Files
wasmtime/cranelift/codegen/src/write.rs
Chris Fallin c84d6be6f4 Detailed debug-info (DWARF) support in new backends (initially x64).
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:

- Translate value-label metadata on the input into "value_label"
  pseudo-instructions when lowering into VCode. These
  pseudo-instructions take a register as input, denote a value label,
  and semantically are like a "move into value label" -- i.e., they
  update the current value (as seen by debugging tools) of the given
  local. These pseudo-instructions emit no machine code.

- Perform a dataflow analysis *at the machine-code level*, tracking
  value-labels that propagate into registers and into [SP+constant]
  stack storage. This is a forward dataflow fixpoint analysis where each
  storage location can contain a *set* of value labels, and each value
  label can reside in a *set* of storage locations. (Meet function is
  pairwise intersection by storage location.)

  This analysis traces value labels symbolically through loads and
  stores and reg-to-reg moves, so it will naturally handle spills and
  reloads without knowing anything special about them.

- When this analysis converges, we have, at each machine-code offset, a
  mapping from value labels to some number of storage locations; for
  each offset for each label, we choose the best location (prefer
  registers). Note that we can choose any location, as the symbolic
  dataflow analysis is sound and guarantees that the value at the
  value_label instruction propagates to all of the named locations.

- Then we can convert this mapping into a format that the DWARF
  generation code (wasmtime's debug crate) can use.

This PR also adds the new-backend variant to the gdb tests on CI.
2021-01-21 15:59:49 -08:00

857 lines
27 KiB
Rust

//! Converting Cranelift IR to text.
//!
//! The `write` module provides the `write_function` function which converts an IR `Function` to an
//! equivalent textual form. This textual form can be read back by the `cranelift-reader` crate.
use crate::entity::SecondaryMap;
use crate::ir::entities::AnyEntity;
use crate::ir::{
Block, DataFlowGraph, DisplayFunctionAnnotations, Function, Inst, SigRef, Type, Value,
ValueDef, ValueLoc,
};
use crate::isa::{RegInfo, TargetIsa};
use crate::packed_option::ReservedValue;
use crate::value_label::{LabelValueLoc, ValueLabelsRanges};
use crate::HashSet;
use alloc::string::String;
use alloc::vec::Vec;
use core::fmt::{self, Write};
/// A `FuncWriter` used to decorate functions during printing.
pub trait FuncWriter {
/// Write the basic block header for the current function.
fn write_block_header(
&mut self,
w: &mut dyn Write,
func: &Function,
isa: Option<&dyn TargetIsa>,
block: Block,
indent: usize,
) -> fmt::Result;
/// Write the given `inst` to `w`.
fn write_instruction(
&mut self,
w: &mut dyn Write,
func: &Function,
aliases: &SecondaryMap<Value, Vec<Value>>,
isa: Option<&dyn TargetIsa>,
inst: Inst,
indent: usize,
) -> fmt::Result;
/// Write the preamble to `w`. By default, this uses `write_entity_definition`.
fn write_preamble(
&mut self,
w: &mut dyn Write,
func: &Function,
regs: Option<&RegInfo>,
) -> Result<bool, fmt::Error> {
self.super_preamble(w, func, regs)
}
/// Default impl of `write_preamble`
fn super_preamble(
&mut self,
w: &mut dyn Write,
func: &Function,
regs: Option<&RegInfo>,
) -> Result<bool, fmt::Error> {
let mut any = false;
for (ss, slot) in func.stack_slots.iter() {
any = true;
self.write_entity_definition(w, func, ss.into(), slot)?;
}
for (gv, gv_data) in &func.global_values {
any = true;
self.write_entity_definition(w, func, gv.into(), gv_data)?;
}
for (heap, heap_data) in &func.heaps {
if !heap_data.index_type.is_invalid() {
any = true;
self.write_entity_definition(w, func, heap.into(), heap_data)?;
}
}
for (table, table_data) in &func.tables {
if !table_data.index_type.is_invalid() {
any = true;
self.write_entity_definition(w, func, table.into(), table_data)?;
}
}
// Write out all signatures before functions since function declarations can refer to
// signatures.
for (sig, sig_data) in &func.dfg.signatures {
any = true;
self.write_entity_definition(w, func, sig.into(), &sig_data.display(regs))?;
}
for (fnref, ext_func) in &func.dfg.ext_funcs {
if ext_func.signature != SigRef::reserved_value() {
any = true;
self.write_entity_definition(w, func, fnref.into(), ext_func)?;
}
}
for (jt, jt_data) in &func.jump_tables {
any = true;
self.write_entity_definition(w, func, jt.into(), jt_data)?;
}
for (&cref, cval) in func.dfg.constants.iter() {
any = true;
self.write_entity_definition(w, func, cref.into(), cval)?;
}
if let Some(limit) = func.stack_limit {
any = true;
self.write_entity_definition(w, func, AnyEntity::StackLimit, &limit)?;
}
Ok(any)
}
/// Write an entity definition defined in the preamble to `w`.
fn write_entity_definition(
&mut self,
w: &mut dyn Write,
func: &Function,
entity: AnyEntity,
value: &dyn fmt::Display,
) -> fmt::Result {
self.super_entity_definition(w, func, entity, value)
}
/// Default impl of `write_entity_definition`
#[allow(unused_variables)]
fn super_entity_definition(
&mut self,
w: &mut dyn Write,
func: &Function,
entity: AnyEntity,
value: &dyn fmt::Display,
) -> fmt::Result {
writeln!(w, " {} = {}", entity, value)
}
}
/// A `PlainWriter` that doesn't decorate the function.
pub struct PlainWriter;
impl FuncWriter for PlainWriter {
fn write_instruction(
&mut self,
w: &mut dyn Write,
func: &Function,
aliases: &SecondaryMap<Value, Vec<Value>>,
isa: Option<&dyn TargetIsa>,
inst: Inst,
indent: usize,
) -> fmt::Result {
write_instruction(w, func, aliases, isa, inst, indent)
}
fn write_block_header(
&mut self,
w: &mut dyn Write,
func: &Function,
isa: Option<&dyn TargetIsa>,
block: Block,
indent: usize,
) -> fmt::Result {
write_block_header(w, func, isa, block, indent)
}
}
/// Write `func` to `w` as equivalent text.
/// Use `isa` to emit ISA-dependent annotations.
pub fn write_function(
w: &mut dyn Write,
func: &Function,
annotations: &DisplayFunctionAnnotations,
) -> fmt::Result {
decorate_function(&mut PlainWriter, w, func, annotations)
}
/// Create a reverse-alias map from a value to all aliases having that value as a direct target
fn alias_map(func: &Function) -> SecondaryMap<Value, Vec<Value>> {
let mut aliases = SecondaryMap::<_, Vec<_>>::new();
for v in func.dfg.values() {
// VADFS returns the immediate target of an alias
if let Some(k) = func.dfg.value_alias_dest_for_serialization(v) {
aliases[k].push(v);
}
}
aliases
}
/// Writes `func` to `w` as text.
/// write_function_plain is passed as 'closure' to print instructions as text.
/// pretty_function_error is passed as 'closure' to add error decoration.
pub fn decorate_function<FW: FuncWriter>(
func_w: &mut FW,
w: &mut dyn Write,
func: &Function,
annotations: &DisplayFunctionAnnotations,
) -> fmt::Result {
let regs = annotations.isa.map(TargetIsa::register_info);
let regs = regs.as_ref();
write!(w, "function ")?;
write_spec(w, func, regs)?;
writeln!(w, " {{")?;
let aliases = alias_map(func);
let mut any = func_w.write_preamble(w, func, regs)?;
for block in &func.layout {
if any {
writeln!(w)?;
}
decorate_block(func_w, w, func, &aliases, annotations, block)?;
any = true;
}
writeln!(w, "}}")
}
//----------------------------------------------------------------------
//
// Function spec.
fn write_spec(w: &mut dyn Write, func: &Function, regs: Option<&RegInfo>) -> fmt::Result {
write!(w, "{}{}", func.name, func.signature.display(regs))
}
//----------------------------------------------------------------------
//
// Basic blocks
fn write_arg(
w: &mut dyn Write,
func: &Function,
regs: Option<&RegInfo>,
arg: Value,
) -> fmt::Result {
write!(w, "{}: {}", arg, func.dfg.value_type(arg))?;
let loc = func.locations[arg];
if loc.is_assigned() {
write!(w, " [{}]", loc.display(regs))?
}
Ok(())
}
/// Write out the basic block header, outdented:
///
/// block1:
/// block1(v1: i32):
/// block10(v4: f64, v5: b1):
///
pub fn write_block_header(
w: &mut dyn Write,
func: &Function,
isa: Option<&dyn TargetIsa>,
block: Block,
indent: usize,
) -> fmt::Result {
// The `indent` is the instruction indentation. block headers are 4 spaces out from that.
write!(w, "{1:0$}{2}", indent - 4, "", block)?;
let regs = isa.map(TargetIsa::register_info);
let regs = regs.as_ref();
let mut args = func.dfg.block_params(block).iter().cloned();
match args.next() {
None => return writeln!(w, ":"),
Some(arg) => {
write!(w, "(")?;
write_arg(w, func, regs, arg)?;
}
}
// Remaining arguments.
for arg in args {
write!(w, ", ")?;
write_arg(w, func, regs, arg)?;
}
writeln!(w, "):")
}
fn write_valueloc(w: &mut dyn Write, loc: LabelValueLoc, regs: &RegInfo) -> fmt::Result {
match loc {
LabelValueLoc::ValueLoc(ValueLoc::Reg(r)) => write!(w, "{}", regs.display_regunit(r)),
LabelValueLoc::ValueLoc(ValueLoc::Stack(ss)) => write!(w, "{}", ss),
LabelValueLoc::ValueLoc(ValueLoc::Unassigned) => write!(w, "?"),
LabelValueLoc::Reg(r) => write!(w, "{:?}", r),
LabelValueLoc::SPOffset(off) => write!(w, "[sp+{}]", off),
}
}
fn write_value_range_markers(
w: &mut dyn Write,
val_ranges: &ValueLabelsRanges,
regs: &RegInfo,
offset: u32,
indent: usize,
) -> fmt::Result {
let mut result = String::new();
let mut shown = HashSet::new();
for (val, rng) in val_ranges {
for i in (0..rng.len()).rev() {
if rng[i].start == offset {
write!(&mut result, " {}@", val)?;
write_valueloc(&mut result, rng[i].loc, regs)?;
shown.insert(val);
break;
}
}
}
for (val, rng) in val_ranges {
for i in (0..rng.len()).rev() {
if rng[i].end == offset && !shown.contains(val) {
write!(&mut result, " {}\u{2620}", val)?;
break;
}
}
}
if !result.is_empty() {
writeln!(w, ";{1:0$}; {2}", indent + 24, "", result)?;
}
Ok(())
}
fn decorate_block<FW: FuncWriter>(
func_w: &mut FW,
w: &mut dyn Write,
func: &Function,
aliases: &SecondaryMap<Value, Vec<Value>>,
annotations: &DisplayFunctionAnnotations,
block: Block,
) -> fmt::Result {
// Indent all instructions if any encodings are present.
let indent = if func.encodings.is_empty() && func.srclocs.is_empty() {
4
} else {
36
};
let isa = annotations.isa;
func_w.write_block_header(w, func, isa, block, indent)?;
for a in func.dfg.block_params(block).iter().cloned() {
write_value_aliases(w, aliases, a, indent)?;
}
if let Some(isa) = isa {
if !func.offsets.is_empty() {
let encinfo = isa.encoding_info();
let regs = &isa.register_info();
for (offset, inst, size) in func.inst_offsets(block, &encinfo) {
func_w.write_instruction(w, func, aliases, Some(isa), inst, indent)?;
if size > 0 {
if let Some(val_ranges) = annotations.value_ranges {
write_value_range_markers(w, val_ranges, regs, offset + size, indent)?;
}
}
}
return Ok(());
}
}
for inst in func.layout.block_insts(block) {
func_w.write_instruction(w, func, aliases, isa, inst, indent)?;
}
Ok(())
}
//----------------------------------------------------------------------
//
// Instructions
// Should `inst` be printed with a type suffix?
//
// Polymorphic instructions may need a suffix indicating the value of the controlling type variable
// if it can't be trivially inferred.
//
fn type_suffix(func: &Function, inst: Inst) -> Option<Type> {
let inst_data = &func.dfg[inst];
let constraints = inst_data.opcode().constraints();
if !constraints.is_polymorphic() {
return None;
}
// If the controlling type variable can be inferred from the type of the designated value input
// operand, we don't need the type suffix.
if constraints.use_typevar_operand() {
let ctrl_var = inst_data.typevar_operand(&func.dfg.value_lists).unwrap();
let def_block = match func.dfg.value_def(ctrl_var) {
ValueDef::Result(instr, _) => func.layout.inst_block(instr),
ValueDef::Param(block, _) => Some(block),
};
if def_block.is_some() && def_block == func.layout.inst_block(inst) {
return None;
}
}
let rtype = func.dfg.ctrl_typevar(inst);
assert!(
!rtype.is_invalid(),
"Polymorphic instruction must produce a result"
);
Some(rtype)
}
/// Write out any aliases to the given target, including indirect aliases
fn write_value_aliases(
w: &mut dyn Write,
aliases: &SecondaryMap<Value, Vec<Value>>,
target: Value,
indent: usize,
) -> fmt::Result {
let mut todo_stack = vec![target];
while let Some(target) = todo_stack.pop() {
for &a in &aliases[target] {
writeln!(w, "{1:0$}{2} -> {3}", indent, "", a, target)?;
todo_stack.push(a);
}
}
Ok(())
}
fn write_instruction(
w: &mut dyn Write,
func: &Function,
aliases: &SecondaryMap<Value, Vec<Value>>,
isa: Option<&dyn TargetIsa>,
inst: Inst,
indent: usize,
) -> fmt::Result {
// Prefix containing source location, encoding, and value locations.
let mut s = String::with_capacity(16);
// Source location goes first.
let srcloc = func.srclocs[inst];
if !srcloc.is_default() {
write!(s, "{} ", srcloc)?;
}
// Write out encoding info.
if let Some(enc) = func.encodings.get(inst).cloned() {
if let Some(isa) = isa {
write!(s, "[{}", isa.encoding_info().display(enc))?;
// Write value locations, if we have them.
if !func.locations.is_empty() {
let regs = isa.register_info();
for &r in func.dfg.inst_results(inst) {
write!(s, ",{}", func.locations[r].display(&regs))?
}
}
write!(s, "] ")?;
} else {
write!(s, "[{}] ", enc)?;
}
}
// Write out prefix and indent the instruction.
write!(w, "{1:0$}", indent, s)?;
// Write out the result values, if any.
let mut has_results = false;
for r in func.dfg.inst_results(inst) {
if !has_results {
has_results = true;
write!(w, "{}", r)?;
} else {
write!(w, ", {}", r)?;
}
}
if has_results {
write!(w, " = ")?;
}
// Then the opcode, possibly with a '.type' suffix.
let opcode = func.dfg[inst].opcode();
match type_suffix(func, inst) {
Some(suf) => write!(w, "{}.{}", opcode, suf)?,
None => write!(w, "{}", opcode)?,
}
write_operands(w, &func.dfg, isa, inst)?;
writeln!(w)?;
// Value aliases come out on lines after the instruction defining the referent.
for r in func.dfg.inst_results(inst) {
write_value_aliases(w, aliases, *r, indent)?;
}
Ok(())
}
/// Write the operands of `inst` to `w` with a prepended space.
pub fn write_operands(
w: &mut dyn Write,
dfg: &DataFlowGraph,
isa: Option<&dyn TargetIsa>,
inst: Inst,
) -> fmt::Result {
let pool = &dfg.value_lists;
use crate::ir::instructions::InstructionData::*;
match dfg[inst] {
AtomicRmw { op, args, .. } => write!(w, " {}, {}, {}", op, args[0], args[1]),
AtomicCas { args, .. } => write!(w, " {}, {}, {}", args[0], args[1], args[2]),
LoadNoOffset { flags, arg, .. } => write!(w, "{} {}", flags, arg),
StoreNoOffset { flags, args, .. } => write!(w, "{} {}, {}", flags, args[0], args[1]),
Unary { arg, .. } => write!(w, " {}", arg),
UnaryImm { imm, .. } => write!(w, " {}", imm),
UnaryIeee32 { imm, .. } => write!(w, " {}", imm),
UnaryIeee64 { imm, .. } => write!(w, " {}", imm),
UnaryBool { imm, .. } => write!(w, " {}", imm),
UnaryGlobalValue { global_value, .. } => write!(w, " {}", global_value),
UnaryConst {
constant_handle, ..
} => write!(w, " {}", constant_handle),
Binary { args, .. } => write!(w, " {}, {}", args[0], args[1]),
BinaryImm8 { arg, imm, .. } => write!(w, " {}, {}", arg, imm),
BinaryImm64 { arg, imm, .. } => write!(w, " {}, {}", arg, imm),
Ternary { args, .. } => write!(w, " {}, {}, {}", args[0], args[1], args[2]),
MultiAry { ref args, .. } => {
if args.is_empty() {
write!(w, "")
} else {
write!(w, " {}", DisplayValues(args.as_slice(pool)))
}
}
NullAry { .. } => write!(w, " "),
TernaryImm8 { imm, args, .. } => write!(w, " {}, {}, {}", args[0], args[1], imm),
Shuffle { mask, args, .. } => {
let data = dfg.immediates.get(mask).expect(
"Expected the shuffle mask to already be inserted into the immediates table",
);
write!(w, " {}, {}, {}", args[0], args[1], data)
}
IntCompare { cond, args, .. } => write!(w, " {} {}, {}", cond, args[0], args[1]),
IntCompareImm { cond, arg, imm, .. } => write!(w, " {} {}, {}", cond, arg, imm),
IntCond { cond, arg, .. } => write!(w, " {} {}", cond, arg),
FloatCompare { cond, args, .. } => write!(w, " {} {}, {}", cond, args[0], args[1]),
FloatCond { cond, arg, .. } => write!(w, " {} {}", cond, arg),
IntSelect { cond, args, .. } => {
write!(w, " {} {}, {}, {}", cond, args[0], args[1], args[2])
}
Jump {
destination,
ref args,
..
} => {
write!(w, " {}", destination)?;
write_block_args(w, args.as_slice(pool))
}
Branch {
destination,
ref args,
..
} => {
let args = args.as_slice(pool);
write!(w, " {}, {}", args[0], destination)?;
write_block_args(w, &args[1..])
}
BranchInt {
cond,
destination,
ref args,
..
} => {
let args = args.as_slice(pool);
write!(w, " {} {}, {}", cond, args[0], destination)?;
write_block_args(w, &args[1..])
}
BranchFloat {
cond,
destination,
ref args,
..
} => {
let args = args.as_slice(pool);
write!(w, " {} {}, {}", cond, args[0], destination)?;
write_block_args(w, &args[1..])
}
BranchIcmp {
cond,
destination,
ref args,
..
} => {
let args = args.as_slice(pool);
write!(w, " {} {}, {}, {}", cond, args[0], args[1], destination)?;
write_block_args(w, &args[2..])
}
BranchTable {
arg,
destination,
table,
..
} => write!(w, " {}, {}, {}", arg, destination, table),
BranchTableBase { table, .. } => write!(w, " {}", table),
BranchTableEntry {
args, imm, table, ..
} => write!(w, " {}, {}, {}, {}", args[0], args[1], imm, table),
IndirectJump { arg, table, .. } => write!(w, " {}, {}", arg, table),
Call {
func_ref, ref args, ..
} => write!(w, " {}({})", func_ref, DisplayValues(args.as_slice(pool))),
CallIndirect {
sig_ref, ref args, ..
} => {
let args = args.as_slice(pool);
write!(
w,
" {}, {}({})",
sig_ref,
args[0],
DisplayValues(&args[1..])
)
}
FuncAddr { func_ref, .. } => write!(w, " {}", func_ref),
StackLoad {
stack_slot, offset, ..
} => write!(w, " {}{}", stack_slot, offset),
StackStore {
arg,
stack_slot,
offset,
..
} => write!(w, " {}, {}{}", arg, stack_slot, offset),
HeapAddr { heap, arg, imm, .. } => write!(w, " {}, {}, {}", heap, arg, imm),
TableAddr { table, arg, .. } => write!(w, " {}, {}", table, arg),
Load {
flags, arg, offset, ..
} => write!(w, "{} {}{}", flags, arg, offset),
LoadComplex {
flags,
ref args,
offset,
..
} => {
let args = args.as_slice(pool);
write!(
w,
"{} {}{}",
flags,
DisplayValuesWithDelimiter(&args, '+'),
offset
)
}
Store {
flags,
args,
offset,
..
} => write!(w, "{} {}, {}{}", flags, args[0], args[1], offset),
StoreComplex {
flags,
ref args,
offset,
..
} => {
let args = args.as_slice(pool);
write!(
w,
"{} {}, {}{}",
flags,
args[0],
DisplayValuesWithDelimiter(&args[1..], '+'),
offset
)
}
RegMove { arg, src, dst, .. } => {
if let Some(isa) = isa {
let regs = isa.register_info();
write!(
w,
" {}, {} -> {}",
arg,
regs.display_regunit(src),
regs.display_regunit(dst)
)
} else {
write!(w, " {}, %{} -> %{}", arg, src, dst)
}
}
CopySpecial { src, dst, .. } => {
if let Some(isa) = isa {
let regs = isa.register_info();
write!(
w,
" {} -> {}",
regs.display_regunit(src),
regs.display_regunit(dst)
)
} else {
write!(w, " %{} -> %{}", src, dst)
}
}
CopyToSsa { src, .. } => {
if let Some(isa) = isa {
let regs = isa.register_info();
write!(w, " {}", regs.display_regunit(src))
} else {
write!(w, " %{}", src)
}
}
RegSpill { arg, src, dst, .. } => {
if let Some(isa) = isa {
let regs = isa.register_info();
write!(w, " {}, {} -> {}", arg, regs.display_regunit(src), dst)
} else {
write!(w, " {}, %{} -> {}", arg, src, dst)
}
}
RegFill { arg, src, dst, .. } => {
if let Some(isa) = isa {
let regs = isa.register_info();
write!(w, " {}, {} -> {}", arg, src, regs.display_regunit(dst))
} else {
write!(w, " {}, {} -> %{}", arg, src, dst)
}
}
Trap { code, .. } => write!(w, " {}", code),
CondTrap { arg, code, .. } => write!(w, " {}, {}", arg, code),
IntCondTrap {
cond, arg, code, ..
} => write!(w, " {} {}, {}", cond, arg, code),
FloatCondTrap {
cond, arg, code, ..
} => write!(w, " {} {}, {}", cond, arg, code),
}
}
/// Write block args using optional parantheses.
fn write_block_args(w: &mut dyn Write, args: &[Value]) -> fmt::Result {
if args.is_empty() {
Ok(())
} else {
write!(w, "({})", DisplayValues(args))
}
}
/// Displayable slice of values.
struct DisplayValues<'a>(&'a [Value]);
impl<'a> fmt::Display for DisplayValues<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for (i, val) in self.0.iter().enumerate() {
if i == 0 {
write!(f, "{}", val)?;
} else {
write!(f, ", {}", val)?;
}
}
Ok(())
}
}
struct DisplayValuesWithDelimiter<'a>(&'a [Value], char);
impl<'a> fmt::Display for DisplayValuesWithDelimiter<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for (i, val) in self.0.iter().enumerate() {
if i == 0 {
write!(f, "{}", val)?;
} else {
write!(f, "{}{}", self.1, val)?;
}
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::cursor::{Cursor, CursorPosition, FuncCursor};
use crate::ir::types;
use crate::ir::{ExternalName, Function, InstBuilder, StackSlotData, StackSlotKind};
use alloc::string::ToString;
#[test]
fn basic() {
let mut f = Function::new();
assert_eq!(f.to_string(), "function u0:0() fast {\n}\n");
f.name = ExternalName::testcase("foo");
assert_eq!(f.to_string(), "function %foo() fast {\n}\n");
f.create_stack_slot(StackSlotData::new(StackSlotKind::ExplicitSlot, 4));
assert_eq!(
f.to_string(),
"function %foo() fast {\n ss0 = explicit_slot 4\n}\n"
);
let block = f.dfg.make_block();
f.layout.append_block(block);
assert_eq!(
f.to_string(),
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0:\n}\n"
);
f.dfg.append_block_param(block, types::I8);
assert_eq!(
f.to_string(),
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0(v0: i8):\n}\n"
);
f.dfg.append_block_param(block, types::F32.by(4).unwrap());
assert_eq!(
f.to_string(),
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0(v0: i8, v1: f32x4):\n}\n"
);
{
let mut cursor = FuncCursor::new(&mut f);
cursor.set_position(CursorPosition::After(block));
cursor.ins().return_(&[])
};
assert_eq!(
f.to_string(),
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0(v0: i8, v1: f32x4):\n return\n}\n"
);
}
#[test]
fn aliases() {
use crate::ir::InstBuilder;
let mut func = Function::new();
{
let block0 = func.dfg.make_block();
let mut pos = FuncCursor::new(&mut func);
pos.insert_block(block0);
// make some detached values for change_to_alias
let v0 = pos.func.dfg.append_block_param(block0, types::I32);
let v1 = pos.func.dfg.append_block_param(block0, types::I32);
let v2 = pos.func.dfg.append_block_param(block0, types::I32);
pos.func.dfg.detach_block_params(block0);
// alias to a param--will be printed at beginning of block defining param
let v3 = pos.func.dfg.append_block_param(block0, types::I32);
pos.func.dfg.change_to_alias(v0, v3);
// alias to an alias--should print attached to alias, not ultimate target
pos.func.dfg.make_value_alias_for_serialization(v0, v2); // v0 <- v2
// alias to a result--will be printed after instruction producing result
let _dummy0 = pos.ins().iconst(types::I32, 42);
let v4 = pos.ins().iadd(v0, v0);
pos.func.dfg.change_to_alias(v1, v4);
let _dummy1 = pos.ins().iconst(types::I32, 23);
let _v7 = pos.ins().iadd(v1, v1);
}
assert_eq!(
func.to_string(),
"function u0:0() fast {\nblock0(v3: i32):\n v0 -> v3\n v2 -> v0\n v4 = iconst.i32 42\n v5 = iadd v0, v0\n v1 -> v5\n v6 = iconst.i32 23\n v7 = iadd v1, v1\n}\n"
);
}
}