2 = Instance::new(&module, &[]).expect("failed to instantiate module");
let instance2_handler_triggered = Rc::new(AtomicBool::new(false));
unsafe {
let (base2, length2) = set_up_memory(&instance2);
store.set_signal_handler({
let instance2_handler_triggered = instance2_handler_triggered.clone();
move |_signum, _siginfo, _context| {
// Remove protections so the execution may resume
libc::mprotect(
base2 as *mut libc::c_void,
length2,
libc::PROT_READ | libc::PROT_WRITE,
);
instance2_handler_triggered.store(true, Ordering::SeqCst);
println!(
"Hello from instance2 signal handler! {}",
instance2_handler_triggered.load(Ordering::SeqCst)
);
true
}
});
}
// And then instance2
{
let mut exports2 = instance2.exports();
assert!(exports2.next().is_some());
println!("calling instance2.read...");
let result = invoke_export(&instance2, "read").expect("read succeeded");
assert_eq!(123, result[0].unwrap_i32());
assert_eq!(
instance2_handler_triggered.load(Ordering::SeqCst),
true,
"instance1 signal handler has been triggered"
);
}
Ok(())
}
#[test]
fn test_custom_signal_handler_instance_calling_another_instance() -> Result<()> {
let engine = Engine::new(&Config::default());
let store = Store::new(&engine);
// instance1 which defines 'read'
let module1 = Module::new(&store, WAT1)?;
let instance1 = Instance::new(&module1, &[])?;
let (base1, length1) = set_up_memory(&instance1);
unsafe {
store.set_signal_handler(move |signum, siginfo, _| {
println!("instance1");
handle_sigsegv(base1, length1, signum, siginfo)
});
}
let mut instance1_exports = instance1.exports();
let instance1_read = instance1_exports.next().unwrap();
// instance2 which calls 'instance1.read'
let module2 = Module::new(&store, WAT2)?;
let instance2 = Instance::new(&module2, &[instance1_read.into_extern()])?;
// since 'instance2.run' calls 'instance1.read' we need to set up the signal handler to handle
// SIGSEGV originating from within the memory of instance1
unsafe {
store.set_signal_handler(move |signum, siginfo, _| {
handle_sigsegv(base1, length1, signum, siginfo)
});
}
println!("calling instance2.run");
let result = invoke_export(&instance2, "run")?;
assert_eq!(123, result[0].unwrap_i32());
Ok(())
}
}