Files
wasmtime/lib/filecheck/src/pattern.rs
Jakob Stoklund Olesen 32709a56ca Upgrade to rustfmt 0.8.0.
Lots of changes this time.

Worked around what looks like a rustfmt bug in parse_inst_operands where
a large match was nested inside Ok().
2017-03-14 10:48:05 -07:00

519 lines
19 KiB
Rust

//! Pattern matching for a single directive.
use error::{Error, Result};
use variable::{varname_prefix, VariableMap, Value};
use std::str::FromStr;
use std::fmt::{self, Display, Formatter, Write};
use regex::{Regex, RegexBuilder, quote};
/// A pattern to match as specified in a directive.
///
/// Each pattern is broken into a sequence of parts that must match in order. The kinds of parts
/// are:
///
/// 1. Plain text match.
/// 2. Variable match, `$FOO` or `$(FOO)`. The variable `FOO` may expand to plain text or a regex.
/// 3. Variable definition from literal regex, `$(foo=.*)`. Match the regex and assign matching text
/// to variable `foo`.
/// 4. Variable definition from regex variable, `$(foo=$RX)`. Lookup variable `RX` which should
/// expand to a regex, match the regex, and assign matching text to variable `foo`.
///
pub struct Pattern {
parts: Vec<Part>,
// Variables defined by this pattern.
defs: Vec<String>,
}
/// One atomic part of a pattern.
#[derive(Debug, PartialEq, Eq)]
pub enum Part {
/// Match a plain string.
Text(String),
/// Match a regular expression. The regex has already been wrapped in a non-capturing group if
/// necessary, so it is safe to concatenate.
Regex(String),
/// Match the contents of a variable, which can be plain text or regex.
Var(String),
/// Match literal regex, then assign match to variable.
/// The regex has already been wrapped in a named capture group.
DefLit { def: usize, regex: String },
/// Lookup variable `var`, match resulting regex, assign matching text to variable `defs[def]`.
DefVar { def: usize, var: String },
}
impl Part {
/// Get the variabled referenced by this part, if any.
pub fn ref_var(&self) -> Option<&str> {
match *self {
Part::Var(ref var) => Some(var),
Part::DefVar { ref var, .. } => Some(var),
_ => None,
}
}
}
impl Pattern {
/// Create a new blank pattern. Use the `FromStr` trait to generate Patterns with content.
fn new() -> Pattern {
Pattern {
parts: Vec::new(),
defs: Vec::new(),
}
}
/// Check if the variable `v` is defined by this pattern.
pub fn defines_var(&self, v: &str) -> bool {
self.defs.iter().any(|d| d == v)
}
/// Add a definition of a new variable.
/// Return the allocated def number.
fn add_def(&mut self, v: &str) -> Result<usize> {
if self.defines_var(v) {
Err(Error::DuplicateDef(format!("duplicate definition of ${} in same pattern", v)))
} else {
let idx = self.defs.len();
self.defs.push(v.to_string());
Ok(idx)
}
}
/// Parse a `Part` from a prefix of `s`.
/// Return the part and the number of bytes consumed from `s`.
/// Adds defined variables to `self.defs`.
fn parse_part(&mut self, s: &str) -> Result<(Part, usize)> {
let dollar = s.find('$');
if dollar != Some(0) {
// String doesn't begin with a dollar sign, so match plain text up to the dollar sign.
let end = dollar.unwrap_or(s.len());
return Ok((Part::Text(s[0..end].to_string()), end));
}
// String starts with a dollar sign. Look for these possibilities:
//
// 1. `$$`.
// 2. `$var`.
// 3. `$(var)`.
// 4. `$(var=regex)`. Where `regex` is a regular expression possibly containing matching
// braces.
// 5. `$(var=$VAR)`.
// A doubled dollar sign matches a single dollar sign.
if s.starts_with("$$") {
return Ok((Part::Text("$".to_string()), 2));
}
// Look for `$var`.
let varname_end = 1 + varname_prefix(&s[1..]);
if varname_end != 1 {
return Ok((Part::Var(s[1..varname_end].to_string()), varname_end));
}
// All remaining possibilities start with `$(`.
if s.len() < 2 || !s.starts_with("$(") {
return Err(Error::Syntax("pattern syntax error, use $$ to match a single $"
.to_string()));
}
// Match the variable name, allowing for an empty varname in `$()`, or `$(=...)`.
let varname_end = 2 + varname_prefix(&s[2..]);
let varname = s[2..varname_end].to_string();
match s[varname_end..].chars().next() {
None => {
return Err(Error::Syntax(format!("unterminated $({}...", varname)));
}
Some(')') => {
let part = if varname.is_empty() {
// Match `$()`, turn it into an empty text match.
Part::Text(varname)
} else {
// Match `$(var)`.
Part::Var(varname)
};
return Ok((part, varname_end + 1));
}
Some('=') => {
// Variable definition. Fall through.
}
Some(ch) => {
return Err(Error::Syntax(format!("syntax error in $({}... '{}'", varname, ch)));
}
}
// This is a variable definition of the form `$(var=...`.
// Allocate a definition index.
let def = if varname.is_empty() {
None
} else {
Some(self.add_def(&varname)?)
};
// Match `$(var=$PAT)`.
if s[varname_end + 1..].starts_with('$') {
let refname_begin = varname_end + 2;
let refname_end = refname_begin + varname_prefix(&s[refname_begin..]);
if refname_begin == refname_end {
return Err(Error::Syntax(format!("expected variable name in $({}=$...", varname)));
}
if !s[refname_end..].starts_with(')') {
return Err(Error::Syntax(format!("expected ')' after $({}=${}...",
varname,
&s[refname_begin..refname_end])));
}
let refname = s[refname_begin..refname_end].to_string();
return if let Some(defidx) = def {
Ok((Part::DefVar {
def: defidx,
var: refname,
},
refname_end + 1))
} else {
Err(Error::Syntax(format!("expected variable name in $(=${})", refname)))
};
}
// Last case: `$(var=...)` where `...` is a regular expression, possibly containing matched
// parentheses.
let rx_begin = varname_end + 1;
let rx_end = rx_begin + regex_prefix(&s[rx_begin..]);
if s[rx_end..].starts_with(')') {
let part = if let Some(defidx) = def {
// Wrap the regex in a named capture group.
Part::DefLit {
def: defidx,
regex: format!("(?P<{}>{})", varname, &s[rx_begin..rx_end]),
}
} else {
// When the varname is empty just match the regex, don't capture any variables.
// This is `$(=[a-z])`.
// Wrap the regex in a non-capturing group to make it concatenation-safe.
Part::Regex(format!("(?:{})", &s[rx_begin..rx_end]))
};
Ok((part, rx_end + 1))
} else {
Err(Error::Syntax(format!("missing ')' after regex in $({}={}",
varname,
&s[rx_begin..rx_end])))
}
}
}
/// Compute the length of a regular expression terminated by `)` or `}`.
/// Handle nested and escaped parentheses in the rx, but don't actualy parse it.
/// Return the position of the terminating brace or the length of the string.
fn regex_prefix(s: &str) -> usize {
// The prevous char was a backslash.
let mut escape = false;
// State around parsing charsets.
enum State {
Normal, // Outside any charset.
Curly, // Inside curly braces.
CSFirst, // Immediately after opening `[`.
CSNeg, // Immediately after `[^`.
CSBody, // Inside `[...`.
}
let mut state = State::Normal;
// Current nesting level of parens.
let mut nest = 0usize;
for (idx, ch) in s.char_indices() {
if escape {
escape = false;
continue;
} else if ch == '\\' {
escape = true;
continue;
}
match state {
State::Normal => {
match ch {
'[' => state = State::CSFirst,
'{' => state = State::Curly,
'(' => nest += 1,
')' if nest > 0 => nest -= 1,
')' | '}' => return idx,
_ => {}
}
}
State::Curly => {
if ch == '}' {
state = State::Normal;
}
}
State::CSFirst => {
state = match ch {
'^' => State::CSNeg,
_ => State::CSBody,
}
}
State::CSNeg => state = State::CSBody,
State::CSBody => {
if ch == ']' {
state = State::Normal;
}
}
}
}
s.len()
}
impl FromStr for Pattern {
type Err = Error;
fn from_str(s: &str) -> Result<Pattern> {
// Always remove leading and trailing whitespace.
// Use `$()` to actually include that in a match.
let s = s.trim();
let mut pat = Pattern::new();
let mut pos = 0;
while pos < s.len() {
let (part, len) = pat.parse_part(&s[pos..])?;
if let Some(v) = part.ref_var() {
if pat.defines_var(v) {
return Err(Error::Backref(format!("unsupported back-reference to '${}' \
defined in same pattern",
v)));
}
}
pat.parts.push(part);
pos += len;
}
Ok(pat)
}
}
impl Pattern {
/// Get a list of parts in this pattern.
pub fn parts(&self) -> &[Part] {
&self.parts
}
/// Get a list of variable names defined when this pattern matches.
pub fn defs(&self) -> &[String] {
&self.defs
}
/// Resolve all variable references in this pattern, turning it into a regular expression.
pub fn resolve(&self, vmap: &VariableMap) -> Result<Regex> {
let mut out = String::new();
// Add a word boundary check `\b` to the beginning of the regex, but only if the first part
// is a plain text match that starts with a word character.
//
// This behavior can be disabled by starting the pattern with `$()`.
if let Some(&Part::Text(ref s)) = self.parts.first() {
if s.starts_with(char::is_alphanumeric) {
out.push_str(r"\b");
}
}
for part in &self.parts {
match *part {
Part::Text(ref s) => {
out.push_str(&quote(s));
}
Part::Regex(ref rx) => out.push_str(rx),
Part::Var(ref var) => {
// Resolve the variable. We can handle a plain text expansion.
match vmap.lookup(var) {
None => {
return Err(Error::UndefVariable(format!("undefined variable ${}", var)))
}
Some(Value::Text(s)) => out.push_str(&quote(&s)),
// Wrap regex in non-capturing group for safe concatenation.
Some(Value::Regex(rx)) => write!(out, "(?:{})", rx).unwrap(),
}
}
Part::DefLit { ref regex, .. } => out.push_str(regex),
Part::DefVar { def, ref var } => {
// Wrap regex in a named capture group.
write!(out, "(?P<{}>", self.defs[def]).unwrap();
match vmap.lookup(var) {
None => {
return Err(Error::UndefVariable(format!("undefined variable ${}", var)))
}
Some(Value::Text(s)) => write!(out, "{})", quote(&s[..])).unwrap(),
Some(Value::Regex(rx)) => write!(out, "{})", rx).unwrap(),
}
}
}
}
// Add a word boundary check `\b` to the end of the regex, but only if the final part
// is a plain text match that ends with a word character.
//
// This behavior can be disabled by ending the pattern with `$()`.
if let Some(&Part::Text(ref s)) = self.parts.last() {
if s.ends_with(char::is_alphanumeric) {
out.push_str(r"\b");
}
}
Ok(RegexBuilder::new(&out).multi_line(true).compile()?)
}
}
impl Display for Pattern {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
for part in &self.parts {
use self::Part::*;
match *part {
Text(ref txt) if txt == "" => write!(f, "$()"),
Text(ref txt) if txt == "$" => write!(f, "$$"),
Text(ref txt) => write!(f, "{}", txt),
Regex(ref rx) => write!(f, "$(={})", rx),
Var(ref var) => write!(f, "$({})", var),
DefLit { def, ref regex } => {
let defvar = &self.defs[def];
// (?P<defvar>...).
let litrx = &regex[5 + defvar.len()..regex.len() - 1];
write!(f, "$({}={})", defvar, litrx)
}
DefVar { def, ref var } => write!(f, "$({}=${})", self.defs[def], var),
}?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
#[test]
fn regex() {
use super::regex_prefix;
assert_eq!(regex_prefix(""), 0);
assert_eq!(regex_prefix(")"), 0);
assert_eq!(regex_prefix(")c"), 0);
assert_eq!(regex_prefix("x"), 1);
assert_eq!(regex_prefix("x)x"), 1);
assert_eq!(regex_prefix("x(c))x"), 4);
assert_eq!(regex_prefix("()x(c))x"), 6);
assert_eq!(regex_prefix("()x(c)"), 6);
assert_eq!(regex_prefix("x([)]))x"), 6);
assert_eq!(regex_prefix("x[)])x"), 4);
assert_eq!(regex_prefix("x[^)])x"), 5);
assert_eq!(regex_prefix("x[^])x"), 6);
}
#[test]
fn part() {
use super::{Pattern, Part};
let mut pat = Pattern::new();
// This is dubious, should we panic instead?
assert_eq!(pat.parse_part("").unwrap(), (Part::Text("".to_string()), 0));
assert_eq!(pat.parse_part("x").unwrap(),
(Part::Text("x".to_string()), 1));
assert_eq!(pat.parse_part("x2").unwrap(),
(Part::Text("x2".to_string()), 2));
assert_eq!(pat.parse_part("x$").unwrap(),
(Part::Text("x".to_string()), 1));
assert_eq!(pat.parse_part("x$$").unwrap(),
(Part::Text("x".to_string()), 1));
assert_eq!(pat.parse_part("$").unwrap_err().to_string(),
"pattern syntax error, use $$ to match a single $");
assert_eq!(pat.parse_part("$$").unwrap(),
(Part::Text("$".to_string()), 2));
assert_eq!(pat.parse_part("$$ ").unwrap(),
(Part::Text("$".to_string()), 2));
assert_eq!(pat.parse_part("$0").unwrap(),
(Part::Var("0".to_string()), 2));
assert_eq!(pat.parse_part("$xx=").unwrap(),
(Part::Var("xx".to_string()), 3));
assert_eq!(pat.parse_part("$xx$").unwrap(),
(Part::Var("xx".to_string()), 3));
assert_eq!(pat.parse_part("$(0)").unwrap(),
(Part::Var("0".to_string()), 4));
assert_eq!(pat.parse_part("$()").unwrap(),
(Part::Text("".to_string()), 3));
assert_eq!(pat.parse_part("$(0").unwrap_err().to_string(),
("unterminated $(0..."));
assert_eq!(pat.parse_part("$(foo:").unwrap_err().to_string(),
("syntax error in $(foo... ':'"));
assert_eq!(pat.parse_part("$(foo =").unwrap_err().to_string(),
("syntax error in $(foo... ' '"));
assert_eq!(pat.parse_part("$(eo0=$bar").unwrap_err().to_string(),
("expected ')' after $(eo0=$bar..."));
assert_eq!(pat.parse_part("$(eo1=$bar}").unwrap_err().to_string(),
("expected ')' after $(eo1=$bar..."));
assert_eq!(pat.parse_part("$(eo2=$)").unwrap_err().to_string(),
("expected variable name in $(eo2=$..."));
assert_eq!(pat.parse_part("$(eo3=$-)").unwrap_err().to_string(),
("expected variable name in $(eo3=$..."));
}
#[test]
fn partdefs() {
use super::{Pattern, Part};
let mut pat = Pattern::new();
assert_eq!(pat.parse_part("$(foo=$bar)").unwrap(),
(Part::DefVar {
def: 0,
var: "bar".to_string(),
},
11));
assert_eq!(pat.parse_part("$(foo=$bar)").unwrap_err().to_string(),
"duplicate definition of $foo in same pattern");
assert_eq!(pat.parse_part("$(fxo=$bar)x").unwrap(),
(Part::DefVar {
def: 1,
var: "bar".to_string(),
},
11));
assert_eq!(pat.parse_part("$(fo2=[a-z])").unwrap(),
(Part::DefLit {
def: 2,
regex: "(?P<fo2>[a-z])".to_string(),
},
12));
assert_eq!(pat.parse_part("$(fo3=[a-)])").unwrap(),
(Part::DefLit {
def: 3,
regex: "(?P<fo3>[a-)])".to_string(),
},
12));
assert_eq!(pat.parse_part("$(fo4=)").unwrap(),
(Part::DefLit {
def: 4,
regex: "(?P<fo4>)".to_string(),
},
7));
assert_eq!(pat.parse_part("$(=.*)").unwrap(),
(Part::Regex("(?:.*)".to_string()), 6));
assert_eq!(pat.parse_part("$(=)").unwrap(),
(Part::Regex("(?:)".to_string()), 4));
assert_eq!(pat.parse_part("$()").unwrap(),
(Part::Text("".to_string()), 3));
}
#[test]
fn pattern() {
use super::Pattern;
let p: Pattern = " Hello world! ".parse().unwrap();
assert_eq!(format!("{:?}", p.parts), "[Text(\"Hello world!\")]");
let p: Pattern = " $foo=$(bar) ".parse().unwrap();
assert_eq!(format!("{:?}", p.parts),
"[Var(\"foo\"), Text(\"=\"), Var(\"bar\")]");
}
}