This is a rebase of [1]. In the long term, we'll want to simplify these analysis passes. For now, this is simple and will reduce the number of instructions processed in certain cases. [1] https://github.com/bytecodealliance/cranelift/pull/866
351 lines
12 KiB
Rust
351 lines
12 KiB
Rust
//! A control flow graph represented as mappings of basic blocks to their predecessors
|
|
//! and successors.
|
|
//!
|
|
//! Successors are represented as basic blocks while predecessors are represented by basic
|
|
//! blocks. Basic blocks are denoted by tuples of block and branch/jump instructions. Each
|
|
//! predecessor tuple corresponds to the end of a basic block.
|
|
//!
|
|
//! ```c
|
|
//! Block0:
|
|
//! ... ; beginning of basic block
|
|
//!
|
|
//! ...
|
|
//!
|
|
//! brz vx, Block1 ; end of basic block
|
|
//!
|
|
//! ... ; beginning of basic block
|
|
//!
|
|
//! ...
|
|
//!
|
|
//! jmp Block2 ; end of basic block
|
|
//! ```
|
|
//!
|
|
//! Here `Block1` and `Block2` would each have a single predecessor denoted as `(Block0, brz)`
|
|
//! and `(Block0, jmp Block2)` respectively.
|
|
|
|
use crate::bforest;
|
|
use crate::entity::SecondaryMap;
|
|
use crate::ir::instructions::BranchInfo;
|
|
use crate::ir::{Block, Function, Inst};
|
|
use crate::timing;
|
|
use core::mem;
|
|
|
|
/// A basic block denoted by its enclosing Block and last instruction.
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub struct BlockPredecessor {
|
|
/// Enclosing Block key.
|
|
pub block: Block,
|
|
/// Last instruction in the basic block.
|
|
pub inst: Inst,
|
|
}
|
|
|
|
impl BlockPredecessor {
|
|
/// Convenient method to construct new BlockPredecessor.
|
|
pub fn new(block: Block, inst: Inst) -> Self {
|
|
Self { block, inst }
|
|
}
|
|
}
|
|
|
|
/// A container for the successors and predecessors of some Block.
|
|
#[derive(Clone, Default)]
|
|
struct CFGNode {
|
|
/// Instructions that can branch or jump to this block.
|
|
///
|
|
/// This maps branch instruction -> predecessor block which is redundant since the block containing
|
|
/// the branch instruction is available from the `layout.inst_block()` method. We store the
|
|
/// redundant information because:
|
|
///
|
|
/// 1. Many `pred_iter()` consumers want the block anyway, so it is handily available.
|
|
/// 2. The `invalidate_block_successors()` may be called *after* branches have been removed from
|
|
/// their block, but we still need to remove them form the old block predecessor map.
|
|
///
|
|
/// The redundant block stored here is always consistent with the CFG successor lists, even after
|
|
/// the IR has been edited.
|
|
pub predecessors: bforest::Map<Inst, Block>,
|
|
|
|
/// Set of blocks that are the targets of branches and jumps in this block.
|
|
/// The set is ordered by block number, indicated by the `()` comparator type.
|
|
pub successors: bforest::Set<Block>,
|
|
}
|
|
|
|
/// The Control Flow Graph maintains a mapping of blocks to their predecessors
|
|
/// and successors where predecessors are basic blocks and successors are
|
|
/// basic blocks.
|
|
pub struct ControlFlowGraph {
|
|
data: SecondaryMap<Block, CFGNode>,
|
|
pred_forest: bforest::MapForest<Inst, Block>,
|
|
succ_forest: bforest::SetForest<Block>,
|
|
valid: bool,
|
|
}
|
|
|
|
impl ControlFlowGraph {
|
|
/// Allocate a new blank control flow graph.
|
|
pub fn new() -> Self {
|
|
Self {
|
|
data: SecondaryMap::new(),
|
|
valid: false,
|
|
pred_forest: bforest::MapForest::new(),
|
|
succ_forest: bforest::SetForest::new(),
|
|
}
|
|
}
|
|
|
|
/// Clear all data structures in this control flow graph.
|
|
pub fn clear(&mut self) {
|
|
self.data.clear();
|
|
self.pred_forest.clear();
|
|
self.succ_forest.clear();
|
|
self.valid = false;
|
|
}
|
|
|
|
/// Allocate and compute the control flow graph for `func`.
|
|
pub fn with_function(func: &Function) -> Self {
|
|
let mut cfg = Self::new();
|
|
cfg.compute(func);
|
|
cfg
|
|
}
|
|
|
|
/// Compute the control flow graph of `func`.
|
|
///
|
|
/// This will clear and overwrite any information already stored in this data structure.
|
|
pub fn compute(&mut self, func: &Function) {
|
|
let _tt = timing::flowgraph();
|
|
self.clear();
|
|
self.data.resize(func.dfg.num_blocks());
|
|
|
|
for block in &func.layout {
|
|
self.compute_block(func, block);
|
|
}
|
|
|
|
self.valid = true;
|
|
}
|
|
|
|
fn compute_block(&mut self, func: &Function, block: Block) {
|
|
for inst in func.layout.block_likely_branches(block) {
|
|
match func.dfg.analyze_branch(inst) {
|
|
BranchInfo::SingleDest(dest, _) => {
|
|
self.add_edge(block, inst, dest);
|
|
}
|
|
BranchInfo::Table(jt, dest) => {
|
|
if let Some(dest) = dest {
|
|
self.add_edge(block, inst, dest);
|
|
}
|
|
for dest in func.jump_tables[jt].iter() {
|
|
self.add_edge(block, inst, *dest);
|
|
}
|
|
}
|
|
BranchInfo::NotABranch => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn invalidate_block_successors(&mut self, block: Block) {
|
|
// Temporarily take ownership because we need mutable access to self.data inside the loop.
|
|
// Unfortunately borrowck cannot see that our mut accesses to predecessors don't alias
|
|
// our iteration over successors.
|
|
let mut successors = mem::replace(&mut self.data[block].successors, Default::default());
|
|
for succ in successors.iter(&self.succ_forest) {
|
|
self.data[succ]
|
|
.predecessors
|
|
.retain(&mut self.pred_forest, |_, &mut e| e != block);
|
|
}
|
|
successors.clear(&mut self.succ_forest);
|
|
}
|
|
|
|
/// Recompute the control flow graph of `block`.
|
|
///
|
|
/// This is for use after modifying instructions within a specific block. It recomputes all edges
|
|
/// from `block` while leaving edges to `block` intact. Its functionality a subset of that of the
|
|
/// more expensive `compute`, and should be used when we know we don't need to recompute the CFG
|
|
/// from scratch, but rather that our changes have been restricted to specific blocks.
|
|
pub fn recompute_block(&mut self, func: &Function, block: Block) {
|
|
debug_assert!(self.is_valid());
|
|
self.invalidate_block_successors(block);
|
|
self.compute_block(func, block);
|
|
}
|
|
|
|
fn add_edge(&mut self, from: Block, from_inst: Inst, to: Block) {
|
|
self.data[from]
|
|
.successors
|
|
.insert(to, &mut self.succ_forest, &());
|
|
self.data[to]
|
|
.predecessors
|
|
.insert(from_inst, from, &mut self.pred_forest, &());
|
|
}
|
|
|
|
/// Get an iterator over the CFG predecessors to `block`.
|
|
pub fn pred_iter(&self, block: Block) -> PredIter {
|
|
PredIter(self.data[block].predecessors.iter(&self.pred_forest))
|
|
}
|
|
|
|
/// Get an iterator over the CFG successors to `block`.
|
|
pub fn succ_iter(&self, block: Block) -> SuccIter {
|
|
debug_assert!(self.is_valid());
|
|
self.data[block].successors.iter(&self.succ_forest)
|
|
}
|
|
|
|
/// Check if the CFG is in a valid state.
|
|
///
|
|
/// Note that this doesn't perform any kind of validity checks. It simply checks if the
|
|
/// `compute()` method has been called since the last `clear()`. It does not check that the
|
|
/// CFG is consistent with the function.
|
|
pub fn is_valid(&self) -> bool {
|
|
self.valid
|
|
}
|
|
}
|
|
|
|
/// An iterator over block predecessors. The iterator type is `BlockPredecessor`.
|
|
///
|
|
/// Each predecessor is an instruction that branches to the block.
|
|
pub struct PredIter<'a>(bforest::MapIter<'a, Inst, Block>);
|
|
|
|
impl<'a> Iterator for PredIter<'a> {
|
|
type Item = BlockPredecessor;
|
|
|
|
fn next(&mut self) -> Option<BlockPredecessor> {
|
|
self.0.next().map(|(i, e)| BlockPredecessor::new(e, i))
|
|
}
|
|
}
|
|
|
|
/// An iterator over block successors. The iterator type is `Block`.
|
|
pub type SuccIter<'a> = bforest::SetIter<'a, Block>;
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use crate::cursor::{Cursor, FuncCursor};
|
|
use crate::ir::{types, Function, InstBuilder};
|
|
use alloc::vec::Vec;
|
|
|
|
#[test]
|
|
fn empty() {
|
|
let func = Function::new();
|
|
ControlFlowGraph::with_function(&func);
|
|
}
|
|
|
|
#[test]
|
|
fn no_predecessors() {
|
|
let mut func = Function::new();
|
|
let block0 = func.dfg.make_block();
|
|
let block1 = func.dfg.make_block();
|
|
let block2 = func.dfg.make_block();
|
|
func.layout.append_block(block0);
|
|
func.layout.append_block(block1);
|
|
func.layout.append_block(block2);
|
|
|
|
let cfg = ControlFlowGraph::with_function(&func);
|
|
|
|
let mut fun_blocks = func.layout.blocks();
|
|
for block in func.layout.blocks() {
|
|
assert_eq!(block, fun_blocks.next().unwrap());
|
|
assert_eq!(cfg.pred_iter(block).count(), 0);
|
|
assert_eq!(cfg.succ_iter(block).count(), 0);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn branches_and_jumps() {
|
|
let mut func = Function::new();
|
|
let block0 = func.dfg.make_block();
|
|
let cond = func.dfg.append_block_param(block0, types::I32);
|
|
let block1 = func.dfg.make_block();
|
|
let block2 = func.dfg.make_block();
|
|
|
|
let br_block0_block2;
|
|
let br_block1_block1;
|
|
let jmp_block0_block1;
|
|
let jmp_block1_block2;
|
|
|
|
{
|
|
let mut cur = FuncCursor::new(&mut func);
|
|
|
|
cur.insert_block(block0);
|
|
br_block0_block2 = cur.ins().brnz(cond, block2, &[]);
|
|
jmp_block0_block1 = cur.ins().jump(block1, &[]);
|
|
|
|
cur.insert_block(block1);
|
|
br_block1_block1 = cur.ins().brnz(cond, block1, &[]);
|
|
jmp_block1_block2 = cur.ins().jump(block2, &[]);
|
|
|
|
cur.insert_block(block2);
|
|
}
|
|
|
|
let mut cfg = ControlFlowGraph::with_function(&func);
|
|
|
|
{
|
|
let block0_predecessors = cfg.pred_iter(block0).collect::<Vec<_>>();
|
|
let block1_predecessors = cfg.pred_iter(block1).collect::<Vec<_>>();
|
|
let block2_predecessors = cfg.pred_iter(block2).collect::<Vec<_>>();
|
|
|
|
let block0_successors = cfg.succ_iter(block0).collect::<Vec<_>>();
|
|
let block1_successors = cfg.succ_iter(block1).collect::<Vec<_>>();
|
|
let block2_successors = cfg.succ_iter(block2).collect::<Vec<_>>();
|
|
|
|
assert_eq!(block0_predecessors.len(), 0);
|
|
assert_eq!(block1_predecessors.len(), 2);
|
|
assert_eq!(block2_predecessors.len(), 2);
|
|
|
|
assert_eq!(
|
|
block1_predecessors.contains(&BlockPredecessor::new(block0, jmp_block0_block1)),
|
|
true
|
|
);
|
|
assert_eq!(
|
|
block1_predecessors.contains(&BlockPredecessor::new(block1, br_block1_block1)),
|
|
true
|
|
);
|
|
assert_eq!(
|
|
block2_predecessors.contains(&BlockPredecessor::new(block0, br_block0_block2)),
|
|
true
|
|
);
|
|
assert_eq!(
|
|
block2_predecessors.contains(&BlockPredecessor::new(block1, jmp_block1_block2)),
|
|
true
|
|
);
|
|
|
|
assert_eq!(block0_successors, [block1, block2]);
|
|
assert_eq!(block1_successors, [block1, block2]);
|
|
assert_eq!(block2_successors, []);
|
|
}
|
|
|
|
// Change some instructions and recompute block0
|
|
func.dfg.replace(br_block0_block2).brnz(cond, block1, &[]);
|
|
func.dfg.replace(jmp_block0_block1).return_(&[]);
|
|
cfg.recompute_block(&mut func, block0);
|
|
let br_block0_block1 = br_block0_block2;
|
|
|
|
{
|
|
let block0_predecessors = cfg.pred_iter(block0).collect::<Vec<_>>();
|
|
let block1_predecessors = cfg.pred_iter(block1).collect::<Vec<_>>();
|
|
let block2_predecessors = cfg.pred_iter(block2).collect::<Vec<_>>();
|
|
|
|
let block0_successors = cfg.succ_iter(block0);
|
|
let block1_successors = cfg.succ_iter(block1);
|
|
let block2_successors = cfg.succ_iter(block2);
|
|
|
|
assert_eq!(block0_predecessors.len(), 0);
|
|
assert_eq!(block1_predecessors.len(), 2);
|
|
assert_eq!(block2_predecessors.len(), 1);
|
|
|
|
assert_eq!(
|
|
block1_predecessors.contains(&BlockPredecessor::new(block0, br_block0_block1)),
|
|
true
|
|
);
|
|
assert_eq!(
|
|
block1_predecessors.contains(&BlockPredecessor::new(block1, br_block1_block1)),
|
|
true
|
|
);
|
|
assert_eq!(
|
|
block2_predecessors.contains(&BlockPredecessor::new(block0, br_block0_block2)),
|
|
false
|
|
);
|
|
assert_eq!(
|
|
block2_predecessors.contains(&BlockPredecessor::new(block1, jmp_block1_block2)),
|
|
true
|
|
);
|
|
|
|
assert_eq!(block0_successors.collect::<Vec<_>>(), [block1]);
|
|
assert_eq!(block1_successors.collect::<Vec<_>>(), [block1, block2]);
|
|
assert_eq!(block2_successors.collect::<Vec<_>>(), []);
|
|
}
|
|
}
|
|
}
|